Andrew ME, Wulder MA, Nelson TA (2014) Potential contributions of remote sensing to ecosystem service assessments. Progr Phys Geogr 38:328–353
Article
Google Scholar
Barber QE, Bater CW, Braid ACR, Coops NC, Tompalski P, Nielsen SE (2016) Airborne laser scanning for modelling understory shrub abundance and productivity. For Ecol Manag 377:46–54
Article
Google Scholar
Barbosa JM, Asner GP (2017) Prioritizing landscapes for restoration based on spatial patterns of ecosystem controls and plant–plant interactions. J Appl Ecol 54:1459–1468
Article
Google Scholar
Barredo JI, Bastrup-Birk A, Teller A, Onaindia M, de Manuel BF, Madariaga I, Rodriguez-Loinaz G, Pinho P, Nunes A, Ramos A, Batista M, Mimo S, Cordovil C, Branquinho C, Gret-Regamey A, Bebi P, Brunner SH, Weibel B, Kopperoinen L, Itkonen P, Viinikka A, Chirici G, Bottalico F, Pesola L, Vizzarri M, Garfi V, Antonello L, Barbati A, Corona P, Cullotta S, Giannico V, Lafortezza R, Lombardi F, Marchetti M, Nocentini S, Riccioli F, Travaglini D, Sallustio L, Rosario I, von Essen M, Nicholas KA, Maguas C, Rebelo R, Santos-Reis M, Santos-Martin F, Zorrilla-Miras P, Montes C, Benayas J, Martin-Lopez B, Snall T, Berglund H, Bengtsson J, Moen J, Busetto L, San-Miguel-Ayanz J, Thurner M, Beer C, Santoro M, Carvalhais N, Wutzler T, Schepaschenko D, Shvidenko A, Kompter E, Ahrens B, Levick SR, Schmullius C (2015) Mapping and assessment of forest ecosystems and their services – Applications and guidance for decision making in the framework of MAES. Report EUR 27751 EN, Joint Research Centre, European Union. doi: https://doi.org/10.2788/720519
Bässler C, Stadler J, Müller J, Förster B, Göttlein A, Brandl R (2011) LiDAR as a rapid tool to predict forest habitat types in Natura 2000 networks. Biodivers Conserv 20:465–481
Article
Google Scholar
Bottalico F, Travaglini D, Chirici G, Marchetti M, Marchi E, Nocentini S, Corona P (2014) Classifying silvicultural systems (coppices vs. high forests) in Mediterranean oak forests by airborne laser scanning data. Eur J Remote Sens 47:437–460
Article
Google Scholar
Box GEP, Cox DR (1964) An analysis of transformations. J Royal Stat Soc Ser B 26:211–252
Google Scholar
Brokaw N, Lent R (1999) Vertical structure. In: Hunter ML Jr (ed) Maintaining biodiversity in Forest ecosystems. Cambridge University Press, Cambridge, pp 373–399
Chapter
Google Scholar
Coops NC, Wulder MA, Culvenor DS, St-Onge B (2004) Comparison of forest attributes extracted from fine spatial resolution multispectral and lidar data. Can J Remote Sens 30:855–866
Article
Google Scholar
Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260
Article
CAS
Google Scholar
Daily GC, Alexander S, Ehrlich PR, Goulder L, Lubchenco J, Matson PA, Mooney HA, Postel S, Schneider SH, Tilman D, Woodwell GM (1997) Ecosystem services: benefits supplied to human societies by natural ecosystems. Issues Ecol 2:1–16
Google Scholar
Davies AB, Asner GP (2014) Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends Ecol Evol 29:681–691
Article
PubMed
Google Scholar
de Groot RS, Alkemade R, Braat L, Hein L, Willemen L (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol Compl 7:260–272
Article
Google Scholar
Domingo-Santos JM, de Villarán RF, Rapp-Arrarás Í, de Provens ECP (2011) The visual exposure in forest and rural landscapes: an algorithm and a GIS tool. Landscape Urban Plan 101:52–58
Article
Google Scholar
Dueser RD, Shugart HH Jr (1978) Microhabitats in a forest-floor small mammal fauna. Ecology 59:89–98
Article
