Abuelgasim AA, Fernandes RA, Leblanc SG (2006) Evaluation of national and global LAI products derived from optical remote sensing instruments over Canada. IEEE Trans Geosci Remote Sens 44:1872–1884. https://doi.org/10.1109/TGRS.2006.874794
Article
Google Scholar
Baret F, Weiss M, Allard D, Garrigue S, Leroy M, Jeanjean H, Fernandes R, Myneni R, Privette J, Morisette J, Bohbot H, Bosseno R, Dedieu G, Bella C, Duchemin B, Espana M, Gond V, Gu X, Guyon D, Lelong C, Maisongrande P, Mougin E, Nilson T, Veroustraete F, Vintilla R (2005) VALERI: a network of sites and a methodology for the validation of medium spatial resolution satellite products. http://w3.avignon.inra.fr/valeri/documents/VALERI-RSESubmitted.pdf. Accessed 18 Oct 2019
Calders K, Origo N, Disney M, Nightingale J, Woodgate W, Armston J, Lewis P (2018) Variability and bias in active and passive ground-based measurements of effective plant, wood and leaf area index. Agric Forest Meteorol 252:231–240. https://doi.org/10.1016/j.agrformet.2018.01.029
Article
Google Scholar
Cao B, Du YM, Li J, Li H, Li L, Zhang Y, Zou J, Liu QH (2015) Comparison of five slope correction methods for leaf area index estimation from hemispherical photography geoscience and remote sensing letters. IEEE 12:1958–1962. https://doi.org/10.1109/LGRS.2015.2440438
Article
Google Scholar
Chen J (2014) Remote sensing of leaf area index of vegetation covers. In: Weng Q (ed) Remote sensing of natural resources. CRC Press, USA
Google Scholar
Chen JM, Black TA (1992) Defining leaf area index for non-flat leaves. Plant Cell Environ 15:421–429. https://doi.org/10.1111/j.1365-3040.1992.tb00992.x
Article
Google Scholar
Chen JM, Cihlar J (1995a) Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index. Appl Opt 34:6211–6222. https://doi.org/10.1364/AO.34.006211
Article
CAS
PubMed
Google Scholar
Chen JM, Cihlar J (1995b) Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods. IEEE Trans Geosci Remote Sens 33:777–787. https://doi.org/10.1109/36.387593
Article
Google Scholar
Chen JM, Govind A, Sonnentag O, Zhang Y, Barr A, Amiro B (2006) Leaf area index measurements at Fluxnet-Canada forest sites. Agric Forest Meteorol 140:257–268. https://doi.org/10.1016/j.agrformet.2006.08.005
Article
Google Scholar
Chen JM, Rich PM, Gower ST, Norman JM, Plummer S (1997) Leaf area index of boreal forests: theory, techniques and measurements. J Geophys Res 102:29429–29443. https://doi.org/10.1029/97JD01107
Article
Google Scholar
Cutini A, Matteucci G, Mugnozza GS (1998) Estimation of leaf area index with the Li-Cor LAI 2000 in deciduous forests. Forest Ecol Manag 105:55–65. https://doi.org/10.1016/S0378-1127(97)00269-7
Article
Google Scholar
Ercanlı İ, Günlü A, Şenyurt M, Keleş S (2018) Artificial neural network models predicting the leaf area index: a case study in pure even-aged Crimean pine forests from Turkey. For Ecosyst 5:29. https://doi.org/10.1186/s40663-018-0149-8
Article
Google Scholar
Fang H, Jiang C, Li W, Wei S, Baret F, Chen JM, Garcia-Haro J, Liang S, Liu R, Myneni RB, Pinty B, Xiao Z, Zhu Z (2013) Characterization and intercomparison of global moderate resolution leaf area index (LAI) products: analysis of climatologies and theoretical uncertainties. J Geophys Res Biogeosci 118:529–548. https://doi.org/10.1002/jgrg.20051
Article
Google Scholar
Fernandes R, Plummer S, Nightingale J, Baret F, Camacho F, Fang H, Garrigues S, Gobron N, Lang M, Lacaze R, LeBlanc S, Meroni M, Martinez B, Nilson T, Pinty B, Pisek J, Sonnentag O, Verger A, Welles J, Weiss M, Widlowski JL (2014) Global leaf area index product validation good practices (version 2.0). Land Product validation subgroup (WGCV/CEOS), Roma, Italy. doi:https://doi.org/10.5067/doc/ceoswgcv/lpv/lai.002
