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Abstract

Background: Inputs of above- and belowground litter into forest soils are changing at an unprecedented rate due
to continuing human disturbances and climate change. Microorganisms drive the soil carbon (C) cycle, but the
roles of above- and belowground litter in regulating the soil microbial community have not been evaluated at a
global scale.

Methods: Here, we conducted a meta-analysis based on 68 aboveground litter removal and root exclusion studies
across forest ecosystems to quantify the roles of above- and belowground litter on soil microbial community and
compare their relative importance.

Results: Aboveground litter removal significantly declined soil microbial biomass by 4.9% but root exclusion
inhibited it stronger, up to 11.7%. Moreover, the aboveground litter removal significantly raised fungi by 10.1%
without altering bacteria, leading to a 46.7% increase in the fungi-to-bacteria (F/B) ratio. Differently, root exclusion
significantly decreased the fungi by 26.2% but increased the bacteria by 5.7%, causing a 13.3% decrease in the F/B
ratio. Specifically, root exclusion significantly inhibited arbuscular mycorrhizal fungi, ectomycorrhizal fungi, and
actinomycetes by 22.9%, 43.8%, and 7.9%, respectively. The negative effects of aboveground litter removal on
microbial biomass increased with mean annual temperature and precipitation, whereas that of root exclusion on
microbial biomass did not change with climatic factors but amplified with treatment duration. More importantly,
greater effects of root exclusion on microbial biomass than aboveground litter removal were consistent across
diverse forest biomes (expect boreal forests) and durations.

Conclusions: These data provide a global evidence that root litter inputs exert a larger control on microbial biomass than
aboveground litter inputs in forest ecosystems. Our study also highlights that changes in above- and belowground litter
inputs could alter soil C stability differently by shifting the microbial community structure in the opposite direction. These
findings are useful for predicting microbe-mediated C processes in response to changes in forest management or climate.
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Introduction
Intensified human disturbances and climate change have
greatly influenced above- and belowground litter (root) in-
puts to forest soils. For example, harvesting forest prod-
ucts significantly decreases the aboveground litter input
(Achat et al. 2015), but nutrient deposition may increase
litter inputs more from aboveground than belowground
parts via enhanced plant growth and decreased root-to-
shoot ratios (Song et al. 2019; Li et al. 2020). These
changes in litter inputs can profoundly alter soil carbon
(C) stocks, because plant litters are the main source of C
into the soil (Lajtha et al. 2018; Reynolds et al. 2018).
However, we currently have insufficient capability to pre-
dict the litter-induced changes in soil C dynamics. This is
mainly due to a critical knowledge gap on the general pat-
terns of soil microorganism response to litter changes in
forest ecosystems, where approximately one-third of the
terrestrial C is stored in soil (Dixon 1994).
Soil microorganisms play a key role in soil C forma-

tion and stabilization (Schimel and Schaeffer 2012; Jing
et al. 2019) and respond rapidly to changes in above-
and belowground litter (Brant et al. 2006; Wang et al.
2017a; Jing et al. 2019). Numerous studies have quanti-
fied the roles of above- and belowground litter in driving
the soil microbial community via litter removal experi-
ments (Hogberg et al. 2007; Weintraub et al. 2013; Xu
et al. 2013; Wang et al. 2017a; vanden Enden et al.,
2018; Jing et al. 2019). Despite these efforts, to what ex-
tent above- and belowground litter influence soil micro-
organisms remains largely unknown due to diverse
microbial responses. For instance, the microbial biomass
has been reported to increase (Feng et al. 2002; Pisani
et al. 2016), decrease (Högberg and Högberg 2002; Li
et al. 2004; Weintraub et al. 2013), or to change insig-
nificantly under litter exclusion treatments (Blazier et al.
2008; Prevost-Boure et al. 2011). Besides, the microbial
community structure indicated by the fungi-to-bacteria
ratio (F/B) also decreases (Brant et al. 2006) or increases
(Pisani et al. 2016; Wang et al. 2017b) in response to re-
moving litters. Moreover, above- and belowground lit-
ters differ in chemical properties, turnover rates, and
pathways entering into the soil (Hatton et al. 2015;
Fulton-Smith and Cotrufo 2019; Sokol et al. 2019),
meaning that they may exert different controls on soil
microorganisms. Aboveground litters are traditionally
believed to be equal to or more important than roots in
affecting the microbial community (Li et al. 2004; Wang
et al. 2017a). This notion clashes with the emerging evi-
dence that root exclusion inhibits the microbial biomass
greater than aboveground litter removal (vanden Enden
et al., 2018; Liu et al. 2019). Unfortunately, to date, few
studies have compared the importance of above- and be-
lowground litters to the soil microbial community, and
thus are unlikely to identify the global relative

