Abatzoglou JT (2013) Development of gridded surface meteorological data for ecological applications and modelling. Int J Climatol 33(1):121–131. https://doi.org/10.1002/joc.3413
Article
Google Scholar
Arner SL, Woudenberg S, Waters S, Vissage J, Maclean C, Thompson M, Hansen M (2003) National Algorithms for Determining Stocking Class, Stand Size Class, and Forest Type for Forest Inventory and Analysis Plots. http://www.fia.fs.fed.us/library/field-guides-methods-proc/docs/National%20algorithms.doc. Accessed 15 Jan 2015
Bechtold WA, Patterson PL (2005) The enhanced Forest inventory and analysis program — National Sampling Design and estimation procedures. USDA Gen Tech Rep SRS 80:85
Google Scholar
Belote RT, Dietz MS, Jenkins CN, McKinley PS, Irwin GH, Fullman TJ, Leppi JC, Aplet GH (2017) Wild, connected, and diverse: building a more resilient system of protected areas. Ecol Appl 27(4):1050–1056
Article
PubMed
Google Scholar
Brandt LA, Butler PR, Handler SD, Janowiak MK, Shannon PD, Swanston CW (2017) Integrating science and management to assess Forest ecosystem vulnerability to climate change. J Forest 115(3):212–221. https://doi.org/10.5849/jof.15-147
Article
Google Scholar
Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324
Article
Google Scholar
Burns RM, Honkala BH (1990) Silvics of North America: volume 1. Conifers. Agriculture Handbook 654, USDA Forest Service, Washington, p 877
Google Scholar
Caldwell PV, Miniat CF, Elliott KJ, Swank WT, Brantley ST, Laseter SH (2016) Declining water yield from forested mountain watersheds in response to climate change and forest mesophication. Glob Chang Biol 22(9):2997–3012. https://doi.org/10.1111/gcb.13309
Article
PubMed
Google Scholar
Cohen J (1960) A coefficient of agreement for norminal scales. Educ Psychol Meas XX:37–46
Costanza JK, Coulston JW, Wear DN (2017) An empirical, hierarchical typology of tree species assemblages for assessing forest dynamics under global change scenarios. PLoS One 12(9):e0184062. https://doi.org/10.1371/%20journal.pone.0184062
Article
PubMed
PubMed Central
Google Scholar
Cutler A, Cutler DR, Stevens JR (2012) Random forests. In: Zhang C, Ma Y (eds) Ensemble machine learning: methods and applications. Springer, New York, pp 157–175
Chapter
Google Scholar
Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random forests for classification in ecology. Ecology 88(1):2783–2792. https://doi.org/10.1890/07-0539.1
Article
PubMed
Google Scholar
Dengler J, Jansen F, Glöckler F, Peet RK, Cáceres MD, Chytrý M, Ewald J, Oldeland J, Lopez-Gonzalez G, Finckh M, Mucina L, Rodwell JS, Schaminée JHJ, Spencer N (2011) The global index of vegetation-plot databases (GIVD): a new resource for vegetation science. J Veg Sci 22(4):582–597. https://doi.org/10.1111/j.1654-1103.2011.01265.x
Article
Google Scholar
DeSantis RD, Moser WK, Li RH, Wear DN, Miles PD (2013) Modeling the effects of emerald ash borer on forest composition in the Midwest and Northeast United States. USDA For Serv Gen Tech Rep NRS-112, North Res Station. pp 1-28
Book
Google Scholar
Dufrene M, Legendre P (1997) Species Assamblages and indicator species: the need for a flexible Asymetrical approach. Ecol Monogr 67:345–366
Google Scholar
Duveneck MJ, Thompson JR, Wilson BT (2015) An imputed forest composition map for New England screened by species range boundaries. Forest Ecol Manag 347:107–115
Article
Google Scholar
