Achat DL, Deleuze C, Landmann G, Pousse N, Ranger J, Augusto L (2015) Quantifying consequences of removing harvesting residues on forest soils and tree growth - a meta-analysis. For Ecol Manag 348:124–141. https://doi.org/10.1016/j.foreco.2015.03.042
Article
Google Scholar
Apostel C, Herschbach J, Boreb EK, Spielvogel S, Kuzyakov Y, Dippolda MA (2018) Food for microorganisms: position-specific 13C-labeling and 13C-plfa analysis reveals preferences for sorbed or necromass C. Geoderma 312:86–94. https://doi.org/10.1016/j.geoderma.2017.09.042
Bai Z, Liang C, Bodé S, Huygens D, Boeck P (2016) Phospholipid 13C stable isotopic probing during decomposition of wheat residues. Appl Soil Ecol 98:65–74. https://doi.org/10.1016/j.apsoil.2015.09.009
Article
Google Scholar
Blazier MA, Patterson WB, Hotard SL (2008) Straw harvesting, fertilization, and fertilizer type alter soil microbiological and physical properties in a loblolly pine plantation in the mid-South USA. Biol Fert Soils 45(2):145–153. https://doi.org/10.1007/s00374-008-0316-0
Article
Google Scholar
Brant JB, Myrold DD, Sulzman EW (2006) Root controls on soil microbial community structure in forest soils. Oecologia 148(4):650–659. https://doi.org/10.1007/s00442-006-0402-7
Article
PubMed
Google Scholar
Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220(4):1108–1115. https://doi.org/10.1111/nph.14976
Article
PubMed
Google Scholar
Campo J, Merino A (2016) Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems. Glob Change Biol 22(5):1942–1956. https://doi.org/10.1111/gcb.13244
Article
Google Scholar
Chen X, Chen HYH (2018) Global effects of plant litter alterations on soil CO2 to the atmosphere. Glob Change Biol 24(8):3462–3471. https://doi.org/10.1111/gcb.14147
Article
Google Scholar
Culina A, Crowther TW, Ramakers JJC, Gienapp P, Visser ME (2018) How to do meta-analysis of open datasets. Nature Ecol Evol 2(7):1053–1056. https://doi.org/10.1038/s41559-018-0579-2
Article
Google Scholar
Denef K, Roobroeck D, Wadu MCWM, Lootens P, Boeckx P (2009) Microbial community composition and rhizodeposit-carbon assimilation in differently managed temperate grassland soils. Soil Biol Biochem 41(1):144–153. https://doi.org/10.1016/j.soilbio.2008.10.008
Article
CAS
Google Scholar
Dixon RK (1994) Carbon pools and flux of global forest ecosystem. Science 265(5144):171–190. https://doi.org/10.1126/science.263.5144.185
Article
Google Scholar
Feng W, Zou X, Schaefer D (2009) Above- and belowground carbon inputs affect seasonal variations of soil microbial biomass in a subtropical monsoon forest of Southwest China. Soil Biol Biochem 41(5):978–983. https://doi.org/10.1016/j.soilbio.2008.10.002
Article
CAS
Google Scholar
Fulton-Smith S, Cotrufo MF (2019) Pathways of soil organic matter formation from above and belowground inputs in a Sorghum bicolor bioenergy crop. Glob Change Biol Bioe 11(8):971–987. https://doi.org/10.1111/gcbb.12598
Article
CAS
Google Scholar
Hatton PJ, Castanha C, Torn MS, Bird JA (2015) Litter type control on soil C and N stabilization dynamics in a temperate forest. Glob Change Biol 21(3):1358–1367. https://doi.org/10.1111/gcb.12786
Article
Google Scholar
Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80(4):1150–1156. https://doi.org/10.2307/177062
Article
Google Scholar
Hobbie EA (2006) Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87(3):563–569. https://doi.org/10.1890/05-0755