importance due to soil ecological complexity and spatial
heterogeneity (Culina et al. 2018). A quantitative synthe-
sis that reveals the global-scale patterns of above- and
belowground litter effects on soil microorganisms and
compares their relative importance is urgently needed.
The effects of above- and belowground litter on soil

microorganisms may vary depending on climate or for-
est biomes because forest productivity (Huston and
Wolverton 2009), biomass allocation (Luo et al. 2012),
and litter decomposition rate (Luo et al. 2012; See et al.
2019) are dependent on climate. A previous meta-
analysis has revealed that the microbial biomass in sub-
tropical forests is more sensitive to aboveground litter
removal than that in temperate forests (Xu et al. 2013).
Nevertheless, evidence is lacking on whether the effect
of belowground litter on soil microorganisms is also cli-
matic- or biome-dependent. Moreover, litter inputs and
associated priming effect (defined as litter input triggers
decomposition of pre-existing SOC) are dependent on
time (Huo et al. 2017; Wu et al. 2018), indicating that
litter effects on soil microorganisms may vary over time.
However, this speculation remains untested.
To address the above-mentioned issues, we performed

a meta-analysis of the soil microbial community in re-
sponse to aboveground litter removal and root exclusion
by collecting 68 published litter experiments conducted
in forest ecosystems. Our study seeks to (1) quantify the
effects of above- and belowground litter on microbial
community, (2) compare their relative importance, and
(3) explore the environmental factors that can explain
the various effects of litter exclusion on the microbial
biomass across studies.

Methods
Data collection
Peer-reviewed journal articles published before December
2020 were searched using the Web of Science (http://
apps.webofknowledge.com/) and the China National
Knowledge Infrastructure (http://www.cnki.net/). The
searched terms were “(carbon input OR litter inputs OR
litter manipulation OR litter removal OR detrital input
and removal treatment OR root exclusion OR trenching
OR girdling) AND (microbe OR microbial OR phospho-
lipid fatty acid OR PLFA) AND (forest)”. To minimize
publication bias, only studies that satisfied the following
criteria were included in this meta-analysis. (1) Only field
experiments were selected; (2) The control and treatment
plots were established in the same climatic types, domin-
ant plant groups, and soil conditions; (3) The means,
standard deviations (or standard errors) and numbers of
replicates were reported; (4) Only the latest results were
used if multiple observations were made at different times
in the same study site; (5) Only the topmost soil layer was
included if multiple soil depths were reported; (6)
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Different litter-removal treatments, soil or vegetation
types in the same study were regarded as an independent
study. Ultimately, a total of 60 aboveground litter removal
and 71 root exclusion experiments obtained from 68 pa-
pers met the criteria above and were utilized for this
meta-analysis (Supporting Information).
For each of the selected studies (Fig. 1), we extracted

data of total microbial biomass, the biomass of fungi, bac-
teria, Gram-positive bacteria (GP), Gram-negative bacteria
(GN), actinomycetes (ACT), arbuscular mycorrhizal fungi
(AMF), ectomycorrhizal fungi (EMF), fungi-to-bacteria ra-
tio (F/B) and the ratio of Gram-positive to Gram-negative
bacteria (GP/GN). If the case study used both chloroform
fumigation (CF) and phospholipid fatty acid (PLFA)
methods to measure microbial biomass, we chose the
former as Ren et al. (2017) did. Methods for determining
the fungal and bacterial biomass included PLFA (Jing
et al. 2019) and microscope (Subke et al. 2004). Root ex-
clusion included trenching and girdling experiments, be-
cause these two methods yield quantitatively similar
outcomes for microbial biomass (P > 0.05, Fig. S1).
Besides the information on microbes, we also recorded