Google Scholar
Eigenbrod F, Armsworth PR, Anderson BJ, Heinemeyer A, Gillings S, Roy DB, Thomas CD, Gaston KJ (2010) The impact of proxy-based methods on mapping the distribution of ecosystem services. J Appl Ecol 47:377–385
Article
Google Scholar
Englund O, Berndes G, Cederberg C (2017) How to analyse ecosystem services in landscapes – a systematic review. Ecol Indic 73:492–504
Article
Google Scholar
Foody GM (2015) Valuing map validation: the need for rigorous land cover map accuracy assessment in economic valuations of ecosystem services. Ecol Econ 111:23–28
Article
Google Scholar
Gopal S, Woodcock C (1994) Theory and methods for accuracy assessment of thematic maps using fuzzy sets. Photogramm Eng Remote Sens 60:181–188
Google Scholar
Hegetschweiler KT, Plum C, Fischer C, Brändli UB, Ginzler C, Hunziker M (2017) Towards a comprehensive social and natural scientific forest-recreation monitoring instrument – a prototypical approach. Landscape Urban Plan 167:84–97
Article
Google Scholar
Heinonen T, Kurttila M, Pukkala T (2007) Possibilities to aggregate raster cells through spatial optimization in forest planning. Silva Fenn 41:89–103
Article
Google Scholar
Henningsen A, Hamann JD (2007) Systemfit: a package for estimating systems of simultaneous equations in R. J Stat Softw 23(4):1–40
Article
Google Scholar
Hilker T, Frazer GW, Coops NC, Wulder MA, Newnham GJ, Stewart JD, van Leeuwen M, Culvenor DS (2013) Prediction of wood fiber attributes from LiDAR-derived forest canopy indicators. For Sci 59:231–242
Google Scholar
Hill RA, Hinsley SA, Broughton RK (2014) Assessing habitats and organism-habitat relationships by airborne laser scanning. In: Maltamo M, Næsset E, Vauhkonen J (eds) Forestry applications of airborne laser scanning. Managing Forest ecosystems, vol 27. Springer, Dordrecht, pp 335–356
Chapter
Google Scholar
Hou Z, Xu Q, Vauhkonen J, Maltamo M, Tokola T (2016) Species-specific combination and calibration between area-based and tree-based diameter distributions using airborne laser scanning. Can J For Res 46:753–765
Article
Google Scholar
Ihalainen M, Alho J, Kolehmainen O, Pukkala T (2002) Expert models for bilberry and cowberry yields in Finnish forests. For Ecol Manag 157:15–22
Article
Google Scholar
Kane VR, McGaughey RJ, Bakker JD, Gersonde RF, Lutz JA, Franklin JF (2010) Comparisons between field-and LiDAR-based measures of stand structural complexity. Can J For Res 40:761–773
Article
Google Scholar
Kangas A, Kangas J, Kurttila M (2008) Decision support for forest management. Managing forest ecosystems 16. Springer, Dordrecht
Google Scholar
Kangas A, Leskinen P, Kangas J (2007) Comparison of fuzzy and statistical approaches in multicriteria decisionmaking. For Sci 53:37–44
Google Scholar
Kangas J (1992) Multiple-use planning of forest resources by using the analytic hierarchy process. Scand J For Res 7:259–268
Article
Google Scholar
Kankare V, Vauhkonen J, Holopainen M, Vastaranta M, Hyyppä J, Hyyppä H, Alho P (2015) Sparse density, leaf-off airborne laser scanning data in aboveground biomass component prediction. Forests 6:1839–1857
Article
Google Scholar
Karjalainen T, Kellomäki S (1996) Greenhouse gas inventory for land use change and forestry in Finland based on international guidelines. Mitig Adapt Strat Glob Change 1:51–71
Article
Google Scholar
Kohler M, Devaux C, Grigulis K, Leitinger G, Lavorel S, Tappeiner U (2017) Plant functional assemblages as indicators of the resilience of grassland ecosystem service provision. Ecol Indic 73:118–127
