Ahmed OS, Franklin SE, Wulder MA, White JC (2015) Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the random Forest algorithm. ISPRS 101:89–101
Google Scholar
Alexander C, Korstjens AH, Hill RA (2018) Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models. Int J Appl Earth Obs Geoinf 65:105–113
Article
Google Scholar
Allouis T, Durrieu S, Vega C, Couteron P (2013) Stem volume and above-ground biomass estimation of individual pine trees from LiDAR data: contribution of full-waveform signals. IEEE J Sel Topics Appl Earth Observ Remote Sens 6(2):924–934
Article
Google Scholar
Almeida DRA, Stark SC, Shao G, Schietti J, Nelson BW, Silva CA, Gorgens EB, Valbuena R, Papa DA, Brancalion PHS (2019) Optimizing the remote detection of tropical rainforest structure with airborne Lidar: leaf area profile sensitivity to pulse density and spatial sampling. Remote Sens 11(1):92. https://doi.org/10.3390/rs11010092.
Article
Google Scholar
Alonzo M, Bookhagen B, McFadden JP, Sun A, Roberts DA (2015) Mapping urban forest leaf area index with airborne lidar using penetration metrics and allometry. Remote Sens Environ 162:141–153
Article
Google Scholar
Ballhorn U, Siegert F, Mason M, Limin S (2009) Derivation of burn scar depths and estimation of carbon emissions with LiDAR in Indonesian peatlands. Proc Natl Acad Sci U S A 106(50):21213–21218
Article
CAS
PubMed
PubMed Central
Google Scholar
Balzter H, Rowland C, Saich P (2007) Forest canopy height and carbon estimation at monks wood National Nature Reserve, UK, using dual-wavelength SAR interferometry. Remote Sens Environ 108(3):224–239
Article
Google Scholar
Barrachina M, Cristóbal J, Tulla AF (2015) Estimating above-ground biomass on mountain meadows and pastures through remote sensing. Int J Appl Earth Obs Geoinf 38:184–192
Article
Google Scholar
Breiman L (2001) Random forests. Mach Learn 45:5–32
Article
Google Scholar
Cao L, Coops NC, Hermosilla T, Innes J, Dai JS, She GH (2014) Using small-footprint discrete and full-waveform airborne LiDAR metrics to estimate total biomass and biomass components in subtropical forests. Remote Sens 6(8):7110–7135
Article
Google Scholar
Chopping M, Schaaf CB, Zhao F, Wang ZS, Nolin AW, Moisen GG, Martonchik JV, Bull M (2011) Forest structure and aboveground biomass in the southwestern United States from MODIS and MISR. Remote Sens Environ 115(11):2943–2953
Article
Google Scholar
Cifuentes R, van der Zande D, Farifteh J, Salas C, Coppin P (2014) Effects of voxel size and sampling setup on the estimation of forest canopy gap fraction from terrestrial laser scanning data. Agric For Meteorol 194:230–240
Article
Google Scholar
Crespo-Peremarch P, Ruiz LA (2018) Influence of Lidar full-waveform density and voxel size on forest stand estimates. IGARSS 2018 International geoscience and remote sensing symposium, Valencia
Book
Google Scholar
Dalponte M, Frizzera L, Orka HO, Gobakken T, Naesset E, Gianell D (2018) Predicting stem diameters and aboveground biomass of individual trees using remote sensing data. Ecol Indic 85:367–376
Article
Google Scholar
Drake JB, Dubayah RO, Clark DB, Knox RG, Blair JB, Hofton MA, Chazdon RL, Weishampel JF, Prince SD (2002) Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sens Environ 79(2):305–319
Article
Google Scholar
Duncanson LI, Niemann KO, Wulder MA (2010) Estimating forest canopy height and terrain relief from GLAS waveform metrics. Remote Sens Environ 114:138–154
Article
Google Scholar
Eisfelder C, Kuenzer C, Dech S (2012) Derivation of biomass information for semi-arid areas using remote-sensing data. Int J Remote Sens 33(9):2937–2984