Garrigues S, Lacaze R, Baret F, Morisette JT, Weiss M, Nickeson JE, Fernandes R, Plummer S, Shabanov NV, Myneni RB, Knyazikhin Y, Yang W (2008) Validation and intercomparison of global leaf area index products derived from remote sensing data. J Geophys Res Biogeosci 113. https://doi.org/10.1029/2007JG000635
Gonsamo A, Pellikka P (2008) Methodology comparison for slope correction in canopy leaf area index estimation using hemispherical photography. For Ecol Manag 256:749–759. https://doi.org/10.1016/j.foreco.2008.05.032
Article
Google Scholar
Gonsamo A, Pellikka P (2009) The computation of foliage clumping index using hemispherical photography. Agric Forest Meteorol 149:1781–1787. https://doi.org/10.1016/j.agrformet.2009.06.001
Article
Google Scholar
Gonsamo A, Walter J-MN, Pellikka P (2010) Sampling gap fraction and size for estimating leaf area and clumping indices from hemispherical photographs. Can J For Res 40:1588–1603. https://doi.org/10.1139/X10-085
Article
Google Scholar
Gower ST, Kucharik CJ, Norman JM (1999) Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sens Environm 70:29–51. https://doi.org/10.1016/S0034-4257(99)00056-5
Article
Google Scholar
Hyer EJ, Goetz SJ (2004) Comparison and sensitivity analysis of instruments and radiometric methods for LAI estimation: assessments from a boreal forest site. Agric Forest Meteorol 122:157–174. https://doi.org/10.1016/j.agrformet.2003.09.013
Article
Google Scholar
Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004) Review of methods for in situ leaf area index determination: part I. theories, sensors and hemispherical photography. Agric Forest Meteorol 121:19–35. https://doi.org/10.1016/j.agrformet.2003.08.027
Article
Google Scholar
Kucharik CJ, Norman JM, Murdock LM, Gower ST (1997) Characterizing canopy nonrandomness with a multiband vegetation imager (MVI). J Geophys Res Atm 102:29455–29473. https://doi.org/10.1029/97JD01175
Article
Google Scholar
Lang ARG, Yueqin X (1986) Estimation of leaf area index from transmission of direct sunlight in discontinuous canopies. Agric Forest Meteorol 37:229–243. https://doi.org/10.1016/0168-1923(86)90033-X
Article
Google Scholar
Leblanc SG (2008) DHP-TRACWin MANUAL. CCRS technical Repor. ftp://ftp.ccrs.nrcan.gc.ca/ad/LEBLANC/SOFTWARE/DHP/DHP-TRACWIN_MANUAL.pdf. Accessed 18 Oct 2019
Leblanc SG, Chen JM (2001) A practical scheme for correcting multiple scattering effects on optical LAI measurements. Agric Forest Meteorol 110:125–139. https://doi.org/10.1016/S0168-1923(01)00284-2
Article
Google Scholar
Leblanc SG, Chen JM (2002) Tracing radiation and architecture of canopies TRAC manual version 2.1.3. Natural Resources Canada, Ottawa, Ontario, Canada
Book
Google Scholar
Leblanc SG, Chen JM, Fernandes R, Deering DW, Conley A (2005) Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agric Forest Meteorol 129:187–207. https://doi.org/10.1016/j.agrformet.2004.09.006
Article
Google Scholar
Leblanc SG, Fournier RA (2014) Hemispherical photography simulations with an architectural model to assess retrieval of leaf area index. Agric Forest Meteorol 194:64–76. https://doi.org/10.1016/j.agrformet.2014.03.016
Article
Google Scholar
LI-COR (2009) LAI-2200 plant canopy analyzer instruction manual. Li-cor Cor, Lincoln
Google Scholar
Liu Z, Jin G, Chen J, Qi Y (2015) Evaluating optical measurements of leaf area index against litter collection in a mixed broadleaved-Korean pine forest in China. Trees 29:59–73. https://doi.org/10.1007/s00468-014-1058-2
