Arbuckle JL (2006) Amos (version 7.0) [computer program]. SPSS, Chicago
Baldrian P (2009) Microbial enzyme-catalyzed processes in soils and their analysis. Plant Soil Environ 55:370–378
Article
CAS
Google Scholar
Bini D, CAd S, Bouillet J-P, JLM G, EJBN C (2013a) Eucalyptus grandis and Acacia mangium in monoculture and intercropped plantations: evolution of soil and litter microbial and chemical attributes during early stages of plant development. Appl Soil Ecol 63:57–66. https://doi.org/10.1016/j.apsoil.2012.09.012
Article
Google Scholar
Bini D, Figueiredo AF, da Silva MCP, RLdeF V, EJBN C (2013b) Microbial biomass and activity in litter during the initial development of pure and mixed plantations of Eucalyptus grandis and Acacia mangium. Rev Bras Ciência do Solo 37:76–85. https://doi.org/10.1590/S0100-06832013000100008
Article
CAS
Google Scholar
Bouillet JP, Laclau JP, Goncalves JLM, Moreira MZ, Trivelin PCO, Jourdan C, Silva EV, Piccolo MC, Tsai SM, Galiana A (2008) Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil: 2: N accumulation in the stands and N2 biological fixation. Forest Ecol Manag 255(12):3918–3930. https://doi.org/10.1016/j.foreco.2007.10.050
Article
Google Scholar
Bouillet J-P, Laclau J-P, Gonçalves JLM, Voigtlaender M, Gava JL, Leite FP, Hakamada R, Mareschal L, Mabiala A, Tardy F, Levillain J, Deleporte P, Epron D, Nouvellon Y (2013) Eucalypt and Acacia tree growth over entire rotation in single-and mixed-species plantations across five sites in Brazil and Congo. Forest Ecol Manag 301:89–101. https://doi.org/10.1016/j.foreco.2012.09.019
Article
Google Scholar
Bowles TM, Acosta-Martínez V, Calderón F, Jackson LE (2014) Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol Biochem 68:252–262. https://doi.org/10.1016/j.soilbio.2013.10.004
Article
CAS
Google Scholar
Epron D, Nouvellon Y, Mareschal L, Moreira RM, Koutika L-S, Geneste B, Delgado-Rojas JS, Laclau J-P, Sola G, Gonçalves JLM, Bouillet J-P (2013) Partitioning of net primary production in Eucalyptus and Acacia stands and in mixed-species plantations: two case-studies in contrasting tropical environments. Forest Ecol Manag 301:102–111. https://doi.org/10.1016/j.foreco.2012.10.034
Article
Google Scholar
Firn J, Erskine PD, Lamb D (2007) Woody species diversity influences productivity and soil nutrient availability in tropical plantations. Oecologia 154:521–533. https://doi.org/10.1007/s00442-007-0850-8
Article
PubMed
Google Scholar
Forrester DI, Bauhus J, Cowie AL (2005) On the success and failure of mixed-species tree plantations: lessons learned from a model system of Eucalyptus globulus and Acacia mearnsii. Forest Ecol Manag 209:147–155. https://doi.org/10.1016/j.foreco.2005.01.012
Article
Google Scholar
Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with N-fixing trees: a review. Forest Ecol Manag 233(2):211–230. https://doi.org/10.1016/j.foreco.2006.05.012
Article
Google Scholar
Garay I, Pellens R, Kindel A, Barros E, Franco AA (2004) Evaluation of soil conditions in fast-growing plantations of Eucalyptus grandis and Acacia mangium in Brazil: a contribution to the study of sustainable land use. Appl Soil Ecol 27:177–187. https://doi.org/10.1016/j.apsoil.2004.03.007
Article
Google Scholar
Goncalves JLM, Barros NF, Nambiar EKS, Novais RF (1997) Soil and stand management for short-rotation plantations. In: Nambiar EKS, Brown AG (eds) Management of soil, nutrients and water in tropical plantation forests. Australian Centre for International Agricultural Research, Canberra, pp 379–418
Google Scholar
Grace JB, Andersen TM, Smith MD, Seabloom E, Abdelman SJ, Meche G, Weiher E, Allain LK, Jutila H, Sankaran M, Knops J, Ritchie M, Willig MR (2007) Does species diversity limit productivity in natural grassland communities? Ecol Lett 10:680–689. https://doi.org/10.1111/j.1461-0248.2007.01058.x
Article
PubMed
Google Scholar
Gruba P, Mulder J (2015) Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils. Sci Total Environ 511:655–662. https://doi.org/10.1016/j.scitotenv.2015.01.013
Article
CAS
PubMed
Google Scholar
