Baul KT, Alam A, Ikonen A, Strandman H, Asikainen A, Peltola H, Kilpeläinen A (2017) Climate change mitigation potential in boreal forests: impacts of management, harvest intensity and use of forest biomass to substitute fossil resources. Forests 8(11):455. https://doi.org/10.3390/f8110455
Article
Google Scholar
Böttcher H, Freibauer A, Scholz Y, Gitz V, Ciais P, Mund M, Wutzler T, Schulze E-D (2012) Setting priorities for land management to mitigate climate change. Carbon Bal Manage 7(1):5. https://doi.org/10.1186/1750-0680-7-5
Article
Google Scholar
Buchanan AH, Levine SB (1999) Wood-based building materials and atmospheric carbon emissions. Environ Sci Pol 2(6):427–437. https://doi.org/10.1016/S1462-9011(99)00038-6
Article
Google Scholar
Butarbutar T, Köhl M, Neupane PR (2016) Harvested wood products and REDD+: looking beyond the forest border. Carbon Bal Manage 11(1):4. https://doi.org/10.1186/s13021-016-0046-9
Article
CAS
Google Scholar
Caurla S, Bertrand V, Delacote P, Le Cadre E (2018) Heat or power: how to increase the use of energy wood at the lowest cost? Energ Econ 75:85–103. https://doi.org/10.1016/j.eneco.2018.08.011
Article
Google Scholar
Chen J, Colombo SJ, Ter-Mikaelian MT, Heath LS (2014) Carbon profile of the managed forest sector in Canada in the 20th century: sink or source? Environ Sci Technol 48(16):9859–9866. https://doi.org/10.1021/es5005957
Article
CAS
PubMed
Google Scholar
Chen J, Ter-Mikaelian MT, Yang H, Colombo SJ (2018) Assessing the greenhouse gas effects of harvested wood products manufactured from managed forests in Canada. Forestry 91(2):193–205. https://doi.org/10.1093/forestry/cpx056
Article
Google Scholar
Chung J, Han H, Kwon K, Seol A (2013) Development of a carbon budget assessment model for woody biomass processing and conversion. Centre for Climate Change forestry research paper, Korea Forest Service, Republic of Korea
Google Scholar
Cintas O, Berndes G, Cowie AL, Egnell G, Holmström H, Ågren GI (2016) The climate effect of increased forest bioenergy use in Sweden: evaluation at different spatial and temporal scales. WIREs Energy Environ 5(3):351–369. https://doi.org/10.1002/wene.178
Article
Google Scholar
Dornburg V, Faaij APC (2005) Cost and CO2-emission reduction of biomass cascading: methodological aspects and case study of SRF poplar. Clim Chang 71(3):373–408. https://doi.org/10.1007/s10584-005-5934-z
Article
CAS
Google Scholar
Ekvall T, Finnveden G (2001) Allocation in ISO 14041—a critical review. J Clean Prod 9(3):197–208. https://doi.org/10.1016/S0959-6526(00)00052-4
Article
Google Scholar
European Committee for Standardization (CEN) (2012) Sustainability of construction works, environmental product declarations, core rules for the product category of construction products. EN 15804:2012
Google Scholar
FBCA (2009a) Declaration environnementale et sanitaire conforme à la norme NF P01–010. Charpente bois traditionelle (chêne et re résineux). FCBA Institut technologique, Paris
Google Scholar
FBCA (2009b) Declaration environnementale et sanitaire conforme à la norme NF P01–010. Panneau MDF (Medium Density Fiber) Standard Mélaminé ou Panneau de fibres melamine standard obtenues par voie séche pour u’tilisation en milieu humide épaisseurs 12, 18, 19, 20, 22, 25. FCBA institute technologique, Paris
Fortin M, Ningre F, Robert N, Mothe F (2012) Quantifying the impact of forest management on the carbon balance of the forest-wood product chain: a case study applied to even-aged oak stands in France. Forest Ecol Manag 279:176–188. https://doi.org/10.1016/j.foreco.2012.05.031
Article
Google Scholar