Article
PubMed
Google Scholar
Högberg MN, Högberg P (2002) Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol 15(3):791–795. https://doi.org/10.1046/j.1469-8137.2002.00417.x
Hogberg MN, Hogberg P, Myrold DD (2007) Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150(4):590–601. https://doi.org/10.1007/s00442-006-0562-5
Article
PubMed
Google Scholar
Huang J, Liu W, Deng M, Wang X, Wang Z, Yang L, Liu L (2020) Allocation and turnover of rhizodeposited carbon in different soil microbial groups. Soil Biol Biochem 150:107973. https://doi.org/10.1016/j.soilbio.2020.107973
Article
CAS
Google Scholar
Huo C, Luo Y, Cheng W (2017) Rhizosphere priming effect: a meta-analysis. Soil Biol Biochem 111:78–84. https://doi.org/10.1016/j.soilbio.2017.04.003
Article
CAS
Google Scholar
Huston MA, Wolverton S (2009) The global distribution of net primary production: resolving the paradox. Ecol Monogr 79(3):343–377. https://doi.org/10.1890/08-0588.1
Article
Google Scholar
Jing Y, Wang Y, Liu S, Zhang X, Wang Q, Liu K, Yin Y, Deng J (2019) Interactive effects of soil warming, throughfall reduction, and root exclusion on soil microbial community and residues in warm-temperate oak forests. Appl Soil Ecol 142:52–58. https://doi.org/10.1016/j.apsoil.2019.05.020
Article
Google Scholar
Kallenbach CM, Frey SD, Grandy AS (2016) Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 7(1):13630. https://doi.org/10.1038/ncomms13630
Article
CAS
PubMed
PubMed Central
Google Scholar
Lajtha K, Bowden RD, Crow S, Fekete I, Kotroczo Z, Plante AF, Simpson MJ, Nadelhoffer KJ (2018) The detrital input and removal treatment (DIRT) network: insights into soil carbon stabilization. Sci Total Environ 640:1112–1120. https://doi.org/10.1016/j.scitotenv.2018.05.388
Article
CAS
PubMed
Google Scholar
Li LJ, Ye RZ, Barker XZ, Horwath WR (2019) Soil microbial biomass size and nitrogen availability regulate the incorporation of residue carbon into dissolved organic pool and microbial biomass. Soil Sci Soc Am J 83(4):1083–1092. https://doi.org/10.2136/sssaj2018.11.0446
Article
CAS
Google Scholar
Li W, Zhang H, Huang G, Liu R, Wu H, Zhao C, McDowell NG (2020) Effects of nitrogen enrichment on tree carbon allocation: a global synthesis. Glob Ecol Biogeogr 29(3):573–589. https://doi.org/10.1111/geb.13042
Article
Google Scholar
Li YQ, Xu M, Sun OJ, Cui WC (2004) Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests. Soil Biol Biochem 36(12):2111–2114. https://doi.org/10.1016/j.soilbio.2004.06.003
Article
CAS
Google Scholar
Liu X, Lin TC, Vadeboncoeur MA, Yang Z, Chen S, Xiong D, Xu C, Li Y, Yang Y (2019) Root litter inputs exert greater influence over soil C than does aboveground litter in a subtropical natural forest. Plant Soil 444(1-2):489–499. https://doi.org/10.1007/s11104-019-04294-5
Article
CAS
Google Scholar
Luo Y, Wang X, Zhang X, Booth TH, Lu F (2012) Root:shoot ratios across China's forests: Forest type and climatic effects. For Ecol Manag 269:19–25. https://doi.org/10.1016/j.foreco.2012.01.005
Article
Google Scholar
Meng C, Tian D, Zeng H, Li Z, Chen HYH, Niu S (2020) Global meta-analysis on the responses of soil extracellular enzyme activities to warming. Sci Total Environ 705:135992. https://doi.org/10.1016/j.scitotenv.2019.135992
Article
CAS
PubMed
Google Scholar