forest biomes (boreal, temperate, and sub/tropical for-
ests), mean annual temperature (MAT), mean annual
precipitation (MAP), experimental duration [grouped
into short (< 3 years) and long duration (≥3 years)], dis-
solved organic C (DOC), and other soil properties (e.g.
soil temperature, and soil moisture). If studies did not
report climate variables, the WorldClim data (http://
www.worldclim.com/) were used to reconstruct climate
values based on latitude and longitude. These data cov-
ered a wide gradient of climatic conditions, with MAT

and MAP ranging from − 4.9 °C to 35 °C, and from 420
to 5000 mm, respectively. We collected data directly
from either tables or indirectly from figures by using
GetData Graph Digitizer 2.24 software.

Meta analysis
We used the natural log of the response ratio (lnRR), de-
fined as the ‘effect size’ to determine the significance of
microbial responses to above- or belowground input re-
moval (Hedges et al. 1999). For a given variable, the re-
sponse ratio (RR) was calculated as below:

lnRR ¼ ln
Xt

Xc

� �
¼ ln Xt

� �
− ln Xc

� � ð1Þ

where Xt and Xc are the means of litter removal treat-
ments and the control, respectively. The variance within
each study was calculated by:

v ¼ st2

ntXt
2 þ

sc2

ncXc
2 ð2Þ

where st, nt versus sc, nc are the standard deviation and
sample size under litter removal and control treatments,
respectively.
We calculated the weight (w) of each lnRR by the in-

verse of variance as below:

w ¼ 1
v

ð3Þ

Finally, the mean variance-weighted effect size lnRR
for all observations was calculated as Eq. 4 using a fixed

Fig. 1 Global distribution of locations of studies included in this meta-analysis
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effects model in MetaWin software (2.1) (Hedges et al.
1999; Ren et al. 2017).

lnRRþþ ¼
P

i wið Þ � lnRRiP
i wið Þ ð4Þ

If 95% confidence intervals (CIs) of lnRR++ did not
overlap with 0, then effects were significant at P < 0.05.
The changes caused by input treatments for a certain re-
sponse variable were calculated as:

Percentage %ð Þ ¼ exp lnRRþþ−1ð Þ � 100% ð5Þ
The statistic differences between the effect sizes of

aboveground litter removal (ALR) and that of root ex-
clusion (RE) were analyzed by between-group heterogen-
eity (Ren et al. 2017; Chen and Chen 2018). Regression
and correlation analyses were adopted to examine the
relationships of lnRRs of microbial biomass and F/B ra-
tio to duration, climatic variables and soil properties
using SPSS 22.0 software (SPSS Inc.).

Results
Effects of above- and belowground litter on the soil
microbial community
At the global scale, aboveground litter removal signifi-
cantly decreased the total microbial biomass by 4.9%
(Fig. 2a, P < 0.05). In comparison to the above-ground
litter removal, root exclusion caused a stronger decline
in the microbial biomass, reaching11.7% (Fig. 2b, P <
0.05). The aboveground litter removal significantly en-
hanced fungi by 10.1% (P < 0.05) but showed no effect
on other specific microbial groups, leading to a 46.7%

enrichment in the F/B ratio (Fig. 2a, P < 0.01). However,
root exclusion significantly increased bacteria by 5.7%
and decreased fungi by 26.2%, resulting in a 13.3% de-
crease in the F/B ratio (Fig. 2b, all P < 0.05). In detail,
root exclusion significantly increased GP bacteria by
4.2%, but significantly inhibited AMF, EMF, and ACT by
22.9%, 43.8%, and 7.9%, respectively (Fig. 2b, all P <
0.05). Moreover, aboveground litter removal and root
exclusion increased the GP/GN bacteria ratio to a simi-
lar extent (Fig. 2, both P < 0.05).