Article
Google Scholar
Macfarlane C, Hoffman M, Eamus D, Kerp N, Higginson S, McMurtrie R, Adams M (2007) Estimation of leaf area index in eucalypt forest using digital photography. Agric Forest Meteorol 143:176–188. https://doi.org/10.1016/j.agrformet.2006.10.013
Article
Google Scholar
Majasalmi T, Rautiainen M, Stenberg P, Rita H (2012) Optimizing the sampling scheme for LAI-2000 measurements in a boreal forest. Agric Forest Meteorol 154–155:38–43. https://doi.org/10.1016/j.agrformet.2011.10.002
Article
Google Scholar
Miller J (1967) A formula for average foliage density. Aust J Bot 15:141–144. https://doi.org/10.1071/BT9670141
Article
Google Scholar
Nackaerts K, Coppin P, Muys B, Hermy M (2000) Sampling methodology for LAI measurements with LAI-2000 in small forest stands. Agric Forest Meteorol 101(4):247–250. https://doi.org/10.1016/S0168-1923(00)00090-3
Article
Google Scholar
Neumann HH, Den Hartog G, Shaw RH (1989) Leaf area measurements based on hemispheric photographs and leaf-litter collection in a deciduous forest during autumn leaf-fall. Agric Forest Meteorol 45:325–345. https://doi.org/10.1016/0168-1923(89)90052-X
Article
Google Scholar
Nilson T (1999) Inversion of gap frequency data in forest stands. Agric Forest Meteorol 98-99:437–448. https://doi.org/10.1016/S0168-1923(99)00114-8
Article
Google Scholar
Pfeifer M, Gonsamo A, Woodgate W, Cayuela L, Marshall AR, Ledo A, Paine TCE, Marchant R, Burt A, Calders K, Courtney-Mustaphi C, Cuni-Sanchez A, Deere NJ, Denu D, de Tanago JG, Hayward R, Lau A, Macía MJ, Olivier PI, Pellikka P, Seki H, Shirima D, Trevithick R, Wedeux B, Wheeler C, Munishi PKT, Martin T, Mustari A, Platts PJ (2018) Tropical forest canopies and their relationships with climate and disturbance: results from a global dataset of consistent field-based measurements. For Ecosyst 5:7. https://doi.org/10.1186/s40663-017-0118-7
Article
Google Scholar
Pisek J, Lang M, Nilson T, Korhonen L, Karu H (2011) Comparison of methods for measuring gap size distribution and canopy nonrandomness at Järvselja RAMI (RAdiation transfer model Intercomparison) test sites. Agric Forest Meteorol 151:365–377. https://doi.org/10.1016/j.agrformet.2010.11.009
Article
Google Scholar
Ross J (1981) The radiation regime and architecture of plant stands. Dr. W. Junk Publishers, The Hague
Book
Google Scholar
Running SW, Hunt ER (1993) Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In: Ehleringer JR, Field C (eds) Scaling physiological processes: leaf to globe. Academic Press, San Diego, pp 141–158
Chapter
Google Scholar
Ryu Y, Nilson T, Kobayashi H, Sonnentag O, Law BE, Baldocchi DD (2010b) On the correct estimation of effective leaf area index: does it reveal information on clumping effects? Agric Forest Meteorol 150:463–472. https://doi.org/10.1016/j.agrformet.2010.01.009
Article
Google Scholar
Ryu Y, Sonnentag O, Nilson T, Vargas R, Kobayashi H, Wenk R, Baldocchi DD (2010a) How to quantify tree leaf area index in an open savanna ecosystem: a multi-instrument and multi-model approach. Agric Forest Meteorol 150:63–76. https://doi.org/10.1016/j.agrformet.2009.08.007
Article
Google Scholar
Soto-Berelov M, Jones S, Farmer E, Woodgate E (2015) Review of validation standards of biophysical earth observation products. In: Held A, Phinn S, Soto-Berelov M, Jones S (eds) AusCover Good Practice Guidelines: A technical handbook supporting calibration and validation activities of remotely sensed data product. TERN AusCover, pp 8–32
Google Scholar