Evans JS, Murphy MA, Holden ZA, Cushman SA (2011) Modeling species distribution and change using random Forest. In: Drew CA, Wiersma YF, Huettmann F (eds) Predictive species and habitat modeling in landscape ecology: concepts and applications. Springer Science+Business Media, New York, pp 139–159
Chapter
Google Scholar
Eyre FH (1980) Forest cover types of the United States and Canada. Society of American Foresters, Washington
Google Scholar
Faber-Langendoen D, Keeler-Wolf T, Meidinger D, Tart D, Hoagland B, Josse C, Navarro G, Ponomarenko S, Saucier JP, Weakley A, Comer P (2014) EcoVeg: a new approach to vegetation description and classification. Ecol Monogr 84:533–561. https://doi.org/10.1890/13-2334.1
Article
Google Scholar
Fei SL, Desprez JM, Potter KM, Jo I, Knott JA, Oswalt CM (2017) Divergence of species responses to climate change. Sci Adv 3(5):e1603055. https://doi.org/10.1126/sciadv.1603055
Article
PubMed
PubMed Central
Google Scholar
FGDC (2008) National Vegetation Classification Standard, version 2 FGDC-STD-005-2008. Federal Geographic Data Committee. Reston, Virginia, USA, pp 55 (+ Appendices). Available at: https://www.fgdc.gov/standards/projects/FGDC-standards-projects/vegetation/NVCS_V2_FINAL_2008-02.pdf Accessed 19 Dec 2017
Fralish JS (2004) The keystone role of oak and hickory in the central hardwood forest. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. Gen Tech Rep SRS-73:78–87
Franklin J, Serra-Diaz JM, Syphard AD, Regan HM (2017) Big data for forecasting the impacts of global change on plant communities. Glob Ecol Biogeogr 26:6–17. https://doi.org/10.1111/geb.12501
Article
Google Scholar
Franklin S, Comer P, Evens J, Ezcurra E, Faber-Langendoen D, Franklin J, Jennings M, Josse C, Lea C, Loucks O, Muldavin E, Peet R, Ponomarenko S, Roberts D, Solomeshch A, Keeler-Wolf T, Kley JV, Weakley A, McKerrow A, Burke M, Spurrier C (2015) How a national vegetation classification can help ecological research and management. Front Ecol Environ 13(4):185–186. https://doi.org/10.1890/15.WB.006
Article
Google Scholar
Frieswyk CB, Johnston CA, Zedler JB (2007) Identifying and characterizing dominant plants as an indicator of community condition. J Great Lakes Res 33(sp3):125–135. https://doi.org/10.3394/0380-1330(2007)33
Article
Google Scholar
Frost CC (2006) History and future of the longleaf pine ecosystem. In: Jose S, Jokela E, Miller D (eds) The longleaf pine ecosystems: ecology, management, and restoration. Springer, New York, pp 9–48
Chapter
Google Scholar
Gamer M, Lemon J, Fellows I, Singh P (2012) Irr: various coefficients of Interrater reliability and agreement. R package version 0.84. https://CRAN.R-project.org/package=irr. Accessed 30 Aug 2017
Gesch D, Oimoen M, Greenlee S, Nelson C, Steuck M, Tyle D (2002) The National Elevation Dataset. Photogramm Eng Rem S 68:5–11
Google Scholar
Greenacre M (2013) The contributions of rare objects in correspondence analysis. Ecology 94(1):241–249. https://doi.org/10.1890/11-1730.1
Article
PubMed
Google Scholar
Hak JC, Comer PJ (2017) Modeling landscape condition for biodiversity assessment—application in temperate North America. Ecol Indic 82:206–216. https://doi.org/10.1016/j.ecolind.2017.06.049
Article
Google Scholar
Hanberry BB (2013) Changing eastern broadleaf, southern mixed, and northern mixed forest ecosystems of the eastern United States. Forest Ecol Manag 306:171–178. https://doi.org/10.1016/j.foreco.2013.06.040
Article
Google Scholar
Healey SP, Raymond CL, Blakey Lockman I, Hernandez AJ, Garrard C, Huang CQ (2016) Root disease can rival fire and harvest in reducing forest carbon storage. Ecosphere 7(11):e01569. https://doi.org/10.1002/ecs2.1569
