Araus JL, Hogan KP (1994) Leaf structure and patterns of photoinhibition in two neotropical palms in clearings and forest understory during the dry season. Am J Bot 81:726–738
Article
Google Scholar
Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113
Article
CAS
Google Scholar
Bhaskar R, Valiente-Banuet A, Ackerly DD (2007) Evolution of hydraulic traits in closely related species pairs from Mediterranean and nonmediterranean environments of North America. NewPhyt 176:718–726
Google Scholar
Blackman CJ, Aspinwall MJ, Tissue DT, Rymer PD (2017) Genetic adaptation and phenotypic plasticity contribute to greater leaf hydraulic tolerance in response to drought in warmer climates. Tree Physiol 37:583–592
Article
Google Scholar
Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75:1437–1449
Article
Google Scholar
Brodribb TJ, Holbrook NM (2004) Diurnal depression of leaf hydraulic conductance in a tropical tree species. Plant Cell Environ 27:820–827
Article
Google Scholar
Brodribb TJ, Holbrook NM (2006) Declining hydraulic efficiency as transpiring leaves desiccate: two types of response. Plant Cell Environ 29:2205–2215
Article
CAS
Google Scholar
Brodribb TJ, Holbrook NM, Gutierrez MV (2002) Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees. Plant Cell Environ 25:1435–1444
Article
Google Scholar
Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Sternberg LDL (2003) Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: factors and mechanisms contributing to the refilling of embolized vessels. Plant Cell Environ 26:1633–1645
Article
Google Scholar
Chen JW, Zhang Q, Cao KF (2009) Inter-species variation of photosynthetic and xylem hydraulic traits in the deciduous and evergreen Euphorbiaceae tree species from a seasonally tropical forest in South-Western China. Ecol Res 24:65–73
Article
Google Scholar
Cheng JQ, Yang JJ, Liu P (1992) Woods in China. Chinese Forestry Publishing House, Beijing
Google Scholar
Choat B, Ball MC, Luly JG, Holtum JAM (2005) Hydraulic architecture of deciduous and evergreen dry rainforest tree species from North-Eastern Australia. Trees-Struct Funct 19:305–311
Article
Google Scholar
Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feildet TS, Gleasonal SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755
Article
CAS
Google Scholar
Cochard H, Cruiziat P, Tyree MT (1992) Use of positive pressures to establish vulnerability curves: further support for the air-seeding hypothesis and implications for pressure-volume analysis. Plant Physiol 100:205–209
Article
CAS
Google Scholar
Cochard H, Melvin T, Tyree MT (1990) Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiol 6:393–407
Article
CAS
Google Scholar
Daniela D, Marc W, Heinrich S (2016) Variability of European beech wood density as influenced by interactions between tree-ring growth and aspect. Forest Ecosyst 3(1):6. https://doi.org/10.1186/s40663-016-0065-8
Article
Google Scholar
Domec JC, Scholz FG, Bucci SJ, Meinzer FC, Goldstein G, Villalobos-Vega R (2006) Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status. Plant Cell Environ 29:26–35
Article
CAS
Google Scholar
Ennajeh M, Simões F, Khemira H, Cochard H (2011) How reliable is the double-ended pressure sleeve technique for assessing xylem vulnerability to cavitation in woody angiosperms? Physiol Plantar 142:205–210
Article
CAS
Google Scholar
Fan DY, Jie SL, Liu CC, Zhang XY, Xu XW, Zhang SR, Xie ZQ (2011) The trade-off between safety and efficiency in hydraulic architecture in 31 woody species in a karst area. Tree Physiol 31:865–877
Article
Google Scholar
Fu PL, Jiang YJ, Wang AY, Brodribb TJ, Zhang JL, Zhu SD, Cao KF (2012) Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest. Ann Bot 110:189–199
Article
Google Scholar