van Gardingen PR, Jackson GE, Hernandez-Daumas S, Russell G, Sharp L (1999) Leaf area index estimates obtained for clumped canopies using hemispherical photography. Agric Forest Meteorol 94:243–257. https://doi.org/10.1016/S0168-1923(99)00018-0
Article
Google Scholar
Walter J-MN, Fournier RA, Soudani K, Meyer E (2003) Integrating clumping effects in forest canopy structure: an assessment through hemispherical photographs. Can J Remote Sens 29:388–410. https://doi.org/10.5589/m03-011
Article
Google Scholar
Watson DJ (1947) Comparative physiological studies in the growth of field crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Ann Bot 11:41–76. https://doi.org/10.1093/oxfordjournals.aob.a083148
Article
CAS
Google Scholar
Weiss M, Baret F, Smith GJ, Jonckheere I, Coppin P (2004) Review of methods for in situ leaf area index (LAI) determination: part II. Estimation of LAI, errors and sampling. Agric Forest Meteorol 121:37–53. https://doi.org/10.1016/j.agrformet.2003.08.001
Article
Google Scholar
Woodgate W (2015) In-situ leaf area index estimate uncertainty in forests: supporting earth observation product calibration and validation. PhD Thesis. RMIT University, Melbourne
Google Scholar
Woodgate W, Jones SD, Suarez L, Hill MJ, Armston JD, Wilkes P, Soto-Berelov M, Haywood A, Mellor A (2015) Understanding the variability in ground-based methods for retrieving canopy openness, gap fraction, and leaf area index in diverse forest systems. Agric Forest Meteorol 205:83–95. https://doi.org/10.1016/j.agrformet.2015.02.012
Article
Google Scholar
Woodgate W, Soto-Berelov M, Suarez L, Jones S, Hill M, Wilkes P, Axelsson C, Haywood A, Mellor A (2012) Searching for the optimal sampling design for measuring LAI in an upland rainforest. Proceedings of the 2012 Geospatial science research 3 symposium (GSR_2), Melbourne, Australia
Yan G, Hu R, Luo J, Weiss M, Jiang H, Mu X, Xie D, Zhang W (2019) Review of indirect optical measurements of leaf area index: recent advances, challenges, and perspectives. Agric Forest Meteorol 265:390–411. https://doi.org/10.1016/j.agrformet.2018.11.033
Article
Google Scholar
Zhang Y, Chen JM, Miller JR (2005) Determining digital hemispherical photograph exposure for leaf area index estimation. Agri Forest Meteorol 133:166–181. https://doi.org/10.1016/j.agrformet.2005.09.009
Article
Google Scholar
Zou J, Leng P, Hou W, Zhong P, Chen L, Mai C, Qian Y, Zuo Y (2018a) Evaluating two optical methods of woody-to-total area ratio with destructive measurements at five Larix gmelinii Rupr. Forest plots in China. Forests 9:746. https://doi.org/10.3390/f9120746
Article
Google Scholar
Zou J, Yan G, Chen L (2015) Estimation of canopy and woody components clumping indices at three mature Picea crassifolia forest stands. IEEE J Sel Top Appl Earth Obs Remote Sens 8:1413–1422. https://doi.org/10.1109/JSTARS.2015.2418433
Article
Google Scholar
Zou J, Yan G, Zhu L, Zhang W (2009) Woody-to-total area ratio determination with a multispectral canopy imager. Tree Physiol 29:1069–1080. https://doi.org/10.1093/treephys/tpp042
Article
PubMed
Google Scholar
Zou J, Zhuang Y, Chianucci F, Mai C, Lin W, Leng P, Luo S, Yan B (2018b) Comparison of seven inversion models for estimating plant and woody area indices of leaf-on and leaf-off forest canopy using explicit 3D forest scenes. Remote Sens 10:1297. https://doi.org/10.3390/rs10081297
Article
Google Scholar
Zou J, Zuo Y, Zhong P, Hou W, Leng P, Chen B (2019) Performance of four optical methods in estimating leaf area index at elementary sampling unit of Larix principis-rupprechtii forests. Forests 11:30. https://doi.org/10.3390/f11010030
Article
Google Scholar