Article
Google Scholar
Heffernan JB, Soranno PA, Angilletta MJ, Buckley LB, Gruner DS, Keitt TH, Kellner JR, Kominoski JS, Rocha AV, Xiao JF, Harms TK, Goring SJ, Koenig LE, McDowell WH, Powell H, Richardson AD, Stow CA, Vargas R, Weathers KC (2014) Macrosystems ecology: understanding ecological patterns and processes at continental scales. Front Ecol Environ 12(1):5–14. https://doi.org/10.1890/130017
Article
Google Scholar
Hiers JK, Walters JR, Mitchell RJ, Varner JM, Conner LM, Blanc LA, Stowe J (2014) Ecological value of retaining pyrophytic oaks in longleaf pine ecosystems. J wildlife. Manage 78(3):383–393
Google Scholar
Hijmans RJ (2016) Raster: geographic data analysis and modeling. R package version 2.5-8. https://CRAN.R-project.org/package=raster. Accessed 1 June 2017
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978
Article
Google Scholar
Hildebrand H, Bennet DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89(6):1510–1520
Article
Google Scholar
Hoagland B (2000) The vegetation of Oklahoma : a classification for landscape mapping and conservation planning. Southwest Nat 45:385–420
Article
Google Scholar
Homer C, Dewitz J, Yang LM, Jin SM, Danielson P, Xian G, Coulston J, Herold N, Wickham J, Megown K (2015) Completion of the 2011 National Land Cover Database for the conterminous United States-representing a decade of land cover change information. Photogramm Eng Rem S 81(5):345–354
Google Scholar
Iverson LR, Prasad AM (2001) Potential changes in tree species richness and Forest Community types following climate change. Ecosystems 4(3):186–199. https://doi.org/10.1007/s10021-001-0003-6
Article
CAS
Google Scholar
Iverson LR, Prasad AM, Matthews SN, Peters M (2008) Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest Ecol Manag 254:390–406. https://doi.org/10.1016/j.foreco.2007.07.023
Article
Google Scholar
Kardol P, Campany CE, Souza L, Norby RJ, Weltzin JF, Classen AT (2010) Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem. Glob Chang Biol 16(10):2676–2687. https://doi.org/10.1111/j.1365-2486.2010.02162.x
Article
Google Scholar
Kassambara A, Mundt F (2017) Factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.4
Google Scholar
Koch FH, Coulston JW (2015) One-year (2013), three-year (2011–2013), and five-year (2009–2013) drought maps for the conterminous United States. In: Potter KM, Conkling BL (eds) Forest health monitoring: National Status, trends, and analysis 2014. Gen. Tech. Rep. SRS-GTR-209. US Department of Agriculture, Forest Service, Southern Research Station, Asheville, pp 57–71
Google Scholar
Le Roux PC, Pellissier L, Wisz MS, Luoto M (2014) Incorporating dominant species as proxies for biotic interactions strengthens plant community models. J Ecol 102(3):767–775. https://doi.org/10.1111/1365-2745.12239
Article
Google Scholar
Levine JM, Bascompte J, Adler PB, Allesina S (2017) Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546:56–64. https://doi.org/10.1038/nature22898
Article
CAS
PubMed
Google Scholar