Gadow K, Zhang GQ, Durrheim G, Drew D, Seydack A (2016) Diversity and production in an Afromontane Forest. Forest Ecosyst. 3(1):15. https://doi.org/10.1186/s40663-016-0074-7
Article
Google Scholar
Gartner BL, Bullock SH, Mooney HA, Brown VB, Whitbeck JL (1990) Water transport-properties of vine and tree stems in a tropical deciduous forest. Am J Bot 77:742–749
Article
Google Scholar
Guyot G, Scoffoni C, Sack L (2012) Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control. Plant Cell Environ 35:857–871
Article
CAS
Google Scholar
Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701
Article
Google Scholar
Hao GY, Hoffmann WA, Scholz FG, Bucci SJ, Meinzer FC, Franco AC, Cao KF, Goldstein G (2008) Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems. Oecologia 155:405–415
Article
Google Scholar
Holtta T, Juurola E, Lindfors L, Porcar-Castell A (2012) Cavitation induced by a surfactant leads to a transient release of water stress and subsequent ‘run away’ embolism in scots pine (Pinus sylvestris) seedlings. J Exp Bot 63:1057–1067
Article
Google Scholar
Hubbard RM, Ryan MG, Stiller V, Sperry JS (2001) Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant Cell Environ 24:113–121
Article
Google Scholar
Ishida A, Harayama H, Yazaki K, Ladpala P, Sasrisang A, Kaewpakasit K, Panuthai S, Staporn D, Maeda T, Gamo M, Diloksumpun S, Puangchit L, Ishizuka M (2010) Seasonal variations of gas exchange and water relations in deciduous and evergreen trees in monsoonal dry forests of Thailand. Tree Physiol 30:935–945
Article
Google Scholar
Jacobsen AL, Pratt RB, Davis SD, Ewers FW (2008) Comparative community physiology: nonconvergence in water relations among three semi-arid shrub communities. New Phytol 180:100–113
Article
Google Scholar
Johnson DM, Meinzer FC, Woodruff DR, Mcculloh KA (2010) Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species. Plant Cell Environ 32:828–836
Article
Google Scholar
Johnson DM, Woodruff DR, McCulloh KA, Meinzer FC (2009) Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species. Tree Physiol 29:879–887
Article
CAS
Google Scholar
Jones HG, Sutherland RA (1991) Stomatal control of xylem embolism. Plant Cell Environ 14:607–612
Article
Google Scholar
Kikuta SB, Lo Gullo MA, Nardini A, Richter H, Salleo S (1997) Ultrasound acoustic emissions from dehydrating leaves of deciduous and evergreen trees. Plant Cell Environ 20:1381–1390
Article
Google Scholar
Liu CC, Liu YG, Fan DY, Guo K (2012) Plant drought tolerance assessment for re-vegetation in heterogeneous karst landscapes of southwestern China. Flora 207:30–38
Article
Google Scholar
Liu JY, Fu PL, Wang YJ, Cao KF (2012b) Drought-tolerance of evergreen and deciduous figs in tropical karst forest. Plant Sci J 30:484–493
Article
CAS
Google Scholar
Logullo MA, Salleo S (1992) Water storage in the wood and xylem cavitation in 1-year-old twigs of Populus deltoids Bartr. Plant Cell Environ 15:431–438
Article
Google Scholar
Maherali H, Moura CF, Caldeira MC, Willson CJ, Jackson RB (2006) Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. Plant Cell Environ 29:571–583
Article
Google Scholar
Maherali H, Pockman WT, Jackson RB (2004) Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85:2184–2199
Article
Google Scholar
Markesteijn L, Poorter L, Bongers F, Paz H, Sack L (2011a) Hydraulics and life history of tropical dry forest tree species: coordination of species’ drought and shade tolerance. New Phytol 191:480–495
Article
Google Scholar
Markesteijn L, Poorter L, Paz H, Sack L, Bongers F (2011b) Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ 34:137–148
Article
Google Scholar
McDowell NG (2011) Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155:1051–1059
Article
CAS
Google Scholar
McElrone AJ, Pockman WT, Martinez-Vilalta J, Jackson RB (2004) Variation in xylem structure and function in stems and roots of trees to 20 m depth. New Phytol 163:507–517
