Angst G, Messinger J, Greiner M, Häusler W, Hertel D, Kirfel K, Kögel-Knabner I, Leuschner C, Rethemeyer J, Mueller CW (2018) Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. Soil Biol Biochem 122:19–30. https://doi.org/10.1016/j.soilbio.2018.03.026
Article
CAS
Google Scholar
Balland-Bolou-Bi C, Bolou-Bi EB, Alphonse V, Giusti-Miller S, Jusselme MD, Livet A, Grimaldi M, Bousserhine N (2019) Impact of microbial activity on the mobility of metallic elements (Fe, Al and hg) in tropical soils. Geoderma 334:146–154. https://doi.org/10.1016/j.geoderma.2018.07.044
Article
CAS
Google Scholar
Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. https://doi.org/10.18637/jss.v067.i01
Article
Google Scholar
Birkhofer K, Bezemer TM, Bloem J, Bonkowski M, Christensen S, Dubois D, Ekelund F, Fließbach A, Gunst L, Hedlund K, Mäder P, Mikola J, Robin C, Setälä H, Tatin-Froux F, Van der Putten WH, Scheu S (2008) Long-term organic farming fosters below and aboveground biota: implications for soil quality, biological control and productivity. Soil Biol Biochem 40(9):2297–2308. https://doi.org/10.1016/j.soilbio.2008.05.007
Article
CAS
Google Scholar
Björk RG, Majdi H, Klemedtsson L, Lewis-Jonsson L, Molau U (2007) Long-term warming effects on root morphology, root mass distribution, and microbial activity in two dry tundra plant communities in northern Sweden. New Phytol 176(4):862–873. https://doi.org/10.1111/j.1469-8137.2007.02231.x
Article
CAS
PubMed
Google Scholar
Blair GJ, Lefroy RD, Lisle L (1995) Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust J Agric Res 46(7):1459–1466. https://doi.org/10.1071/AR9951459
Article
Google Scholar
Borchard N, Bulusu M, Meyer N, Rodionov A, Herawati H, Blagodatsky S, Cadisch G, Welp G, Amelung W, Martius C (2019) Deep soil carbon storage in tree-dominated land use systems in tropical lowlands of Kalimantan. Geoderma 354:UNSP113864. https://doi.org/10.1016/j.geoderma.2019.07.022
Book
Google Scholar
Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17(6):837–842. https://doi.org/10.1016/0038-0717(85)90144-0
Article
CAS
Google Scholar
Chen X, Chen HYH (2018) Global effects of plant litter alterations on soil CO2 to the atmosphere. Glob Chang Biol 24(8):3462–3471. https://doi.org/10.1111/gcb.14147
Article
PubMed
Google Scholar
Chen Y, Cao J, Zhao J, Wu J, Zou X, Fu S, Zhang W (2019) Labile C dynamics reflect soil organic carbon sequestration capacity: understory plants drive topsoil C process in subtropical forests. Ecosphere 10(6):e02784. https://doi.org/10.1002/ecs2.2784
Article
Google Scholar
Cheng W, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, Mcnickle GG, Brzostek E, Jastrow JD (2014) Synthesis and modeling perspectives of rhizosphere priming. New Phytol 201(1):31–44. https://doi.org/10.1111/nph.12440
Article
CAS
PubMed
Google Scholar
De Feudis M, Cardelli V, Massaccesi L, Hofmann D, Berns AE, Bol R, Cocco S, Corti G, Agnelli A (2017) Altitude affects the quality of the water-extractable organic matter (WEOM) from rhizosphere and bulk soil in European beech forests. Geoderma 302:6–13. https://doi.org/10.1016/j.geoderma.2017.04.015
Article
CAS
Google Scholar
Dong Q, Yang Y, Yu K, Feng H (2018) Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the loess plateau, China. Agric Water Manag 201:133–143. https://doi.org/10.1016/j.agwat.2018.01.021
Article
Google Scholar
Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450(7167):277–280. https://doi.org/10.1038/nature06275
Article
CAS
PubMed
Google Scholar
García-Díaz A, Marqués MJ, Sastre B, Bienes R (2018) Labile and stable soil organic carbon and physical improvements using groundcovers in vineyards from Central Spain. Sci Total Environ 621:387–397. https://doi.org/10.1016/j.scitotenv.2017.11.240
Article
CAS
PubMed
Google Scholar
Gu C, Liu Y, Mohamed I, Zhang R, Wang X, Nie X, Jiang M, Brooks M, Chen F, Li Z (2016) Dynamic changes of soil surface organic carbon under different mulching practices in citrus orchards on sloping land. PLoS One 11(12):e0168384. https://doi.org/10.1371/journal.pone.0168384
Article
CAS
PubMed
PubMed Central
Google Scholar
Haynes RJ, Mokolobate MS (2001) Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved. Nutr Cycl Agroecosyst 59(1):47–63. https://doi.org/10.1023/A:1009823600950
Article
CAS
Google Scholar
Hicks Pries CE, Sulman BN, West C, O’Neill C, Poppleton E, Porras RC, Castanha C, Zhu B, Wiedemeier DB, Torn MS (2018) Root litter decomposition slows with soil depth. Soil Biol Biochem 125:103–114. https://doi.org/10.1016/j.soilbio.2018.07.002