Geng A, Ning Z, Zhang H, Yang H (2019) Quantifying the climate change mitigation potential of China’s furniture sector: wood substitution benefits on emission reduction. Ecol Indic 103:363–372. https://doi.org/10.1016/j.ecolind.2019.04.036
Article
Google Scholar
Geng A, Yang H, Chen J, Hong Y (2017a) Review of carbon storage function of harvested wood products and the potential of wood substitution in greenhouse gas mitigation. Forest Policy Econ 85:192–200. https://doi.org/10.1016/j.forpol.2017.08.007
Article
Google Scholar
Geng A, Zhang H, Yang H (2017b) Greenhouse gas reduction and cost efficiency of using wood flooring as an alternative to ceramic tile: a case study in China. J Clean Prod 166:438–448. https://doi.org/10.1016/j.jclepro.2017.08.058
Article
Google Scholar
Global Viscose Market Outlook (2018) https://www.researchandmarkets.com/research/b5zstv/global_viscose?w=4. Accessed 15 Oct 2020
Hagemann N, Gawel E, Purkus A, Pannicke N, Hauck J (2016) Possible futures towards a wood-based bioeconomy: a scenario analysis for Germany. Sustainability 8(1):98. https://doi.org/10.3390/su8010098
Article
Google Scholar
Han H, Chung W, Chung J (2016) Carbon balance of forest stands, wood products and their utilization in South Korea. J Forest Res 21(5):199–210. https://doi.org/10.1007/s10310-016-0529-2
Article
CAS
Google Scholar
Härtl FH, Höllerl S, Knoke T (2017) A new way of carbon accounting emphasises the crucial role of sustainable timber use for successful carbon mitigation strategies. Mitig Adapt Strateg Glob Chang 22(8):1163–1192. https://doi.org/10.1007/s11027-016-9720-1
Article
Google Scholar
Helin T, Sokka L, Soimakallio S, Pingoud K, Pajula T (2013) Approaches for inclusion of forest carbon cycle in life cycle assessment–a review. GCB Bioenergy 5(5):475–486. https://doi.org/10.1111/gcbb.12016
Article
CAS
Google Scholar
Hischier R (2007) Life cycle inventories of packaging and graphical papers. Ecoinvent-report no. 11. Swiss Centre for Life Cycle Inventories, Dübendorf
Google Scholar
Hurmekoski E, Myllyviita T, Seppälä J, Heinonen T, Kilpeläinen A, Pukkala T, Mattila T, Hetemäki L, Asikainen A, Peltola H (2020) Impact of structural changes in wood-using industries on net carbon emissions in Finland. J Ind Ecol 24(4):899–912. https://doi.org/10.1111/jiec.12981
Article
CAS
Google Scholar
International Organization for Standardization (ISO) (2017) Sustainability in buildings and civil engineering works Core rules for environmental product declarations of construction products and services. ISO 21930:2017
Google Scholar
Japan Environmental Management Association for Industry (2014) MiLCA. Tokyo
Google Scholar
Ji C, Cao W, Chen Y, Yang H (2016) Carbon balance and contribution of harvested wood products in China based on the production approach of the intergovernmental panel on climate change. Int J Environ Res Public Health 13(11):1132. https://doi.org/10.3390/ijerph13111132
Article
PubMed Central
Google Scholar
Kalt G, Baumann M, Höher M (2015) Simulating the transformation to a low-carbon bioeconomy with an integrated model of the energy system and the forest sector. Austrian Energy Agency, Wien
Google Scholar
Kayo C, Hashimoto S, Numata A, Hamada M (2011) Reductions in greenhouse gas emissions by using wood to protect against soil liquefaction. J Wood Sci 57(3):234–240. https://doi.org/10.1007/s10086-010-1167-5
Article
CAS
Google Scholar
Kayo C, Tsunetsugu Y, Tonosaki M (2015) Climate change mitigation effect of harvested wood products in regions of Japan. Carbon Bal Manage 10(1):24. https://doi.org/10.1186/s13021-015-0036-3
Article
CAS
Google Scholar