Pisani O, Lin LH, Lun OOY, Lajtha K, Nadelhoffer KJ, Simpson AJ, Simpson MJ (2016) Long-term doubling of litter inputs accelerates soil organic matter degradation and reduces soil carbon stocks. Biogeochemistry 127(1):1–14. https://doi.org/10.1007/s10533-015-0171-7
Article
CAS
Google Scholar
Prevost-Boure NC, Maron PA, Ranjard L, Nowak V, Dufrene E, Damesin C, Soudani K, Lata JC (2011) Seasonal dynamics of the bacterial community in forest soils under different quantities of leaf litter. Appl Soil Ecol 47(1):14–23. https://doi.org/10.1016/j.apsoil.2010.11.006
Article
Google Scholar
Rasmussen PU, Bennett AE, Tack AJM (2020) The impact of elevated temperature and drought on the ecology and evolution of plant-soil microbe interactions. J Ecol 108(1):337–352. https://doi.org/10.1111/1365-2745.13292
Article
Google Scholar
Ren C, Zhao F, Shi Z, Chen J, Han X, Yang G, Feng Y, Ren G (2017) Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation. Soil Biol Biochem 115:1–10. https://doi.org/10.1016/j.soilbio.2017.08.002
Article
CAS
Google Scholar
Reynolds LL, Lajtha K, Bowden RD, Tfaily MM, Johnson BR, Bridgham SD (2018) The path from litter to soil: insights into soil c cycling from long-term input manipulation and high-resolution mass spectrometry. J Geophysl Res 123(5):1486–1497. https://doi.org/10.1002/2017JG004076
Article
Google Scholar
Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clercq DA, Coosemans J, Insam H, Swings J (2003) A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol 53(4):349–410. https://doi.org/10.1081/ABIO-120026487
Article
CAS
Google Scholar
Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:348. https://doi.org/10.3389/fmicb.2012.00348
Article
CAS
PubMed
PubMed Central
Google Scholar
Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventós DS, Neve S, Ravn B, Bonvin AM, Maria LD, Andersen AS, Gammelgaard LK, Sahl HG, Kristensen HH (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II. Science 328(5982):1168–1172. https://doi.org/10.1126/science.1185723
Article
CAS
PubMed
Google Scholar
See CR, McCormack M, Hobbie SE, Flores-Moreno H, Silver WL, Kennedy PG (2019) Global patterns in fine root decomposition: climate, chemistry, mycorrhizal association and woodiness. Ecol Lett 22(6):946–953. https://doi.org/10.1111/ele.13248
Article
PubMed
Google Scholar
Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129(3):407–419. https://doi.org/10.1007/s004420100740
Article
PubMed
Google Scholar
Sokol NW, Kuebbing SE, Karlsen-Ayala E, Bradford MA (2019) Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytol 221(1):233–246. https://doi.org/10.1111/nph.15361
Article
CAS
PubMed
Google Scholar
Song J, Wan S, Piao S, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia J, Liu Q, Ru J, Zhou Z, Luo Y, Guo D, Adam Langley J, Zscheischler J, Dukes JS, Tang J, Chen J, Hofmockel KS, Kueppers LM, Rustad L, Liu L, Smith MD, Templer PH, Quinn Thomas R, Norby RJ, Phillips RP, Niu S, Fatichi S, Wang Y, Shao P, Han H, Wang D, Lei L, Wang J, Li X, Zhang Q, Li X, Su F, Liu B, Yang F, Ma G, Li G, Liu Y, Liu Y, Yang Z, Zhang K, Miao Y, Hu M, Yan C, Zhang A, Zhong M, Hui Y, Li Y, Zheng M (2019) A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecol Evolut 3(9):1309–1320. https://doi.org/10.1038/s41559-019-0958-3
Article
Google Scholar
Strickland MS, Rousk J (2010) Considering fungal:bacterial dominance in soils- methods, controls, and ecosystem implications. Soil Biol Biochem 42(9):1385–1395. https://doi.org/10.1016/j.soilbio.2010.05.007