Article
CAS
Google Scholar
Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137(3–4):253–268. https://doi.org/10.1016/j.geoderma.2006.09.003
Article
CAS
Google Scholar
Jing X, Chen X, Fang J, Ji C, Shen H, Zheng C, Zhu B (2020) Soil microbial carbon and nutrient constraints are driven more by climate and soil physicochemical properties than by nutrient addition in forest ecosystems. Soil Biol Biochem 141:107657. https://doi.org/10.1016/j.soilbio.2019.107657
Article
CAS
Google Scholar
Jones DL, Willett VB (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38(5):991–999. https://doi.org/10.1016/j.soilbio.2005.08.012
Article
CAS
Google Scholar
Kawahigashi M, Sumida H, Yamamoto K (2003) Seasonal changes in organic compounds in soil solutions obtained from volcanic ash soils under different land uses. Geoderma 113(3–4):381–396. https://doi.org/10.1016/S0016-7061(02)00371-3
Article
CAS
Google Scholar
Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42(9):1363–1371. https://doi.org/10.1016/j.soilbio.2010.04.003
Article
CAS
Google Scholar
Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32(11–12):1485–1498. https://doi.org/10.1016/S0038-0717(00)00084-5
Article
CAS
Google Scholar
Kuzyakov Y, Razavi BS (2019) Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil Biol Biochem 135:343–360. https://doi.org/10.1016/j.soilbio.2019.05.011
Article
CAS
Google Scholar
Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198(3):656–669. https://doi.org/10.1111/nph.12235
Article
CAS
PubMed
Google Scholar
Lenka NK, Lal R (2013) Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil Tillage Res 126:78–89. https://doi.org/10.1016/j.still.2012.08.011
Article
Google Scholar
Li S, Li X, Zhu W, Chen J, Tian X, Shi J (2019) Does straw return strategy influence soil carbon sequestration and labile fractions? Agron J 111(2):897–906. https://doi.org/10.2134/agronj2018.08.0484
Article
CAS
Google Scholar
Li S, Zhang S, Pu Y, Li T, Xu X, Jia Y, Deng O, Gong G (2016) Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu plain. Soil Tillage Res 155:289–297. https://doi.org/10.1016/j.still.2015.07.019
Article
Google Scholar
Li Y, Jiang P, Chang SX, Wu J, Lin L (2010) Organic mulch and fertilization affect soil carbon pools and forms under intensively managed bamboo (Phyllostachys praecox) forests in Southeast China. J Soils Sediments 10(4):739–747. https://doi.org/10.1007/s11368-010-0188-4
Article
CAS
Google Scholar
Li Y, Zhang J, Chang SX, Jiang P, Zhou G, Fu S, Yan E, Wu J, Lin L (2013) Long-term intensive management effects on soil organic carbon pools and chemical composition in Moso bamboo (Phyllostachys pubescens) forests in subtropical China. For Ecol Manag 303:121–130. https://doi.org/10.1016/j.foreco.2013.04.021
Article
Google Scholar
Nawaz A, Lal R, Shrestha RK, Farooq M (2017) Mulching affects soil properties and greenhouse gas emissions under long-term no-till and plough-till systems in Alfisol of Central Ohio. L Degrad Dev 28(2):673–681. https://doi.org/10.1002/ldr.2553
Article
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin PR, O’hara R, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Maintainer HW (2019) Vegan: community ecology package. R package version 2, pp 5–5 https://CRAN.R-project.org/package=vegan. Accessed 20 Mar 2020
Google Scholar
Phillips RP, Fahey TJ (2007) Fertilization effects on fineroot biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils. New Phytol 176(3):655–664. https://doi.org/10.1111/j.1469-8137.2007.02204.x
Article
CAS
PubMed
Google Scholar
Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14(2):187–194. https://doi.org/10.1111/j.1461-0248.2010.01570.x
Article
PubMed
Google Scholar
Pramanik P, Bandyopadhyay KK, Bhaduri D, Bhattacharyya R, Aggarwal P (2015) Effect of mulch on soil thermal regimes - a review. Int J Agric Environ Biotechnol 8(3):645–658. https://doi.org/10.5958/2230-732X.2015.00072.8
Article
Google Scholar
R Development Core Team (2018) R: a language and environment for statistical computing. Vienna, Austria https://www.R-project.org. Accessed 20 Mar 2020
Google Scholar
Ramírez PB, Fuentes-Alburquenque S, Díez B, Vargas I, Bonilla CA (2020) Soil microbial community responses to labile organic carbon fractions in relation to soil type and land use along a climate gradient. Soil Biol Biochem 141:107692. https://doi.org/10.1016/j.soilbio.2019.107692
Article
CAS
Google Scholar