Article
Google Scholar
Koivuniemi J, Korhonen KT (2006) Inventory by compartments. In: Kangas A, Maltamo M (eds) Forest inventory: methodology and applications. Managing Forest ecosystems, vol 10. Springer, Dordrecht, pp 271–278
Chapter
Google Scholar
Korhonen L, Korpela I, Heiskanen J, Maltamo M (2011) Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sens Environ 115:1065–1080
Article
Google Scholar
Korhonen L, Peuhkurinen J, Malinen J, Suvanto A, Maltamo M, Packalén P, Kangas J (2008) The use of airborne laser scanning to estimate sawlog volumes. Forestry 81:499–510
Article
Google Scholar
Korpela I, Hovi A, Morsdorf F (2012) Understory trees in airborne LiDAR data - selective mapping due to transmission losses and echo-triggering mechanisms. Remote Sens Environ 119:92–104
Article
Google Scholar
Kotamaa E, Tokola T, Maltamo M, Packalén P, Kurttila M, Mäkinen A (2010) Integration of remote sensing-based bioenergy inventory data and optimal bucking for stand-level decision making. Eur J For Res 129:875–886
Article
Google Scholar
Lämås T, Sandström E, Jonzén J, Olsson H, Gustafsson L (2015) Tree retention practices in boreal forests: what kind of future landscapes are we creating? Scand J For Res 30:526–537
Article
Google Scholar
Lefsky MA, Cohen WB, Spies TA (2001) An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon. Can J For Res 31:78–87
Article
Google Scholar
Lehtomäki J, Tuominen S, Toivonen T, Leinonen A (2015) What data to use for forest conservation planning? A comparison of coarse open and detailed proprietary forest inventory data in Finland. PLoS One. https://doi.org/10.1371/journal.pone.0135926
Leiterer R, Furrer R, Schaepman ME, Morsdorf F (2015) Forest canopy-structure characterization: a data-driven approach. For Ecol Manag 358:48–61
Article
Google Scholar
Liang X, Hyyppä J, Matikainen L (2007) Deciduous-coniferous tree classification using difference between first and last pulse laser signatures. In: Rönnholm P, Hyyppä H, Hyyppä J (eds) Proceedings of ISPRS workshop on laser scanning 2007 and SilviLaser 2007. Int arch Photogramm remote Sens, vol XXXVI, part 3/W52, pp 253–257
Google Scholar
Listopad CM, Masters RE, Drake J, Weishampel J, Branquinho C (2015) Structural diversity indices based on airborne LiDAR as ecological indicators for managing highly dynamic landscapes. Ecol Indic 57:268–279
Article
Google Scholar
Luther JE, Skinner R, Fournier RA, van Lier OR, Bowers WW, Coté JF, Hopkinson C, Moulton T (2014) Predicting wood quantity and quality attributes of balsam fir and black spruce using airborne laser scanner data. Forestry 87:313–326
Article
Google Scholar
MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42:594–598
Article
Google Scholar
Malczewski J, Rinner C (2015) Multicriteria decision analysis geographic information science. Advances in Geographic Information Science Springer-Verlag, Berlin Heidelberg
Book
Google Scholar
Maltamo M, Malinen J, Packalén P, Suvanto A, Kangas J (2006) Nonparametric estimation of stem volume using airborne laser scanning, aerial photography, and stand-register data. Can J For Res 36:426–436
Article
Google Scholar
Maltamo M, Næsset E, Vauhkonen J (eds) (2014) Forestry applications of airborne laser scanning - concepts and case studies. Managing Forest ecosystems, vol 27. Springer, Dordrecht
Google Scholar
Maltamo M, Packalén P, Yu X, Eerikäinen K, Hyyppä J, Pitkänen J (2005) Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data. For Ecol Manag 216:41–50