Huang X, Liu S, You Y, Wen YG, Wang H, Wang JX (2017) Microbial community and associated enzymes activity influence soil carbon chemical composition in Eucalyptus urophylla plantation with mixing N2-fixing species in subtropical China. Plant Soil 414:199–212. https://doi.org/10.1007/s11104-016-3117-5
Article
CAS
Google Scholar
Huang XM, Liu SR, Wang H, Hu Z, Li ZG, You YM (2014) Changes of soil microbial biomass carbon and community composition through mixing N-fixing species with Eucalyptus Urophylla in subtropical China. Soil Biol Biochem 73:42–48. https://doi.org/10.1016/j.soilbio.2014.01.021
Article
CAS
Google Scholar
Jiang J, Wang YP, Tu M, Cao N, Yan J (2018) Soil organic matter is important for acid buffering and reducing aluminum leaching from acidic forest soils. Chem Geol 501:86–94. https://doi.org/10.1016/j.chemgeo.2018.10.009
Article
CAS
Google Scholar
Koutika L-S, Cafiero L, Bevivino A, Merino A (2020) Organic matter quality of forest floor as a driver of C and P dynamics in acacia and eucalypt plantations established on a Ferralic Arenosols, Congo. Forest Ecosyst 7:40. https://doi.org/10.1186/s40663-020-00249-w
Article
Google Scholar
Koutika L-S, Ngoyi S, Cafiero L, Bevivino A (2019) Soil organic matter quality along rotations in acacia and eucalypt plantations in the Congolese coastal plains. Forest Ecosyst 6:39. https://doi.org/10.1186/s40663-019-0197-8
Article
Google Scholar
Laclau J-P, Ranger J, Deleporte P, Nouvellon Y, Saint-André L, Marlet S, Bouillet J-P (2005) Nutrient cycling in a clonal stand of Eucalypt and an adjacent savanna ecosystem in Congo: 3. Input–output budgets and consequences for the sustainability of the plantations. Forest Ecol Manag 210:375–391
Article
Google Scholar
Lino IAN, Santos VM, Escobar IEC, Silva DKA, Araújo ASF, Maia LC (2016) Soil enzymatic activity in Eucalyptus grandis plantations of different ages. Land Degrad Develop 27:77–82. https://doi.org/10.1002/ldr.2454
Article
Google Scholar
Liu SR, Li XM, Niu LM (1998) The degradation of soil fertility in pure larch plantation in the northeastern part of China. Ecol Eng 10:75–86
Article
Google Scholar
May BM, Attiwill PM (2003) Nitrogen-fixation by Acacia dealbata and changes in soil properties 5 years after mechanical disturbance or slash-burning following timber harvest. Forest Ecol Manag 181:339–355. https://doi.org/10.1016/S0378-1127(03)00006-9
Article
Google Scholar
Nygren P, Leblanc HA (2015) Dinitrogen fixation by legume shade trees and direct transfer of fixed N to associated cacao in a tropical agroforestry system. Tree Physiol 35:134–137. https://doi.org/10.1093/treephys/tpu116
Article
CAS
PubMed
Google Scholar
Oliveira IR, Bordron B, Laclau J-P, Paula RR, Ferraz AV, Gonçalves JLM, Maire G, Bouillet JP (2021) Nutrient deficiency enhances the rate of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus trees in mixed-species plantations. Forest Ecol Manag 491:119192. https://doi.org/10.1016/j.foreco.2021.119192
Article
Google Scholar
Paula RR, Bouillet J-P, Gonçalves JLM, Trivelin PCO, Balieiro FC, Nouvellon Y, Oliveira JC, Júnior JCD, Bordron B, Laclau J-P (2018) Nitrogen fixation rate of Acacia mangium wild at mid rotation in Brazil is higher in mixed plantations with Eucalyptus grandis hill ex maiden than in monocultures. Ann Forest Sci 75:14. https://doi.org/10.1007/s13595-018-0695-9
Article
Google Scholar
Paula RR, Bouillet J-P, Trivelin PCO, Zeller B, Gonçalves JLM, Nouvellon Y, Bouvet J-M, Plassard C, Laclau J-P (2015) Evidence of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus grandis trees in a tropical planted forest. Soil Biol Biochem 91:99–108. https://doi.org/10.1016/j.soilbio.2015.08.017
Article
CAS
Google Scholar
Pereira APA, Durrer A, Gumiere T, Gonçalves José LM, Robin A, Bouillet JP, Wang J, Verma JP, Singh BK, Cardoso EJBN (2019) Mixed Eucalyptus plantations induce changes in microbial communities and increase biological functions in the soil and litter layers. Forest Ecol Manag 433:332–342. https://doi.org/10.1016/j.foreco.2018.11.018
Article
Google Scholar
Pereira APA, Zagatto MRG, Brandani CB, Mescolotti DL, Cotta SR, Gonçalves JLM, Cardoso EJBN (2018) Acacia changes microbial indicators and increases C and N in soil organic fractions in intercropped Eucalyptus plantations. Front Microbiol 9:1–13. https://doi.org/10.3389/fmicb.2018.00655