Sainepo BM, Gachene CK, Karuma A (2018) Assessment of soil organic carbon fractions and carbon management index under different land use types in Olesharo catchment, Narok County, Kenya. Carbon Balance Manag 13:1. https://doi.org/10.1186/s13021-018-0091-7
Article
CAS
Google Scholar
Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23(1):25–41. https://doi.org/10.1016/j.tplants.2017.09.003
Article
CAS
PubMed
Google Scholar
Shao X, Yang W, Wu M (2015) Seasonal dynamics of soil labile organic carbon and enzyme activities in relation to vegetation types in Hangzhou Bay tidal flat wetland. PLoS One 10(11):e0142677. https://doi.org/10.1371/journal.pone.0142677
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen Y, Cheng R, Xiao W, Yang S, Guo Y, Wang N, Zeng L, Lei L, Wang X (2018) Labile organic carbon pools and enzyme activities of Pinus massoniana plantation soil as affected by understory vegetation removal and thinning. Sci Rep 8:573. https://doi.org/10.1038/s41598-017-18812-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinsabaugh RL, Shah JJF, Findlay SG, Kuehn KA, Moorhead DL (2015) Scaling microbial biomass, metabolism and resource supply. Biogeochemistry 122(2–3):175–190. https://doi.org/10.1007/s10533-014-0058-z
Article
Google Scholar
Sokol NW, Kuebbing SE, Karlsen-Ayala E, Bradford MA (2019) Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytol 221(1):233–246. https://doi.org/10.1111/nph.15361
Article
CAS
PubMed
Google Scholar
State Forestry Administration of China (2014) Forest resources in China http://www.china-ceecforestry.org/wp-content/uploads/2019/08/Forest-Resources-in-China%E2%80%94%E2%80%94The-9th-National-Forest-Inventory.pdf. Accessed 20 Mar 2020
Google Scholar
Sun X, Tang Z, Ryan MG, You Y, Sun OJ (2019) Changes in soil organic carbon contents and fractionations of forests along a climatic gradient in China. For Ecosyst 6:1. https://doi.org/10.1186/s40663-019-0161-7
Article
Google Scholar
Vogel JG, He D, Jokela EJ, Hockaday W, Schuur EAG (2015) The effect of fertilization levels and genetic deployment on the isotopic signature, constituents, and chemistry of soil organic carbon in managed loblolly pine (Pinus taeda L.) forests. For Ecol Manag 355:91–100. https://doi.org/10.1016/j.foreco.2015.05.020
Article
Google Scholar
Wang D, Chen X, Chen HYH, Olatunji OA, Guan Q (2019a) Contrasting effects of thinning on soil CO2 emission and above- and belowground carbon regime under a subtropical Chinese fir plantation. Sci Total Environ 690:361–369. https://doi.org/10.1016/j.scitotenv.2019.06.417
Article
CAS
PubMed
Google Scholar
Wang J, Fu X, Sainju UM, Zhao F (2018) Soil carbon fractions in response to straw mulching in the loess plateau of China. Biol Fertil Soils 54(4):423–436. https://doi.org/10.1007/s00374-018-1271-z
Article
CAS
Google Scholar
Wang J, Song C, Wang X, Song Y (2012) Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in Northeast China. Catena 96:83–89. https://doi.org/10.1016/j.catena.2012.03.009
Article
CAS
Google Scholar
Wang Y, Zhang X, Chen J, Chen A, Wang L, Guo X, Niu Y, Liu S, Mi G, Gao Q (2019b) Reducing basal nitrogen rate to improve maize seedling growth, water and nitrogen use efficiencies under drought stress by optimizing root morphology and distribution. Agric Water Manag 212:328–337. https://doi.org/10.1016/j.agwat.2018.09.010
Article
Google Scholar
Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biol Biochem 22(8):1167–1169. https://doi.org/10.1016/0038-0717(90)90046-3
Article
CAS
Google Scholar
Xue JF, Pu C, Zhao X, Wei YH, Zhai YL, Zhang XQ, Lal R, Zhang HL (2018) Changes in soil organic carbon fractions in response to different tillage practices under a wheat-maize double cropping system. L Degrad Dev 29(6):1555–1564. https://doi.org/10.1002/ldr.2950
Article
Google Scholar
York LM, Carminati A, Mooney SJ, Ritz K, Bennett MJ (2016) The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots. J Exp Bot 67(12):3629–3643. https://doi.org/10.1093/jxb/erw108
Article
CAS
PubMed
Google Scholar
Zhang H, Tang J, Liang S, Li Z, Wang J, Wang S (2018) Early thawing after snow removal and no straw mulching accelerates organic carbon cycling in a paddy soil in Northeast China. J Environ Manag 209:336–345. https://doi.org/10.1016/j.jenvman.2017.12.069
Article
CAS
Google Scholar
Zhou Z, Zeng X, Chen K, Li Z, Guo S, Shangguan Y, Yu H, Tu S, Qin Y (2019) Long-term straw mulch effects on crop yields and soil organic carbon fractions at different depths under a no-till system on the Chengdu plain, China. J Soils Sediments 19(5):2143–2152. https://doi.org/10.1007/s11368-018-02234-x
Article
CAS
Google Scholar