Aprile F, Lorandi R (2019) Cation exchange capacity (CEC) in tropical soils. Lambert Academic Publishing, Mauritius
Google Scholar
Austin AT, Vivanco L, González-Arzac A, Pérez LI (2014) There’s no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. New Phytol 204:307–314. https://doi.org/10.1111/nph.12959
Article
Google Scholar
Bélanger N, Collin A, Ricard-Piché J, Kembel SW, Rivest D (2019) Microsite conditions influence leaf litter decomposition in sugar maple bioclimatic domain of Quebec. Biogeochemistry 145:107–126. https://doi.org/10.1007/s10533-019-00594-1
Article
CAS
Google Scholar
Benbow ME, Barton PS, Ulyshen MD, Beasley JC, DeVault TL, Strickland MS, Tomberlin JK, Jordan HR, Pechal JL (2019) Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol Monogr 89:e01331. https://doi.org/10.1002/ecm.1331
Article
Google Scholar
Berg B (2014) Decomposition patterns for foliar litter – a theory for influencing factors. Soil Biol Biochem 78:222–232. https://doi.org/10.1016/j.soilbio.2014.08.005
Article
CAS
Google Scholar
Berg B (2018) Decomposing litter; limit values; humus accumulation, locally and regionally. Appl Soil Ecol 123:494–508. https://doi.org/10.1016/j.apsoil.2017.06.026
Article
Google Scholar
Berg B, McClaugherty C (2014) Plant litter. Springer, Berlin
Book
Google Scholar
Berkelmann D, Schneider D, Engelhaupt M, Heinemann M, Christel S, Wijayanti M, Meryandini A, Daniel R (2018) How rainforest conversion to agricultural systems in Sumatra (Indonesia) affects active soil bacterial communities. Front Microbiol 9:2381. https://doi.org/10.3389/fmicb.2018.02381
Article
PubMed
PubMed Central
Google Scholar
Borders BD, Pushnik JC, Wood DM (2006) Comparison of leaf litter decomposition rates in restored and mature riparian forests on the Sacramento River, California. Restor Ecol 14:308–315. https://doi.org/10.1111/j.1526-100X.2006.00133.x
Article
Google Scholar
Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA (2016) Understanding the dominant controls on litter decomposition. J Ecol 104:229–238. https://doi.org/10.1111/1365-2745.12507
Article
CAS
Google Scholar
Bradford MA, Ciska GF, Bonis A, Bradford EM, Classen AT, Cornelissen JHC, Crowther TW, De Long JR, Freschet GT, Kardol P, Manrubia-Freixa M, Maynard DS, Newman GS, Logtestijn RSP, Viketoft M, Wardle DA, Wieder WR, Wood SA, van der Putten WH (2017) A test of the hierarchical model of litter decomposition. Nat Ecol Evol 1:1836–1845. https://doi.org/10.1038/s41559-017-0367-4
Article
PubMed
Google Scholar
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol 19:988–995. https://doi.org/10.1111/gcb.12113
Article
PubMed
Google Scholar
Duddigan S, Shaw LJ, Alexander PD, Collins CD (2020) Chemical underpinning of the tea bag index: an examination of the decomposition of tea leaves. Appl Environ Soil Sci 2020:6085180. https://doi.org/10.1155/2020/6085180
Article
CAS
Google Scholar
Embrapa (1997) Manual de Métodos de Análise de Solo. Emprapa, Rio de Janeiro
Google Scholar
Ferrari AL, Vecchia FADS, Colabone RDO (2012) Tendência e variabilidade anuais da temperatura e da pluviosidade em Pirassununga-SP. Rev Bras Climatol 10:30–46. https://doi.org/10.5380/abclima.v10i1.30585
Article
Google Scholar
Grace JB (2006) Structural equation modeling and natural systems. Cambridge, Cambridge University Press. https://doi.org/10.1017/CBO9780511617799
Hooper D, Coughlan J, Mullen M (2008) Structural equation modelling: guidelines for determining model fit. Electron J Bus Res Methods 6:53–60
Google Scholar
Keuskamp JA, Dingemans BJJ, Lehtinen T, Sarneel JM, Hefting MM (2013) Tea bag index: a novel approach to collect uniform decomposition data across ecosystems. Methods Ecol Evol 4:1070–1075. https://doi.org/10.1111/2041-210X.12097
Article
Google Scholar
Krishna MP, Mohan M (2017) Litter decomposition in forest ecosystems: a review. Energ Ecol Environ 2:236–249. https://doi.org/10.1007/s40974-017-0064-9
Article
Google Scholar
Lajtha K, Bowden RD, Crow S, Fekete I, Kotroczó Z, Plante A, Simpson MJ, Nadelhoffer KJ (2018) The detrital input and removal treatment (DIRT) network: insights into soil carbon stabilization. Sci Total Environ 640–641:1112–1120. https://doi.org/10.1016/j.scitotenv.2018.05.388
Article
CAS
PubMed
Google Scholar
Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier, Amsterdam