Article
Google Scholar
Martínez-Harms MJ, Balvanera P (2012) Methods for mapping ecosystem service supply: a review. Int J biodiv Sci Ecosyst Serv Manage 8:17–25
Article
Google Scholar
Melin M, Mehtätalo L, Miettinen J, Tossavainen S, Packalen P (2016) Forest structure as a determinant of grouse brood occurrence – an analysis linking LiDAR data with presence/absence field data. For Ecol Manag 380:202–211
Article
Google Scholar
Melin M, Packalen P, Matala J, Mehtätalo L, Pusenius J (2013) Assessing and modeling moose (Alces alces) habitats with airborne laser scanning data. Int J Appl Earth Obs Geoinfo 23:389–396
Article
Google Scholar
Müller J, Vierling K (2014) Assessing biodiversity by airborne laser scanning. In: Maltamo M, Næsset E, Vauhkonen J (eds) Forestry applications of airborne laser Scanning.Managing Forest ecosystems, vol 27. Springer, Dordrecht, pp 357–374
Chapter
Google Scholar
Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99
Article
Google Scholar
Næsset E, Gobakken T (2008) Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens Environ 112:3079–3090
Article
Google Scholar
Natural Resources Institute Finland (2017) File service for publicly available data. http://kartta.metla.fi/index-en.html. Accessed 16 Oct 2017
Niemi MT, Vauhkonen J (2016) Extracting canopy surface texture from airborne laser scanning data for the supervised and unsupervised prediction of area-based forest characteristics. Remote Sens. https://doi.org/10.3390/rs8070582
Ørka HO, Dalponte M, Gobakken T, Næsset E, Ene LT (2013) Characterizing forest species composition using multiple remote sensing data sources and inventory approaches. Scand J For Res 28:677–688
Article
Google Scholar
Ørka HO, Gobakken T, Næsset E, Ene L, Lien V (2012) Simultaneously acquired airborne laser scanning and multispectral imagery for individual tree species identification. Can J Remote Sens 38:125–138
Article
Google Scholar
Packalén P, Heinonen T, Pukkala T, Vauhkonen J, Maltamo M (2011) Dynamic treatment units in Eucalyptus plantation. For Sci 57:416–426
Google Scholar
Pascual C, García-Abril A, García-Montero LG, Martín-Fernández S, Cohen WB (2008) Object-based semi-automatic approach for forest structure characterization using lidar data in heterogeneous Pinus sylvestris stands. For Ecol Manag 255:3677–3685
Article
Google Scholar
Patenaude G, Hill RA, Milne R, Gaveau DL, Briggs BBJ, Dawson TP (2004) Quantifying forest above ground carbon content using LiDAR remote sensing. Remote Sens Environ 93:368–380
Article
Google Scholar
Peura M, Gonzalez RS, Müller J, Heurich M, Vierling LA, Mönkkönen M, Bässler C (2016) Mapping a ‘cryptic kingdom’: performance of lidar derived environmental variables in modelling the occurrence of forest fungi. Remote Sens Environ 186:428–438
Article
Google Scholar
Popescu SC, Hauglin M (2014) Estimation of biomass components by airborne laser scanning. In: Maltamo M, Næsset E, Vauhkonen J (eds) Forestry applications of airborne laser scanning. Managing Forest ecosystems, vol 27. Springer, Dordrecht, pp 157–175
Chapter
Google Scholar
Pukkala T (2005) Metsikön tuottoarvon ennustemallit kivennäismaan männiköille, kuusikoille ja rauduskoivikoille (in Finnish for “prediction models for the expectation value of pine, spruce and birch stands on mineral soils”). Metsätieteen Aikakauskirja 3(2005):311–322
Google Scholar
Pukkala T (2008) Integrating multiple services in the numerical analysis of landscape design. In: von Gadow K, Pukkala T (eds) Designing Green Landscapes. Managing Forest Ecosystems, vol 15. Springer, Dordrecht, pp 137–167