Factors controlling the microbial responses
Regression analysis revealed that across all forest ecosys-
tems, the lnRR of soil microbial biomass to aboveground
litter removal increased with MAT (Fig. 3a, R2 = 0.129,
P < 0.01) and MAP (Fig. 3b, R2 = 0.111, P < 0.01), but did
not change with experimental duration or other soil var-
iables (Figs. 3c–d and Table S1). Regarding forest bi-
omes, above-ground litter removal significantly inhibited
the microbial biomass in sub/tropical forests (P < 0.05)
but not in temperate forests or boreal forests (Fig. 4).
Conversely, the microbial biomass response to root ex-
clusion did not show any significant correlation with
MAT or MAP (Figs. 3a–b, both P > 0.05) but decreased
linearly with experimental duration (Fig. 3c, R2 = 0.135,
P = 0.003), with a 90.8% greater response in long- com-
pared to short-term studies (Fig. 4, P = 0.001). Moreover,
the stronger effect of root exclusion than aboveground
litter removal on microbial biomass was consistent
across diverse forest biomes (except boreal forests) and
durations (all P ≤ 0.005).

Fig. 2 Effects of ALR (a) and RE (b) on soil microbial community. The number of observations for each variable is shown next to the point. Error
bars represent 95% CIs. AMF, arbuscular mycorrhizal fungi; EMF, ectomycorrhizal fungi; GP, Gram-positive bacteria; GN, Gram-negative bacteria;
ACT, actinomycetes; F/B, fungi to bacteria ratio; ALR, aboveground litter removal; RE, root exclusion
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Based on the current limited number of observations,
the aboveground litter-induced changes in the F/B ratio
exhibited significantly positive correlations with treat-
ment duration (P < 0.01, Table S1) but did not show any
significant correlation with climatic variables or soil
properties. By contrast, the effects of root exclusion on
the F/B ratio significantly increased with the lnRR of soil
nitrate nitrogen but decreased with the lnRR of soil am-
monium nitrogen (both P < 0.05, Table S1).

Discussion
Distinct roles of above- and belowground litter on the
microbial community
Our results showed that globally, aboveground litter re-
moval decreased microbial biomass by an average of
4.9% (Fig. 2a), suggesting that aboveground litter is an
important C source for microbial growth. This finding
confirms the aboveground litter effects on microbial bio-
mass reported earlier (Xu et al. 2013), but the magni-
tudes of effects differ, which may be partly due to the
different numbers of observations (55 studies vs. 14
studies for our analysis vs. previous analysis, respect-
ively) and data source (more temperate and boreal stud-
ies in our analysis than previous one). DOC, which is a
labile soil C that depends strongly on plant C inputs
(Sokol et al. 2019), significantly decreased with above-
ground litter removal (Fig. S2). This may contribute to
decreases in microbial biomass with aboveground litter

Fig. 3 Relationships of lnRR of microbial biomass with MAT, MAP, duration, and lnRR of DOC. Red and blue lines represent ALR and RE effects,
respectively. ALR, aboveground litter removal; RE, root exclusion

Fig. 4 The lnRR of microbial biomass to ALR and RE. The variables
are categorized into different forest biomes and durations. The
number of observations for each variable is shown next to the point.
Error bars represent 95% CIs. ALR, aboveground litter removal; RE,
root exclusion
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removal, because soil microbes are highly dependent on
DOC (Fig. 3d; Ren et al. 2017; Li et al. 2019). Import-
antly, this study, as the first, revealed that root exclusion
reduced microbial biomass to a larger extent than above-
ground litter removal (Fig. 2), thus supporting the
newly-developing view that root litter inputs exert a
stronger control on microbial biomass than aboveground
litter does (vanden Enden et al., 2018; Liu et al. 2019).
Root-derived DOC are nearly three times more than
aboveground litter-derived DOC (Sokol et al. 2019).
Thus, the greater decline in DOC under root exclu-
sion than aboveground litter removal (Fig. S2) likely
contributes to the lower microbial biomass under root
exclusion.
We also found that litter exclusion showed diverse ef-