Google Scholar
Lukumbuzya TK, Fyles JW, Côté B (1994) Effects of base-cation fertilization on litter decomposition in a sugar maple forest in southern Quebec. Can J For Res 24:447–452. https://doi.org/10.1139/x94-061
Article
Google Scholar
Manzoni S, Piñeiro G, Jackson RB, Jobbágy EG, Kim JH, Porporato A (2012) Analytical models of soil and litter decomposition: solutions for mass loss and time-dependent decay rates. Soil Biol Biochem 50:66–76. https://doi.org/10.1016/j.soilbio.2012.02.029
Article
CAS
Google Scholar
Mayer M, Matthews B, Rosinger C, Sandén H, Godbold DL, Katzensteiner K (2017) Tree regeneration retards decomposition in a temperate mountain soil after forest gap disturbance. Soil Biol Biochem 115:490–498. https://doi.org/10.1016/j.soilbio.2017.09.010
Article
CAS
Google Scholar
Metzger JC, Wutzler T, Valle ND, Filipzik J, Grauer C, Lehmann R, Roggenbuck M, Schelhorn D, Weckmüller J, Küsel K, Totsche KU, Trumbore S, Hildebrandt A (2017) Vegetation impacts soil water content patterns by shaping canopy water fluxes and soil properties. Hydrol Process 31:3783–3795. https://doi.org/10.1002/hyp.11274
Muñoz Mazón M, Klanderud K, Finegan B, Veintimilla D, Bermeo D, Murrieta E, Delgado D, Sheil D (2020) How forest structure varies with elevation in old growth and secondary forest in Costa Rica. Forest Ecol Manag 469:118191. https://doi.org/10.1016/j.foreco.2020.118191
Article
Google Scholar
Naiman RJ, Décamps H, McClain ME (2005) Riparia: ecology, conservation, and management of streamside communities. Elsevier Academic Press, London
Google Scholar
Nunes FP, Pinto MTC (2007) Produção de serapilheira em mata ciliar nativa e reflorestada no alto São Francisco, Minas Gerais. Biota Neotrop 7:97–102. https://doi.org/10.1590/S1676-06032007000300011
Article
Google Scholar
Oliveira RAC, Marques R, Marques MCM (2019) Plant diversity and local environmental conditions indirectly affect litter decomposition in a tropical forest. Appl Soil Ecol 134:45–53. https://doi.org/10.1016/j.apsoil.2018.09.016
Article
Google Scholar
Osman KT (2013) Nutrient dynamics in forest soil. In: Osman KT (ed) Forest soils: properties and management. Springer, Cham, pp 97–121
Chapter
Google Scholar
Ottermanns R, Hopp PW, Guschal M, dos Santos GP, Meyer S, Roß-Nickoll M (2011) Causal relationship between leaf litter beetle communities and regeneration patterns of vegetation in the Atlantic rainforest of Southern Brazil (Mata Atlântica). Ecol Complex 8:299–309. https://doi.org/10.1016/j.ecocom.2011.06.001
Article
Google Scholar
Parron LM, Bustamante MMC, Markewitz D (2011) Fluxes of nitrogen and phosphorus in a gallery forest in the Cerrado of Central Brazil. Biogeochemistry 105:89–104. https://doi.org/10.1007/s10533-010-9537-z
Article
CAS
Google Scholar
Pausas JG, Bond WJ (2020) On the three major recycling pathways in terrestrial ecosystems. Trends Ecol Evol 35(9):767–775. https://doi.org/10.1016/j.tree.2020.04.004
Article
PubMed
Google Scholar
Petraglia A, Cacciatori C, Chelli S, Fenu G, Calderisi G, Gargano D, Abeli T, Orsenigo S, Carbognani M (2019) Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant and Soil 435:187–200. https://doi.org/10.1007/s11104-018-3889-x
Article
CAS
Google Scholar
R Core Team (2018) R: a language and environment for statistical computing. R Found. Stat. Comput, Vienn https://www.R-project.org/. Accessed 15 May 2020
Rodrigues PMS, Schaefer CEGR, de Oliveira SJ, Júnior WGF, dos Santos RM, Neri AV (2018) The influence of soil on vegetation structure and plant diversity in different tropical savannic and forest habitats. J Plant Ecol 11:226–236. https://doi.org/10.1093/jpe/rtw135
Article
Google Scholar
Rosseel Y (2012) Lavaan: an R package for structural equation modeling. J Stat Softw 48:1–36
Article
Google Scholar
Rossi M (2017) Mapa pedológico do Estado de São Paulo: revisado e ampliado. Instituto Florestal, São Paulo
Google Scholar
Rot BW, Naiman RJ, Bilby RE (2000) Stream channel configuration, landform, and riparian forest structure in the Cascade Mountains, Washington. Can J Fish Aquat Sci 57:699–707. https://doi.org/10.1139/f00-002
Article
Google Scholar
Saint-Laurent D, Arsenault-Boucher L (2020) Soil properties and rate of organic matter decomposition in riparian woodlands using the TBI protocol. Geoderma 358:113976. https://doi.org/10.1016/j.geoderma.2019.113976