Chapter
Google Scholar
Pukkala T (2016) Which type of forest management provides most ecosystem services? Forest Ecosyst. https://doi.org/10.1186/s40663-016-0068-5
Pukkala T, Kangas J (1996) A method for integrating risk and attitude toward risk into forest planning. For Sci 42:198–205
Google Scholar
Pukkala T, Kellomäki S, Mustonen E (1988) Prediction of the amenity of a tree stand. Scand J For Res 3:533–544
Article
Google Scholar
Pukkala T, Packalén P, Heinonen T (2014) Dynamic treatment units in forest management planning. In: Borges JG, Diaz-Balteiro L, McDill ME, Rodriguez LCE (eds) The Management of Industrial Forest Plantations. Managing Forest ecosystems, vol 33. Springer, Dordrecht, pp 373–392
Google Scholar
Pukkala T, Sulkava R, Jaakkola L, Lähde E (2012) Relationships between economic profitability and habitat quality of Siberian jay in uneven-aged Norway spruce forest. For Ecol Manag 276:224–230
Article
Google Scholar
R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 16 Oct 2017
Räsänen A, Lensu A, Tomppo E, Kuitunen M (2015) Comparing conservation value maps and mapping methods in a rural landscape in southern Finland. Landscape Online 44:1–19
Article
Google Scholar
Räty J, Vauhkonen J, Maltamo M, Tokola T (2016) On the potential to predetermine dominant tree species based on sparse-density airborne laser scanning data for improving subsequent predictions of species-specific timber volumes. Forest Ecosyst. https://doi.org/10.1186/s40663-016-0060-0
Rechsteiner C, Zellweger F, Gerber A, Breiner FT, Bollmann K (2017) Remotely sensed forest habitat structures improve regional species conservation. Remote Sens Ecol Conserv 3:247–258
Article
Google Scholar
Roces-Díaz JV, Burkhard B, Kruse M, Müller F, Díaz-Varela ER, Álvarez-Álvarez P (2017) Use of ecosystem information derived from forest thematic maps for spatial analysis of ecosystem services in northwestern Spain. Landscape Ecol Eng 13:45–57
Article
Google Scholar
Sani NA, Kafaky SB, Pukkala T, Mataji A (2016) Integrated use of GIS, remote sensing and multi-criteria decision analysis to assess ecological land suitability in multi-functional forestry. J For Res 27:1127–1135
Article
Google Scholar
Schröter M, Rusch GM, Barton DN, Blumentrath S, Nordén B (2014) Ecosystem services and opportunity costs shift spatial priorities for conserving forest biodiversity. PLoS One. https://doi.org/10.1371/journal.pone.0112557
Schulp CJE, Burkhard B, Maes J, Van Vliet J, Verburg PH (2014) Uncertainties in ecosystem service maps: a comparison on the European scale. PLoS One. https://doi.org/10.1371/journal.pone.0109643
Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611
Article
Google Scholar
Simonson WD, Allen HD, Coomes DA (2014) Applications of airborne lidar for the assessment of animal species diversity. Methods Ecol Evol 5:719–729
Article
Google Scholar
Sverdrup-Thygeson A, Ørka HO, Gobakken T, Næsset E (2016) Can airborne laser scanning assist in mapping and monitoring natural forests? For Ecol Manag 369:116–125
Article
Google Scholar
Thompson SD, Nelson TA, Giesbrecht I, Frazer G, Saunders SC (2016) Data-driven regionalization of forested and non-forested ecosystems in coastal British Columbia with LiDAR and RapidEye imagery. Appl Geogr 69:35–50
Article
Google Scholar
Tomppo E, Haakana M, Katila M, Peräsaari J (2008a) Multi-source national forest inventory – methods and applications. Managing forest ecosystems, vol 18. Springer, Dordrecht