Keith H, Lindenmayer D, Macintosh A, Mackey B (2015) Under what circumstances do wood products from native forests benefit climate change mitigation? PLoS One 10(10):e0139640. https://doi.org/10.1371/journal.pone.0139640
Article
CAS
PubMed
PubMed Central
Google Scholar
Knauf M (2016) The wood market balance as a tool for calculating wood use's climate change mitigation effect — an example for Germany. Forest Policy Econ 66:18–21. https://doi.org/10.1016/j.forpol.2016.02.004
Article
Google Scholar
Knauf M, Joosten R, Frühwald A (2016) Assessing fossil fuel substitution through wood use based on long-term simulations. Carbon Manag 7(1-2):67–77. https://doi.org/10.1080/17583004.2016.1166427
Article
CAS
Google Scholar
Knauf M, Köhl M, Mues V, Olschofsky K, Frühwald A (2015) Modeling the CO2-effects of forest management and wood usage on a regional basis. Carbon Bal Manage 10(1):13. https://doi.org/10.1186/s13021-015-0024-7
Article
CAS
Google Scholar
Köhl M, Ehrhart H-P, Knauf M, Neupane PR (2020) A viable indicator approach for assessing sustainable forest management in terms of carbon emissions and removals. Ecol Indic 111:106057. https://doi.org/10.1016/j.ecolind.2019.106057
Article
CAS
Google Scholar
Koponen K, Soimakallio S, Kline KL, Cowie A, Brandão M (2018) Quantifying the climate effects of bioenergy–choice of reference system. Renew Sust Energ Rev 81:2271–2280. https://doi.org/10.1016/j.rser.2017.05.292
Article
Google Scholar
Koskela S, Dahlbo H, Judl J, Korhonen M-R, Niininen M (2014) Reusable plastic crate or recyclable cardboard box? A comparison of two delivery systems. J Clean Prod 69:83–90. https://doi.org/10.1016/j.jclepro.2014.01.045
Article
CAS
Google Scholar
Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Hauck J, Pongratz J, Pickers PA, Korsbakken JI, Peters GP, Canadell JG, Arneth A, Arora VK, Barbero L, Bastos A, Bopp L, Chevallier F, Chini LP, Ciais P, Doney SC, Gkritzalis T, Goll DS, Harris I, Haverd V, Hoffman FM, Hoppema M, Houghton RA, Hurtt G, Ilyina T, Jain AK, Johannessen T, Jones CD, Kato E, Keeling RF, Goldewijk KK, Landschützer P, Lefèvre N, Lienert S, Liu Z, Lombardozzi D, Metzl N, Munro DR, Nabel JEMS, Nakaoka S, Neill C, Olsen A, Ono T, Patra P, Peregon A, Peters W, Peylin P, Pfeil B, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rocher M, Rödenbeck C, Schuster U, Schwinger J, Séférian R, Skjelvan I, Steinhoff T, Sutton A, Tans PP, Tian H, Tilbrook B, Tubiello FN, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Wright R, Zaehle S, Zheng B (2018) Global carbon budget 2018. Earth Syst Sci Data 10(4):2141–2194. https://doi.org/10.5194/essd-10-2141-2018
Article
Google Scholar
Leskinen P, Cardellini G, González-García S, Hurmekoski E, Sathre R, Seppälä J, Smyth C, Stern T, Verkerk PJ (2018) Substitution effects of wood-based products in climate change mitigation. From science to policy 7. European Forest Institute
Book
Google Scholar
Lobianco A, Caurla S, Delacote P, Barkaoui A (2016) Carbon mitigation potential of the French forest sector under threat of combined physical and market impacts due to climate change. J Forest Econ 23:4–26. https://doi.org/10.1016/j.jfe.2015.12.003
Article
Google Scholar
Macintosh A, Keith H, Lindenmayer D (2015) Rethinking forest carbon assessments to account for policy institutions. Nat Clim Chang 5(10):946–949. https://doi.org/10.1038/nclimate2695
Article
Google Scholar
Matsumoto M, Oka H, Mitsuda Y, Hashimoto S, Kayo C, Tsunetsugu Y, Tonosaki M (2016) Potential contributions of forestry and wood use to climate change mitigation in Japan. J Forest Res 21(5):211–222. https://doi.org/10.1007/s10310-016-0527-4
Article
CAS
Google Scholar