fects on microbial groups. Aboveground litter removal
significantly increased fungi but had no effects on bac-
teria (Fig. 2a), suggesting that fungi are more sensitive to
aboveground litter alterations than bacteria. Continuous
aboveground litter removal decreases soil labile C (Fig.
S2; vanden Enden et al., 2018) and increases recalcitrant
C compounds (Pisani et al. 2016). In this case, relative to
bacteria, fungi have higher capability of acquiring recal-
citrant C via producing C-degrading enzymes and re-
locating nutrients by fungal hyphal (Strickland and
Rousk 2010). Furthermore, fungi have higher C use effi-
ciency, and thus higher biomass yield efficiency (Strick-
land and Rousk 2010; Kallenbach et al. 2016). These
may increase fungal biomass under aboveground litter
removal.
Different from aboveground litter removal, root exclu-

sion significantly inhibited fungi, especially AMF and
EMF (Fig. 2b). These results are consistent with those of
13C-labelling studies, which shows that fungi utilize most
of rhizodeposition-derived C (Denef et al. 2009; Bai et al.
2016) but offer global evidence that fungi especially
mycorrhizal fungi rely much on root-derived C input.
This finding is not surprising, because mycorrhiza fungi,
as a large fungal biomass pool, form symbiosis with the
roots of over 90% plants (Brundrett and Tedersoo 2018)
and receive up to 22% of net photosynthetic products
(Hobbie 2006). However, it is surprising that root exclu-
sion stimulated bacterial biomass (Fig. 2b), as bacteria
also have high ability of utilizing root-derived C (Huang
et al. 2020). This may be due to that the loss of fungi
with root exclusion alleviates the antagonistic effects to-
wards bacterial growth (Schneider et al. 2010) and pro-
vides their residues for utilization by bacteria (Ryckeboer
et al. 2003; Apostel et al., 2018).
Given these diverse responses of microbial groups, our

study offers new insights into the variations of the F/B
ratio associated with removing litter inputs, which was
stimulated by aboveground litter removal but decreased
by root exclusion (Fig. 2). This result suggests that the

removing aboveground litter and root shift the microbial
community structure in the opposite direction. It is
commonly accepted that a high F/B ratio has greater po-
tential to benefit soil C-sequestration because fungi in-
vest more C to growth, produce more recalcitrant
residues, and stimulate aggregate formation which se-
quester C from microbial decomposition than bacteria
do (Strickland and Rousk 2010; Jing et al. 2019). Thus,
the present findings imply that reducing root inputs or
relative allocation tend to induce greater soil C vulner-
ability than the loss of aboveground litter. Therefore,
further studies on soil C storage and stability in response
to above- and belowground litter exclusion are
necessary.

Different factors controlling the responses of microbial
biomass
We focused our discussion on the microbial biomass be-
cause the F/B ratio was relatively insufficient to draw
firm conclusions. We found that climate-related vari-
ables are key factors regulating the effect of aboveground
litter on microbial biomass, with more pronounced
aboveground litter effect in higher MAT and MAP re-
gions (i.e., sub/tropical forests; Figs. 3a, b and 4). This
finding suggests that the microbial biomass in warmer
and wetter forests would be more vulnerable to future
aboveground litter loss than that in colder and drier for-
ests. Similar results have been reported in a previous
meta-analysis (Xu et al. 2013). Aboveground litters indir-
ectly enter into the soil by leaching and bioturbation
(Vidal et al. 2017). Higher MAT and MAP are not only
accompanied with more production of aboveground lit-
ter (Luo et al. 2012), fast litter decomposition (Campo
and Merino 2016; See et al. 2019) but also with stronger
leaching and more soil fauna (Xu et al. 2020). These can
explain why soil microbes are more reliant on above-
ground inputs in warmer and wetter forests. The lack of
correlation between microbial biomass under above-
ground litter removal and experimental duration may be
because soil microorganisms adjust their community
structure (Fig. 2a) or their C utilization strategies (Wang
et al. 2019) to maintain their biomass over time after re-
moving aboveground litter.
Surprisingly, the effect of root exclusion on the micro-