Liang JJ, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze ED, McGuire AD, Bozzato F, Pretzsch H, de-Miguel S, Paquette A, Herault B, Scherer-Lorenzen M, Barrett CB, Glick HB, Hengeveld GM, Nabuurs GJ, Pfautsch S, Viana H, Vibrans AC, Ammer C, Schall P, Verbyla D, Tchebakova N, Fischer M, Watson JV, HYH C, Lei XD, Schelhaas MJ, Lu HC, Gianelle D, Parfenova EI, Salas C, Lee E, Lee B, Kim HS, Bruelheide H, Coomes DA, Piotto D, Sunderland T, Schmid B, Gourlet-Fleury S, Sonke B, Tavani R, Zhu J, Brandl S, Vayreda J, Kitahara F, Searle EB, Neldner VJ, Ngugi MR, Baraloto C, Frizzera L, Balazy R, Oleksyn J, Zawila-Niedzwiecki T, Bouriaud O, Bussotti F, Finer L, Jaroszewicz B, Jucker T, Valladares F, Jagodzinski AM, Peri PL, Gonmadje C, Marthy W, O'Brien T, Martin EH, Marshall AR, Rovero F, Bitariho R, Niklaus PA, Alvarez-Loayza P, Chamuya N, Valencia R, Mortier F, Wortel V, Engone-Obiang NL, Ferreira LV, Odeke DE, Vasquez RM, Lewis SL, Reich PB (2016) Positive biodiversity–productivity relationship predominant in global forests. Science 354: aaf8957-1-aaf8957-12. https://doi.org/10.1126/science.aaf8957
Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22
Google Scholar
Matthews ER, Peet RK, Weakley AS (2011) Classification and description of alluvial plant communities of the piedmont region, North Carolina, USA. Appl Veg Sci 14:485–505
Article
Google Scholar
McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach
Google Scholar
McGill BJ (2010) Matters of scale. Science 328:575–576. https://doi.org/10.1126/science.1188528
Article
CAS
PubMed
Google Scholar
Menard S, Faber-Langendoen D, Nelson M (2017) Integrating the U.S. National Vegetation Classification in the U.S. Forest Service FIA Program. Report prepared for USFS-FIA program, Arlington, p 104
Google Scholar
Nenadic O, Greenacre M (2007) Correspondence analysis in R, with two- and three-dimensional graphics: the ca package. J Stat Softw 20(3):48202. https://doi.org/10.18637/jss.v020.i03
Google Scholar
Neuwirth E (2014) RColorBrewer: ColorBrewer palettes. R package version 1:1–2
Google Scholar
Nowacki GJ, Abrams MD (2008) The demise of fire and “mesophication” of forests in the eastern United States. Bioscience 58(2):123–138
Article
Google Scholar
O’Connell BM, Conkling BL, Wilson AM, Burrill EA, Turner JA, Pugh SA, Christensen G, Ridley T, Menlove J (2016) The Forest inventory and analysis database: database description and user guide for phase 2 (version 6.1). US Department of Agriculture Forest Service, Washington, DC, USA.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) Vegan: community ecology package. R package version 2.4-0. https://CRAN.R-project.org/package=vegan. Accessed 1 July 2017
Palmquist KA, Peet RK, Weakley AS (2014) Changes in plant species richness following reduced fire frequency and drought in one of the most species-rich savannas in North America. J Veg Sci 25(6):1426–1437. https://doi.org/10.1111/jvs.12186
Article
Google Scholar
Peet R, Lee M, Jennings M, Faber-Langendoen D (2012) VegBank – a permanent, open-access archive for vegetation-plot data. Biodivers Ecol 4:233–241. https://doi.org/10.7809/b-e.00080
Article
Google Scholar
Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199. https://doi.org/10.1007/s10021-005-0054-1
Article
Google Scholar
R Core Team (2017) R: A Language and Environment for Statistical Computing. https://www.r-project.org/ Accessed 10 Aug 2017
Riitters KH, Wickham JD (2012) Decline of forest interior conditions in the conterminous United States. Sci Rep 2:653. https://doi.org/10.1038/srep00653
Article
PubMed
PubMed Central
Google Scholar
Roberts DW (2016) Labdsv: ordination and multivariate analysis for ecology. R package version 1.8-0. https://CRAN.R-project.org/package=labdsv. Accessed 15 June 2017
Rogers BM, Jantz P, Goetz SJ (2017) Vulnerability of eastern US tree species to climate change. Glob Chang Biol 23(8):3302–3320. https://doi.org/10.1111/gcb.13585
Article
PubMed
Google Scholar