Nepal P, Skog KE, McKeever DB, Bergman RD, Abt KL, Abt RC (2016) Carbon mitigation impacts of increased softwood lumber and structural panel use for non-residential construction in the United States. Forest Prod J 66(1-2):77–87. https://doi.org/10.13073/FPJ-D-15-00019
Article
CAS
Google Scholar
Noda R, Kayo C, Yamanouchi M, Shibata N (2016) Life cycle greenhouse gas emission of wooden guardrails—a study in Nagano prefecture. J Wood Sci 62(2):181–193. https://doi.org/10.1007/s10086-015-1530-7
Article
CAS
Google Scholar
Norwegian Institute of Wood Technology (2015) Wood Energy Management in the European Sawmill Industry Thünen Institute and Innova. http://www.ecoinflow.com/portals/0/pror_final_26_06_final-compressed_web.pdf. Accessed 15 Oct 2020
Google Scholar
Olguin M, Wayson C, Fellows M, Birdsey R, Smyth CE, Magnan M, Dugan AJ, Mascorro VS, Alanís A, Serrano E, Kurz WA (2018) Applying a systems approach to assess carbon emission reductions from climate change mitigation in Mexico’s forest sector. Environ Res Lett 13(3):035003. https://doi.org/10.1088/1748-9326/aaaa03
Article
CAS
Google Scholar
Petersen AK, Solberg B (2005) Environmental and economic impacts of substitution between wood products and alternative materials: a review of micro-level analyses from Norway and Sweden. Forest Policy Econ 7(3):249–259. https://doi.org/10.1016/S1389-9341(03)00063-7
Article
Google Scholar
Puettmann ME, Wilson JB (2005) Life-cycle analysis of wood products: cradle-to-gate LCI of residential wood building materials. Wood Fiber Sci 37:18–29
CAS
Google Scholar
Pukkala T (2014) Does biofuel harvesting and continuous cover management increase carbon sequestration? Forest Policy Econ 43:41–50. https://doi.org/10.1016/j.forpol.2014.03.004
Article
Google Scholar
Rock J, Bolte A (2011) Auswirkungen der Waldbewirtschaftung 2002 bis 2008 auf die CO2-Bilanz. AFZ-Der Wald 15:22–24
Google Scholar
Ruter S (2011) Welchen Beitrag leisten Holzprodukte zur CO2-Bilanz? AFZ-Der Wald 15:15–18
Google Scholar
Rüter S, Werner F, Forsell N, Prins C, Via E, Levet A-L (2016) ClimWood 2030, climate benefits of material substitution by forest biomass and harvested wood products: perspective 2030 – final report. Johann Heinrich von Thünen-Institut, Braunschweig, p 142
Google Scholar
Sandanayake M, Lokuge W, Zhang G, Setunge S, Thushar Q (2018) Greenhouse gas emissions during timber and concrete building construction—a scenario based comparative case study. Sustain Cities Soc 38:91–97. https://doi.org/10.1016/j.scs.2017.12.017
Article
Google Scholar
Sathre R, O’Connor J (2010) Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ Sci Pol 13(2):104–114. https://doi.org/10.1016/j.envsci.2009.12.005
Article
CAS
Google Scholar
Schlamadinger B, Edwards R, Byrne KA, Cowie A, Faaij A, Green C, Fijan-Parlov S, Gustavsson L, Hatton T, Heding N, Kwant K (2005) Optimizing the greenhouse gas benefits of bioenergy systems. Proceedings of the 14th European Biomass Conference. Biomass for Energy, Industry and Climate Protection, 2029–2032 14th European biomass conference, 17–21 October 2005, Paris, France, pp 17–21
Google Scholar
Schweinle J, Köthke M, Englert H, Dieter M (2018) Simulation of forest-based carbon balances for Germany: a contribution to the ‘carbon debt’ debate. WIREs Energy Environ 7(1):e260. https://doi.org/10.1002/wene.260
Article
CAS
Google Scholar
Seppälä J, Heinonen T, Pukkala T, Kilpeläinen A, Mattila T, Myllyviita T, Asikainen A, Peltola H (2019) Effect of increased wood harvesting and utilization on required greenhouse gas displacement factors of wood-based products and fuels. J Environ Manag 247:580–587. https://doi.org/10.1016/j.jenvman.2019.06.031