Article
Google Scholar
Frazer GW, Magnussen S, Wulder MA, Niemann KO (2011) Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass. Remote Sens Environ 115(2):636–649
Article
Google Scholar
Gao S, Niu Z, Sun G, Zhao D, Jia K, Qin YC (2015) Height extraction of maize using airborne full-waveform LiDAR data and a deconvolution algorithm. IEEE Geosci Remote Sens Lett 12(9):1978–1982
Article
Google Scholar
García M, Riaño D, Chuvieco E, Danson FM (2010) Estimating biomass carbon stocks for a Mediterranean forest in Central Spain using LiDAR height and intensity data. Remote Sens Environ 114(4):816–830
Article
Google Scholar
García M, Saatchi S, Ustin S, Balzter H (2018) Modelling forest canopy height by integrating airborne LiDAR samples with satellite radar and multispectral imagery. Int J Appl Earth Obs Geoinf 66:159–173
Article
Google Scholar
Gleason CJ, Im J (2012) Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens Environ 125:80–91
Article
Google Scholar
Hancock S, Anderson K, Disney M, Gaston KJ (2017) Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: calibration and validation with voxelised terrestrial lidar. Remote Sens Environ 188:37–50
Article
Google Scholar
Hermosilla T, Coops NC, Ruiz LA, Moskal LM (2014a) Deriving pseudo-vertical waveforms from small-footprint full-waveform LiDAR data. Remote Sens Lett 5(4):332–341
Article
Google Scholar
Hermosilla T, Ruiz LA, Kazakova AN, Coops NC, Moskal LM (2014b) Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data. Int J Wildland Fire 23(2):224-233. https://doi.org/10.1071/wf13086
Iverson LR, Rebbeck J, Peters MP, Hutchinson T, Fox T (2019) Predicting Ailanthus altissima presence across a managed forest landscape in Southeast Ohio. For Ecosyst 6(1):41. https://doi.org/10.1186/s40663-019-0198-7
Article
Google Scholar
Kim E, Lee WK, Yoon M, Lee JY, Son Y, Abu Salim K (2016) Estimation of voxel-based above-ground biomass using airborne LiDAR data in an intact tropical rain forest, Brunei. Forests 7(11):259. https://doi.org/10.3390/f7110259
Lai X, Zheng M (2015) A denoising method for LiDAr full-waveform data. Mathem Prob Engineer. https://doi.org/10.1155/2015/164318
Lefsky MA, Harding DJ, Keller M, Cohen WB, Carabajal CC, Espirito-Santo FD, Hunter MO, de Oliveira R, de Camargo PB (2005) Estimates of forest canopy height and aboveground biomass using ICESat. Geophys Res Lett 32(22). https://doi.org/10.1029/2005gl025518
Lefsky MA, Keller M, Panga Y, de Camargo PB, Hunter MO (2007) Revised method for forest canopy height estimation from geoscience laser altimeter system waveforms. J Appl Remote Sens 1(1): 013537. https://doi.org/10.1117/1.2795724
Li W, Niu Z, Li J, Chen HY, Gao S, Wu MQ, Li D (2016) Generating pseudo large footprint waveforms from small footprint full-waveform airborne LiDAR data for the layered retrieval of LAI in orchards. Opt Express 24(9):10142–10156
Article
PubMed
Google Scholar
Lindberg E, Olofsson K, Holmgren J, Olsson H (2012) Estimation of 3D vegetation structure from waveform and discrete return airborne laser scanning data. Remote Sens Environ 118:151–161
Article
Google Scholar
Luo S, Chen M, Wang C, Gonsamo A, Xi XH, Lin Y, Qian MJ, Peng DL, Nie S, Qin HM (2018) Comparative performances of airborne LiDAR height and intensity data for leaf area index estimation. IEEE J Sel Topics Appl Earth Observ Remote Sens 11(1):300–310
Article
Google Scholar