Article
Google Scholar
Meinzer FC, James SA, Goldstein G (2004) Dynamics of transpiration, sap flow and use of stored water in tropical forest canopy trees. Tree Physiol 24:901–909
Article
Google Scholar
Nardini A, Salleo S (2000) Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? Trees-Struct Funct 15:14–24
Article
Google Scholar
Nardini A, Salleo S, Raimondo F (2003) Changes in leaf hydraulic conductance correlate with leaf vein embolism in Cercis siliquastrum L. Trees-Struct Funct 17:529–534
Article
Google Scholar
O’Brien MJ, Engelbrecht BMJ, Joswig J, Pereyra G, Schuldt B, Jansen S, Kattge J, Landhausser SM, Levick SR, Preisler Y, Vaananen P, Macinnis-Ng C (2017) A synthesis of tree functional traits related to drought-induced mortality in forests across climatic-zones. J Appl Ecol 54:1669–1686
Article
Google Scholar
Ogaya R, Penuelas J, Asensio D, Llusia J (2011) Chlorophyll fluorescence responses to temperature and water availability in two co-dominant Mediterranean shrub and tree species in a long-term field experiment simulating climate change. Environ Exp Bot 73:89–93
Article
CAS
Google Scholar
Oren R, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, Schafer KVR (1999) Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ 22:1515–1526
Article
Google Scholar
Pammenter NW, Vander Willigen C (1998) A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol 18:589–593
Article
Google Scholar
Pockman WT, Sperry JS (2000) Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. Am J Bot 87:1287–1299
Article
CAS
Google Scholar
Pratt RB, Jacobsen AL, North GB, Sack L, Schenk HJ (2008) Plant hydraulics: new discoveries in the pipeline. New Phytol 179:590–593
Article
Google Scholar
Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T (2004) Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 140:543–550
Article
CAS
Google Scholar
Sobrado MA (1993) Trade-off between water transport efficiency and leaf life-span in a tropical dry forest. Oecologia 96:19–23
Article
CAS
Google Scholar
Sperry JS (2000) Hydraulic constraints on plant gas exchange. Agric For Meteorol 104:13–23
Article
Google Scholar
Sperry JS, Alder NN, Eastlack SE (1993) The effect of reduced hydraulic conductance on stomatal conductance and xylem cavitation. J Exp Bot 44:1075–1082
Article
Google Scholar
Sperry JS, Nichols KL, Sullivan JE, Eastlack SE (1994) Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology 75:1736–1752
Article
Google Scholar
Sperry JS, Saliendra NZ (1994) Intra-plant and inter-plant variation in xylem cavitation in Betula occidentalis. Plant Cell Environ 17:1233–1241
Article
Google Scholar
Tognetti R, Longobucco A, Raschi A (1998) Vulnerability of xylem to embolism in relation to plant hydraulic resistance in Quercus pubescens and Quercus ilex co-occurring in a Mediterranean coppice stand in Central Italy. New Phytol 139:437–447
Article
Google Scholar
Williams LJ, Bunyavejchewin S, Baker PJ (2008) Deciduousness in a seasonal tropical forest in western Thailand: interannual and intraspecific variation in timing, duration and environmental cues. Oecologia 155:571–582
Article
Google Scholar
Woodruff DR, McCulloh KA, Warren JM, Meinzer FC, Lachenbruch B (2007) Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas fir. Plant Cell Environ 30:559–569
Article
Google Scholar
Wu JM, Tong BQ, Yang J (2003) The relationship between climate of karst region in Guizhou Province and ecological administration. J Guizhou Meterol 5:25–28
CAS
Google Scholar
Xiong D, Douthe C, Flexas J (2018) Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species. Plant Cell Environ 41:436–450
Article
CAS
Google Scholar
Yu LF, Zhu SQ, Ye JZ (2002) Preliminary study on the adaptability of tolerate-drought for different species group in karst forest. J Nanjing For Univ 26:19–22
Google Scholar