Article
Google Scholar
Pfautsch S, Rennenberg H, Bell TL, Adams MA (2009) Nitrogen uptake by Eucalyptus regnans and Acacia spp. - preferences, resource overlap and energetic costs. Tree Physiol 29:389–399. https://doi.org/10.1093/treephys/tpn033
Article
CAS
PubMed
Google Scholar
Schimel J, Becerra CA, Blankinship J (2017) Estimating decay dynamics for enzyme activities in soils from different ecosystems. Soil Biol Biochem 114:5–11. https://doi.org/10.1016/j.soilbio.2017.06.023
Article
CAS
Google Scholar
Sicardi M, García-Pérchac F, Frioni L (2004) Soil microbial indicators sensitive to land use conversion from pastures to commercial Eucalyptus grandis (hill ex maiden) plantations in Uruguay. Appl Soil Ecol 27(2):125–133. https://doi.org/10.1016/j.apsoil.2004.05.004
Article
Google Scholar
Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Causack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x
Article
PubMed
Google Scholar
Tabatabai MA, Ekenler M, Senwo ZN (2010) Significance of enzyme activities in soil nitrogen mineralization. Commun Soil Sci Plan 41(5):595–605. https://doi.org/10.1080/00103620903531177
Article
CAS
Google Scholar
Tchichelle SV, Mareschal L, Koutika L-S, Epron D (2017) Biomass production, nitrogen accumulation and symbiotic nitrogen fixation in a mixed species plantation of eucalypt and Acacia on a nutrient-poor tropical soil. Forest Ecol Manag 403:103–111. https://doi.org/10.1016/j.foreco.2017.07.041
Article
Google Scholar
Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707. https://doi.org/10.1016/0038-0717(87)90052-6
Article
CAS
Google Scholar
Versini A, Laclau J-P, Mareschal L, Plassard C, Diamesso LA, Ranger J, Zeller B (2016) Nitrogen dynamics within and between decomposing leaves, bark and branches in Eucalyptus planted forests. Soil Biol Biochem 101:55–64. https://doi.org/10.1016/j.soilbio.2016.06.034
Article
CAS
Google Scholar
Voigtlaender M, Brandani CB, Caldeira DRM, Tardy F, Bouillet JP, Gonçalves JLM, Moreira MZ, Leite FP, Brunet D, Paula RR, Laclau J-P (2019) Nitrogen cycling in monospecific and mixed-species plantations of Acacia mangium and Eucalyptus at 4 sites in Brazil. Forest Ecol Manag 436:56–67. https://doi.org/10.1016/j.foreco.2018.12.055
Article
Google Scholar
Voigtlaender M, Laclau JP, Gonalves JLDM, Piccolo MDC, Moreira MZ, Nouvellon Y, Ranger J, Bouillet J-P (2012) Introducing Acacia mangium trees in Eucalyptus grandis plantations: consequences for soil organic matter stocks and nitrogen mineralization. Plant Soil 352:99–111. https://doi.org/10.1007/s11104-011-0982-9
Article
CAS
Google Scholar
Wang H, Liu SR, Mo JM, Wang JX, Makeschin F, Wolff M (2010) Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China. Ecol Res 25:1071–1079. https://doi.org/10.1007/s11284-010-0730-2
Article
CAS
Google Scholar
Yao XY, Li YF, Liao LN, Sun G, Wang HX, Ye SM (2019) Enhancement of nutrient absorption and interspecific nitrogen transfer in a Eucalyptus urophylla × eucalyptus grandis and Dalbergia odorifera mixed plantation. Forest Ecol Manag 449:117465. https://doi.org/10.1016/j.foreco.2019.117465
Article
Google Scholar
Yao XY, Liao LN, Huang YZ, Fan G, Yang M, Ye SM (2021) The physiological and molecular mechanisms of N transfer in Eucalyptus and Dalbergia odorifera intercropping systems using root proteomics. BMC Plant Biol 21:201. https://doi.org/10.1186/s12870-021-02969-9
Article
CAS
PubMed
PubMed Central
Google Scholar
You Y, Huang X, Zhu H, Liu S, Liang H, Wen Y, Wang H, Cai D, Ye D (2018) Positive interactions between Pinus massoniana and Castanopsis hystrix species in the uneven-aged mixed plantations can produce more ecosystem carbon in subtropical China. Forest Ecol Manag 410:193–200. https://doi.org/10.1016/j.foreco.2017.08.025
Article
Google Scholar
Zhao BC, Xu JD, Chen BY, Cao XF, Yuan TQ, Wang SF, Charlton A, Sun R-C (2018) Selective precipitation and characterization of lignin-carbohydrate complexes (LCCs) from Eucalyptus. Planta 247(5):1077–1087. https://doi.org/10.1007/s00425-018-2842-9
Article
CAS
PubMed
Google Scholar