Google Scholar
Tomppo E, Halme M (2004) Using coarse scale forest variables as ancillary information and weighting of variables in k-NN estimation: a genetic algorithm approach. Remote Sens Environ 92:1–20
Article
Google Scholar
Tomppo E, Katila M, Mäkisara K, Peräsaari J (2014) The multi-source national forest inventory of Finland - methods and results 2011. Working Papers of the Finnish Forest Research Institute, vol 319. http://www.metla.fi/julkaisut/workingpapers/2014/mwp319.htm. Accessed 16 Oct 2017
Tomppo E, Olsson H, Ståhl G, Nilsson M, Hagner O, Katila M (2008b) Combining national forest inventory field plots and remote sensing data for forest databases. Remote Sens Environ 112:1982–1999
Article
Google Scholar
Valbuena R, Eerikäinen K, Packalen P, Maltamo M (2016a) Gini coefficient predictions from airborne lidar remote sensing display the effect of management intensity on forest structure. Ecol Indic 60:574–585
Article
Google Scholar
Valbuena R, Maltamo M, Martín-Fernández S, Packalen P, Pascual C, Nabuurs GJ (2013) Patterns of covariance between airborne laser scanning metrics and Lorenz curve descriptors of tree size inequality. Can J Remote Sens 39(sup1):S18–S31
Article
Google Scholar
Valbuena R, Maltamo M, Mehtätalo L, Packalen P (2017) Key structural features of boreal forests may be detected directly using L-moments from airborne lidar data. Remote Sens Environ 194:437–446
Article
Google Scholar
Valbuena R, Maltamo M, Packalen P (2016b) Classification of multilayered forest development classes from low-density national airborne lidar datasets. Forestry 89:392–401
Article
Google Scholar
Valbuena R, Vauhkonen J, Packalen P, Pitkänen J, Maltamo M (2014) Comparison of airborne laser scanning methods for estimating forest structure indicators based on Lorenz curves. ISPRS J Photogramm Remote Sens 95:23–33
Article
Google Scholar
Vauhkonen J, Imponen J (2016) Unsupervised classification of airborne laser scanning data to locate potential wildlife habitats for forest management planning. Forestry 89:350–363
Article
Google Scholar
Vauhkonen J, Packalen P, Malinen J, Pitkänen J, Maltamo M (2014) Airborne laser scanning based decision support for wood procurement planning. Scand J For Res 29(Suppl.1):132–143
Article
Google Scholar
Vauhkonen J, Ruotsalainen R (2017a) Assessing the provisioning potential of ecosystem services in a Scandinavian boreal forest: suitability and tradeoff analyses on grid-based wall-to-wall forest inventory data. For Ecol Manag 389:272–284
Article
Google Scholar
Vauhkonen J, Ruotsalainen R (2017b) Reconstructing forest canopy from the 3D triangulations of airborne laser scanning point data for the visualization and planning of forested landscapes. Ann For Sci 74:9. https://doi.org/10.1007/s13595-016-0598-6
Article
Google Scholar
Vihervaara P, Auvinen AP, Mononen L, Torma M, Ahlroth P, Anttila S, Bottcher K, Forsius M, Heino J, Heliola J, Koskelainen M, Kuussaari M, Meissner K, Ojala O, Tuominen S, Viitasalo M, Virkkala R (2017) How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Glob Ecol Conserv 10:43–59
Article
Google Scholar
Zimble DA, Evans DL, Carlson GC, Parker RC, Grado SC, Gerard PD (2003) Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sens Environ 87:171–182
Article
Google Scholar
Zolkos SG, Goetz SJ, Dubayah R (2013) A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens Environ 128:289–298
Article
Google Scholar