Rose KC, Graves RA, Hansen WD, Harvey BJ, Qiu JX, Wood SA, Ziter C, Turner MG (2016) Historical foundations and future directions in macrosystems ecology. Ecol Lett 20(2):147–157. https://doi.org/10.1111/ele.12717
Article
PubMed
Google Scholar
Ruefenacht B, Finco MV, Nelson MD, Czaplewski R, Helmer EH, Blackard JA, Holden GR, Lister AJ, Salajanu D, Weyermann D, Winterberger K (2008) Conterminous U.S. and Alaska Forest type mapping using Forest inventory and analysis data. Photogramm Eng Rem S 74(11):1379–1388. https://doi.org/10.14358/PERS.74.11.1379
Article
Google Scholar
Schaetzl RJ, Krist FJ, Miller BA (2012) A taxonomically based ordinal estimate of soil productivity for landscape-scale analyses. Soil Sci 177(4):288–299. https://doi.org/10.1097/SS.0b013e3182446c88
Article
CAS
Google Scholar
Schaetzl RJ, Krist FJ, Stanley K, Hupy CM (2009) The natural soil drainage index: an ordinal estimate of long-term soil wetness. Phys Geogr 30(5):383–409. https://doi.org/10.2747/0272-3646.30.5.383
Article
Google Scholar
Shmida A, Wilson MV (1985) Biological determinants of species diversity. J Biogeogr 12:1–20. https://doi.org/10.2307/2845026
Article
Google Scholar
Smith WB (2002) Forest inventory and analysis: a national inventory and monitoring program. Environ Pollut 116:S233–S242. https://doi.org/10.1016/S0269-7491(01)00255-X
Article
CAS
PubMed
Google Scholar
Soil Survey Staff (2017a) The gridded soil survey geographic (gSSURGO) database. United States Department of Agriculture, Natural Resources Conservation Service. https://gdg.sc.egov.usda.gov/. Accessed 15 Mar 2017
Soil Survey Staff (2017b) Soil survey geographic (STATSGO2) database. United States Department of Agriculture, Natural Resources Conservation Service. https://sdmdataaccess.sc.egov.usda.gov. Accessed 15 Mar 2017
Sork VL, Davis FW, Westfall R, Flint A, Ikegami M, Wang HF, Grivet D (2010) Gene movement and genetic association with regional climate gradients in California valley oak (Quercus Lobata nee) in the face of climate change. Mol Ecol 19(17):3806–3823. https://doi.org/10.1111/j.1365-294X.2010.04726.x
Article
PubMed
Google Scholar
Thompson ID, Guariguata MR, Okabe K, Bahamondez C, Nasi R, Heymell V, Sabogal C (2013) An operational framework for defining and monitoring Forest degradation. Ecol Soc 18(2):art20. https://doi.org/10.5751/ES-05443-180220
Article
Google Scholar
Tichý L, Chytrý M, Botta-Dukát Z (2014) Semi-supervised classification of vegetation: preserving the good old units and searching for new ones. J Veg Sci 25(6):1504–1512. https://doi.org/10.1111/jvs.12193
Article
Google Scholar
Tierney GL, Faber-Langendoen D, Mitchell BR, Shriver WG, Gibbs JP (2009) Monitoring and evaluating the ecological integrity of forest ecosystems. Front Ecol Environ 7(6):308–316. https://doi.org/10.1890/070176.
USNVC (2016) USNVC [United States National Vegetation Classification] Database, v2.0. Federal Geographic Data Committee, Vegetation Subcommittee, Washington DC. http://www.usnvc.org. Accessed 10 Aug 2017
Venables WN, Ripley BD (2002) Modern applied statistics with S, fourth. Springer, New York
Book
Google Scholar
Wickham H (2017) Tidyverse: easily install and load “Tidyverse” packages. R package version 1.1.1. http://tidyverse.tidyverse.org. Accessed 1 Aug 2017
Zhu K, Woodall CW, Ghosh S, Gelfand AE, Clark JS (2014) Dual impacts of climate change: forest migration and turnover through life history. Glob Chang Biol 20(1):251–264. https://doi.org/10.1111/gcb.12382
Article
PubMed
Google Scholar