Article
Google Scholar
Smyth C, Kurz WA, Rampley G, Lemprière TC, Schwab O (2017b) Climate change mitigation potential of local use of harvest residues for bioenergy in Canada. GCB Bioenergy 9(4):817–832. https://doi.org/10.1111/gcbb.12387
Article
CAS
Google Scholar
Smyth C, Rampley G, Lemprière TC, Schwab O, Kurz WA (2017a) Estimating product and energy substitution benefits in national-scale mitigation analyses for Canada. GCB Bioenergy 9(6):1071–1084. https://doi.org/10.1111/gcbb.12389
Article
CAS
Google Scholar
Smyth CE, Rampley GJ, Lemprière TC, Schwab O, Kurz WA (2016) Estimating product and energy substitution benefits in national-scale mitigation analyses for Canada. GCB Bioenergy 9:1071–1084
Article
Google Scholar
Smyth CE, Smiley BP, Magnan M, Birdsey R, Dugan AJ, Olguin M, Mascorro VS, Kurz WA (2018) Climate change mitigation in Canada’s forest sector: a spatially explicit case study for two regions. Carbon Bal Manage 13(1):11. https://doi.org/10.1186/s13021-018-0099-z
Article
CAS
Google Scholar
Smyth CE, Stinson G, Neilson E, Lemprière TC, Hafer M, Rampley GJ, Kurz WA (2014) Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences 11(13):3515–3529. https://doi.org/10.5194/bg-11-3515-2014
Article
Google Scholar
Soimakallio S, Mäkinen T, Ekholm T, Pahkala K, Mikkola H, Paappanen T (2009) Greenhouse gas balances of transportation biofuels, electricity and heat generation in Finland—dealing with the uncertainties. Energy Policy 3:80–90
Article
Google Scholar
Soimakallio S, Saikku L, Valsta L, Pingoud K (2016) Climate change mitigation challenge for wood utilization-the case of Finland. Environ Sci Technol 50(10):5127–5134. https://doi.org/10.1021/acs.est.6b00122
Article
CAS
PubMed
Google Scholar
Sommerhuber PF, Wenker JL, Rüter S, Krause A (2017) Life cycle assessment of wood-plastic composites: analysing alternative materials and identifying an environmental sound end-of-life option. Resour Conserv Recy 117:235–248. https://doi.org/10.1016/j.resconrec.2016.10.012
Article
Google Scholar
Sun M, Wang Y, Shi L, Klemeš JJ (2018) Uncovering energy use, carbon emissions and environmental burdens of pulp and paper industry: a systematic review and meta-analysis. Renew Sust Energ Rev 92:823–833. https://doi.org/10.1016/j.rser.2018.04.036
Article
Google Scholar
Suter F, Steubing B, Hellweg S (2017) Life cycle impacts and benefits of wood along the value chain: the case of Switzerland. J Ind Ecol 21(4):874–886. https://doi.org/10.1111/jiec.12486
Article
CAS
Google Scholar
Taeroe A, Mustapha WF, Stupak I, Raulund-Rasmussen K (2017) Do forests best mitigate CO2 emissions to the atmosphere by setting them aside for maximization of carbon storage or by management for fossil fuel substitution? J Environ Manag 197:117–129. https://doi.org/10.1016/j.jenvman.2017.03.051
Article
CAS
Google Scholar
The circular economy - a powerful force for climate mitigation (2018) Material Economics Sverige AB. https://www.sitra.fi/en/publications/circular-economy-powerful-force-climate-mitigation/. Accessed 15 Oct 2020
Werner F, Taverna R, Hofer P, Thürig E, Kaufmann E (2010) National and global greenhouse gas dynamics of different forest management and wood use scenarios: a model-based assessment. Environ Sci Pol 13(1):72–85. https://doi.org/10.1016/j.envsci.2009.10.004
Article
CAS
Google Scholar
Xu Z, Smyth CE, Lemprière TC, Rampley GJ, Kurz WA (2018) Climate change mitigation strategies in the forest sector: biophysical impacts and economic implications in British Columbia, Canada. Mitig Adapt Strateg Glob Change 23(2):257–290. https://doi.org/10.1007/s11027-016-9735-7
Article
Google Scholar