Luo SZ, Wang C, Xi XH, Nie S, Fan XY, Chen HY, Ma D, Liu JF, Zou J, Lin Y, Zhou GQ (2019a) Estimating forest aboveground biomass using small-footprint full-waveform airborne LiDAR data. Int J Appl Earth Obs Geoinf 83:101922. https://doi.org/10.1016/j.jag.2019.101922
Luo SZ, Wang C, Xi XH, Nie S, Fan XY, Chen HY, Yang XB, Peng DL, Lin Y, Zhou GQ (2019b) Combining hyperspectral imagery and LiDAR pseudo-waveform for predicting crop LAI, canopy height and above-ground biomass. Ecol Indic 102:801–812
Article
Google Scholar
Luo SZ, Wang C, Xi XH, Pan FF, Qian MJ, Peng DL, Nie S, Qin HM, Lin Y (2017) Retrieving aboveground biomass of wetland Phragmites australis (common reed) using a combination of airborne discrete-return LiDAR and hyperspectral data. Int J Appl Earth Obs Geoinf 58:107–117
Article
Google Scholar
Maguya AS, Tegel K, Junttila V, Kauranne T, Korhonen M, Burns J, Leppanen V, Sanz B (2015) Moving voxel method for estimating canopy base height from. Airborne laser scanner data 7(7):8950–8972
Google Scholar
Matasci G, Coops NC, Williams DAR, Page N (2018) Mapping tree canopies in urban environments using airborne laser scanning (ALS): a Vancouver case study. For Ecosyst 5(1):31. https://doi.org/10.1186/s40663-018-0146-y
Article
Google Scholar
Mielcarek M, Stereńczak K, Khosravipour A (2018) Testing and evaluating different LiDAR-derived canopy height model generation methods for tree height estimation. Int J Appl Earth Obs Geoinf 71:132–143
Article
Google Scholar
Milenković M, Wagner W, Quast R, Hollaus M, Ressl C, Pfeifer N (2017) Total canopy transmittance estimated from small-footprint, full-waveform airborne LiDAR. ISPRS 128:61–72
Google Scholar
Montagnoli A, Fusco S, Terzaghi M, Kirschbaum A, Pflugmacher D, Cohen WB, Scippa GS, Chiatante D (2015) Estimating forest aboveground biomass by low density lidar data in mixed broad-leaved forests in the Italian pre-Alps. For Ecosyst 2(1):10. https://doi.org/10.1186/s40663-015-0035-6
Article
Google Scholar
Muss JD, Mladenoff DJ, Townsend PA (2011) A pseudo-waveform technique to assess forest structure using discrete lidar data. Remote Sens Environ 115(3):824–835
Article
Google Scholar
Naidoo L, Cho MA, Mathieu R, Asner G (2012) Classification of savanna tree species, in the greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a random Forest data mining environment. ISPRS 69:167–179
Google Scholar
Nie S, Wang C, Zeng H, Xi X, Li G (2017) Above-ground biomass estimation using airborne discrete-return and full-waveform LiDAR data in a coniferous forest. Ecol Indic 78:221–228
Article
Google Scholar
Pablo CP, Piotr T, Nicholas C, Angel RL (2018) Characterizing understory vegetation in Mediterranean forests using full-waveform airborne laser scanning data. Remote Sens Environ 217:400–413
Article
Google Scholar
Pang Y, Lefsky M, Sun G, Ranson J (2011) Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar. Remote Sens Environ 115(11):2798–2809
Article
Google Scholar
Pearse GD, Watt MS, Dash JP, Stone C, Caccamo G (2019) Comparison of models describing forest inventory attributes using standard and voxel-based lidar predictors across a range of pulse densities. Int J Appl Earth Obs Geoinf 78:341–351
Article
Google Scholar
Popescu SC, Zhao K (2008) A voxel-based lidar method for estimating crown base height for deciduous and pine trees. Remote Sens Environ 112(3):767–781
Article
Google Scholar
Popescu SC, Zhao K, Neuenschwander A, Lin C (2011) Satellite lidar vs. small footprint airborne lidar: comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level. Remote Sens Environ 115(11):2786–2797
Article
Google Scholar