Article
CAS
Google Scholar
Sayer EJ, Banin LF (2016) Tree nutrient status and nutrient cycling in tropical forest—lessons from fertilization experiments. In: Goldstein G, Santiago LS (eds) Tropical tree physiology. Springer International Publishing Switzerland AG, Cham, pp 275–297
Chapter
Google Scholar
Sayer EJ, Rodtassana C, Sheldrake M, Bréchet LM, Ashford OS, Lopez-Sangil L, Kerdraon-Byrne D, Castro B, Turner BL, Wright SJ, Tanner EVJ (2020) Revisiting nutrient cycling by litterfall—insights from 15 years of litter manipulation in old-growth lowland tropical forest. Adv Ecol Res 62:173–223. https://doi.org/10.1016/bs.aecr.2020.01.002
Article
Google Scholar
Schoenholtz SH, Miegroet HV, Burger JA (2000) A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. Forest Ecol Manag 138:335–356. https://doi.org/10.1016/S0378-1127(00)00423-0
Article
Google Scholar
Setälä H, Marshall VG, Trofymow JA (1996) Influence of body size of soil fauna on litter decomposition and 15N uptake by poplar in a pot trial. Soil Biol Biochem 28:1661–1675. https://doi.org/10.1016/S0038-0717(96)00252-0
Article
Google Scholar
Silva-Sánchez A, Soares M, Rousk J (2019) Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality. Soil Biol Biochem 134:25–35. https://doi.org/10.1016/j.soilbio.2019.03.008
Article
CAS
Google Scholar
Soares JAH, de Souza ALT, de Abreu Pestana LF, Tanaka MO (2020) Combined effects of soil fertility and vegetation structure on early decomposition of organic matter in a tropical riparian zone. Ecol Eng 152:105899. https://doi.org/10.1016/j.ecoleng.2020.105899
Article
Google Scholar
Souza RG, Camargo MBP, Lania DG, Moraes JFL (2007) Classificação climática de Köppen e de Thornthwaite e sua aplicabilidade na determinação de zonas agroclimáticas para o estado de são Paulo. Bragantia 66:711–720. https://doi.org/10.1590/S0006-87052007000400022
Article
Google Scholar
Souza ALT, Fonseca DG, Liborio RA, Tanaka MO (2013) Influence of riparian vegetation and forest structure on the water quality of rural low-order streams in SE Brazil. Forest Ecol Manag 298:12–18. https://doi.org/10.1016/j.foreco.2013.02.022
Article
Google Scholar
Spielvogel S, Prietzel J, Kögel-Knabner I (2016) Stand scale variability of topsoil organic matter composition in a high-elevation Norway spruce forest ecosystem. Geoderma 267:112–122. https://doi.org/10.1016/j.geoderma.2015.12.001
Article
CAS
Google Scholar
Teixeira HM, Cardoso IM, Bianchi FJJA, Silva AC, Jamme D, Peña-Claros M (2020) Linking vegetation and soil functions during secondary forest succession in the Atlantic forest. Forest Ecol Manag 457:117696
Article
Google Scholar
van Raij B, de Andrade JC, Cantarella H, Quaggio JA (2001) Análise química para avaliação da fertilidade de solos tropicais. Instituto Agronômico, Campinas
Google Scholar
Wekesa C, Kirui BK, Maranga EK, Muturi GM (2019) Variations in forest structure, tree species diversity and above-ground biomass in edges to interior cores of fragmented forest patches of Taita Hills, Kenya. Forest Ecol Manag 440:48–60. https://doi.org/10.1016/j.foreco.2019.03.011
Article
Google Scholar
Wider RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:1636–1642
Article
Google Scholar
Wiesmeier M, Urbanski L, Hobley E, Lang B, von Lützow M, Marin-Spiotta E, van Wesemael B, Rabot E, Ließ M, Garcia-Franco N, Wollschläger U, Vogel H-J, Kögel-Knabner I (2019) Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales. Geoderma 333:149–162. https://doi.org/10.1016/j.geoderma.2018.07.026
Article
CAS
Google Scholar
Woodward KB, Fellows CS, Mitrovic SM, Sheldon F (2015) Patterns and bioavailability of soil nutrients and carbon across a gradient of inundation frequencies in a lowland river channel, Murray-Darling basin, Australia. Agric Ecosyst Environ 205:1–8. https://doi.org/10.1016/j.agee.2015.02.019
Article
CAS
Google Scholar
Yeong KL, Reynolds G, Hill JK (2016) Leaf litter decomposition rates in degraded and fragmented tropical rain forests of Borneo. Biotropica 48:443–452. https://doi.org/10.1111/btp.12319
Article
Google Scholar
Zhou Z, Wang C, Luo Y (2018) Effects of forest degradation on microbial communities and soil carbon cycling: a global meta-analysis. Glob Ecol Biogeogr 27:110–124. https://doi.org/10.1111/geb.12663
Article
Google Scholar