bial biomass did not change with MAT or MAP (Fig. 3a
and b). However, it should be noted that the existing
two observations on microbial biomass in boreal forests
remained unchanged under root exclusion (Fig. 4),
which limits our ability to confirm whether root effects
on microbial biomass is consistent across the globe.
Therefore, further studies should be carried out in these
forests to provide a quantitative estimation of the re-
sponse of microbial biomass to root exclusion. While we
observed that the reductions in microbial biomass with
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root exclusion became larger as experimental duration
went longer (Figs. 3c and 4), lacking a saturating re-
sponse and suggesting that root effects on microorgan-
isms is lasting and deepening. Long-term root exclusion
leads to a shift in microbial utilization from labile C
pools to recalcitrant C pools in soils (Pisani et al. 2016;
Wu et al. 2018). Given that fungi have high ability of
utilizing recalcitrant C compounds as described above
(Strickland and Rousk 2010; Meng et al. 2020), signifi-
cant inhibitions in fungi with root exclusion (Fig. 2b) is
likely unable to meet the microbial C needs for growth,
and ultimately decreasing microbial biomass over time.
Furthermore, the long-term root exclusion has less com-
pensation effect from dead roots, because nearly 92%
fine roots and 80% coarse roots are decomposed beyond
three-year according to global root decomposition rate
(Silver and Miya 2001). This time-dependent effect of
root litter indicates that the root importance on soil mi-
croorganisms would be underestimated by short-term
experiments. Thus, more long-term experiments con-
ducted in forest ecosystems are urgently needed to gain
insights into microbial responses to root exclusion at the
global scale.
Although factors controlling the responses of micro-

bial biomass to aboveground litter removal and root ex-
clusion differed, we did observe that the greater
influence of belowground litter inputs on the soil micro-
bial biomass than aboveground litter inputs is consistent
across diverse forest biomes (expect boreal forests) and
treatment durations (Fig. 4). Similarly, 35.7% studies,
which simultaneously removing aboveground and below-
ground litters, showed that the effects of roots on micro-
bial biomass are larger than that of aboveground litter in
temperate forests (Wang et al. 2017a; vanden Enden
et al., 2018) and sub/tropical forests (Wang et al. 2017b;
Wu et al. 2018; Liu et al. 2019). We thus emphasize that
C allocation should be considered when projecting
microbe-derived soil C changes in response to climate
change and forest managements in forest ecosystems.
However, the generally weak accounts of variations in

microbial biomass under litter exclusion by all variables
considered here point to the complex nature of micro-
bial responses to litter exclusion. Climatic variables indi-
vidually accounted for 24% of the overall variations in
microbial biomass under aboveground litter removal,
whereas the experimental duration and DOC explained
50.2% of changes in microbial biomass under root exclu-
sion. Although litter exclusion significantly influences
soil temperature and soil moisture (Xu et al. 2013;
Zhang et al. 2020), which may alter microbial responses
due to their close linkages (Wang et al. 2019; Rasmussen
et al. 2020), we did not observe these soil properties in-
fluence microbial response to litter exclusion based on
our limited number of observations (Table S1). This

finding further brings a challenge to describe the effects
of multiple drivers on the response ratio of microbial
biomass, which is similar to many other meta-analysis
studies that lacking sufficient associated measurements
(Ren et al. 2017; Yang et al. 2020). Therefore, microbial
community and soil property responses should be exam-
ined simultaneously under the context of removing lit-
ters in future experimental research. Despite above-
mentioned limitations, our study is the first meta-
analysis elucidating litter roles in the microbial commu-
nity and providing a global picture for understanding
the relative importance of above- versus belowground
litter in regulating the microbial community in forest
ecosystems.

Conclusions
To our knowledge, this current meta-analysis study is
the first global syntheses to quantitatively evaluate the
roles of above- and belowground litter on the soil micro-
bial community in forest ecosystems. Our synthesis
showed that root litter was stronger than aboveground
litter for microbial biomass worldwide. More import-
antly, the root effect amplified over time, but effect of
aboveground litter was dependent on climate (i.e., forest
biomes). Furthermore, removing litter from above- and
belowground shifted the microbial community structure
in the opposite direction, which could have profound
but different effects on the global soil C cycle. These
findings highlight the importance and different roles of
aboveground and root litters, which should be fully con-
sidered when predicting microbe-mediated processes
and establishing forest management strategies with a
changing climate.
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