Qin YC, Yao W, Vu TT, Li SH, Niu Z, Ban YF (2015) Characterizing radiometric attributes of point cloud using a normalized reflective factor derived from small footprint LiDAR waveform. IEEE J Sel Topics Appl Earth Observ Remote Sens 8(2):740–749
Article
Google Scholar
Ramoelo A, Cho MA, Mathieu R, Madonsela S, van de Kerchove R, Kaszta Z, Wolff E (2015) Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and world View-2 data. Int J Appl Earth Obs Geoinf 43:43–54
Article
Google Scholar
Ranson KJ, Sun G, Kovacs K, Kharuk VI (2004) Landcover attributes from ICESat GLAS data in Central Siberia, IGARSS 2004. IGARSS2004 Proceedings, 20–24 September 2004, Anchorage, Alaska, USA
Richter K, Stelling N, Maas HG (2014) Correcting attenuation effects caused by interactions in the forest canopy in full-waveform airborne laser scanner data. ISPRS XL-3:273–280
Google Scholar
Rogers JN, Parrish CE, Ward LG, Burdick DM (2015) Evaluation of field-measured vertical obscuration and full waveform lidar to assess salt marsh vegetation biophysical parameters. Remote Sens Environ 156:264–275
Article
Google Scholar
Silva CA, Saatchi S, Garcia M, Labriere N, Klauberg C, Ferraz A, Meyer V, Jeffery KJ, Abernethy K, White L, Zhao K, Lewis SL, Hudak AT (2018) Comparison of small- and large-footprint lidar characterization of tropical forest aboveground structure and biomass: a case study from Central Gabon. IEEE J Sel Topics Appl Earth Observ Remote Sens:11(10): 3512–3526
Solberg S, Hansen EH, Gobakken T, Næssset E, Zahabu E (2017) Biomass and InSAR height relationship in a dense tropical forest. Remote Sens Environ 192:166–175
Article
Google Scholar
Stelling N, Richter K (2016) Voxel based representation of full-waveform airborne laser scanner data for forestry applications. ISPRS XLI-B8, pp 755–762
Google Scholar
Stojanova D, Panov P, Gjorgjioski V, Kobler A, Džeroski S (2010) Estimating vegetation height and canopy cover from remotely sensed data with machine learning. Ecol Inform 5(4):256–266
Article
Google Scholar
Sumnall MJ, Hill RA, Hinsley SA (2016) Comparison of small-footprint discrete return and full waveform airborne lidar data for estimating multiple forest variables. Remote Sens Environ 173:214–223
Article
Google Scholar
Tsui OW, Coops NC, Wulder MA, Marshall PL (2013) Integrating airborne LiDAR and space-borne radar via multivariate kriging to estimate above-ground biomass. Remote Sens Environ 139:340–352
Article
Google Scholar
Wang ZS, Schaaf CB, Lewis P, Knyazikhin Y, Schull MA, Strahler AH, Yao T, Myneni RB, Chopping MJ, Blair BJ (2011) Retrieval of canopy height using moderate-resolution imaging spectroradiometer (MODIS) data. Remote Sens Environ 115(6):1595–1601
Article
Google Scholar
Zhang WM, Wan P, Wang TJ, Cai SS, Chen YM, Jin XL, Yan GJ (2019) A novel approach for the detection of standing tree stems from plot-level terrestrial laser scanning data. Remote Sens 11(2):211
Article
Google Scholar
Zhao KG, Suarez JC, Garcia M, Hu TX, Wang C, Londo A (2018) Utility of multitemporal lidar for forest and carbon monitoring: tree growth, biomass dynamics, and carbon flux. Remote Sens Environ 204:883–897
Article
Google Scholar
Zheng G, Ma LX, Eitel JUH, He W, Magney TS, Moskal LM, Li MS (2017) Retrieving directional gap fraction, extinction coefficient, and effective leaf area index by incorporating scan angle information from discrete aerial Lidar data. IEEE Trans Geosci Remote Sens 55(1):577–590
Article
Google Scholar
Zhou Y, Qiu F (2015) Fusion of high spatial resolution WorldView-2 imagery and LiDAR pseudo-waveform for object-based image analysis. ISPRS 101:221–232
Google Scholar