Article
CAS
Google Scholar
Subke JA, Hahn V, Battipaglia G, Linder S, Buchmann N, Cotrufo MF (2004) Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia 139(4):551–559. https://doi.org/10.1007/s00442-004-1540-4
Article
PubMed
Google Scholar
vanden Enden L, Frey SD, Nadelhoffer KJ, JM LM, Lajtha K, Simpson MJ (2018) Molecular-level changes in soil organic matter composition after 10 years of litter, root and nitrogen manipulation in a temperate forest. Biogeochemistry 141(2):183–197. https://doi.org/10.1007/s10533-018-0512-4
Article
CAS
Google Scholar
Vidal A, Quenea K, Alexis M, Tu TTN, Mathieu J, Vaury V, Derenne S (2017) Fate of 13C labelled root and shoot residues in soil and anecic earthworm casts: a mesocosm experiment. Geoderma 285:9–18. https://doi.org/10.1016/j.geoderma.2016.09.016
Article
CAS
Google Scholar
Wang JJ, Pisani O, Lin LH, Lun OOY, Bowden RD, Lajtha K, Simpson AJ, Simpson MJ (2017b) Long-term litter manipulation alters soil organic matter turnover in a temperate deciduous forest. Sci Total Environ 607:865–875. https://doi.org/10.1016/j.scitotenv.2017.07.063
Article
CAS
PubMed
Google Scholar
Wang Q, Yu Y, He T, Wang Y (2017a) Aboveground and belowground litter have equal contributions to soil CO2 emission: an evidence from a 4-year measurement in a subtropical forest. Plant Soil 421(1-2):7–17. https://doi.org/10.1007/s11104-017-3422-7
Article
CAS
Google Scholar
Wang Y, Zhang C, Zhang G, Wang L, Gao Y, Wang X, Liu B, Zhao X, Mei H (2019) Carbon input manipulations affecting microbial carbon metabolism in temperate forest soils - a comparative study between broadleaf and coniferous plantations. Geoderma 355:113914. https://doi.org/10.1016/j.geoderma.2019.113914
Article
CAS
Google Scholar
Weintraub SR, Wieder WR, Cleveland CC, Townsend AR (2013) Organic matter inputs shift soil enzyme activity and allocation patterns in a wet tropical forest. Biogeochemistry 114(1-3):313–326. https://doi.org/10.1007/s10533-012-9812-2
Article
CAS
Google Scholar
Wu J, Zhang D, Chen Q, Feng J, Li Q, Yang F, Zhang Q, Cheng X (2018) Shifts in soil organic carbon dynamics under detritus input manipulations in a coniferous forest ecosystem in subtropical China. Soil Biol Biochem 126:1–10. https://doi.org/10.1016/j.soilbio.2018.08.010
Article
CAS
Google Scholar
Xu S, Liu LL, Sayer EJ (2013) Variability of aboveground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litter-manipulation experiments. Biogeosciences 10(11):7423–7433. https://doi.org/10.5194/bg-10-7423-2013
Article
CAS
Google Scholar
Xu X, Sun Y, Sun J, Cao P, Wang Y, Chen HYH, Wang W, Ruan H (2020) Cellulose dominantly affects soil fauna in the decomposition of forest litter: a meta-analysis. Geoderma 378:114620. https://doi.org/10.1016/j.geoderma.2020.114620
Article
CAS
Google Scholar
Yang X, Chen J, Shen Y, Dong F, Chen J (2020) Global negative effects of livestock grazing on arbuscular mycorrhizas: a meta-analysis. Sci Total Environ 708:134553. https://doi.org/10.1016/j.scitotenv.2019.134553
Article
CAS
PubMed
Google Scholar
Zhang Y, Zou J, Meng D, Dang S, Zhou J, Osborne B, Ren Y, Liang T, Yu K (2020) Effect of soil microorganisms and labile C availability on soil respiration in response to litter inputs in forest ecosystems: a meta-analysis. Ecol Evol 10(24):13602–13612. https://doi.org/10.1002/ece3.6965
Article
PubMed
PubMed Central
Google Scholar