Allen, CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N,
Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EHTH, Gonzalez P, Fensham
R, Zhang Z, Castro J, Demidova N, Lim J-HH, Allard G, Running SW, Semerci A, Cobb
N (2010) A global overview of drought and heat-induced tree mortality reveals
emerging climate change risks for forests. For Ecol Manag 259(4):660–684. doi:10.1016/j.foreco.2009.09.001.
Google Scholar
Arlot, S, Celisse A (2010) A survey of cross-validation procedures
for model selection. Stat Surv 4:40–79. doi:10.1214/09-SS054.
Google Scholar
Agrawal, A, Nepstad D, Chhatre A (2011) Reducing emissions from
deforestation and forest degradation. Annu Rev Environ Resour 36:373–396. doi:10.1146/annurev-environ-042009-094508.
Google Scholar
Asner, GP, Mascaro J (2014) Mapping tropical forest carbon:
calibrating plot estimates to a simple LiDAR metric. Remote Sens Environ
140:614–624. doi:10.1016/j.rse.2013.09.023.
Google Scholar
Asner, GP, Martin RE, Knapp DE, Tupayachi R, Anderson CB, Sinca F,
Vaughn NR, Llactayo W (2017) Airborne laser-guided imaging spectroscopy to map
forest trait diversity and guide conservation. Science
355(6323):385–389.
CAS
PubMed
Google Scholar
Asner, GP, Martin RE, Tupayachi R, Anderson CB, Sinca F,
Carranza-Jiménez L, Martinez P (2014) Amazonian functional diversity from forest
canopy chemical assembly. Proc Natl Acad Sci USA 111(15). doi:10.1073/pnas.1401181111.
Asner, GP, Powell GVN, Mascaro J, Knapp DE, Clark JK, Jacobson J,
Kennedy-Bowdoin T, Balaji A, Paez-Acosta G, Victoria E, Secada L, Valqui M, Hughes
RF (2010) High-resolution forest carbon stocks and emissions in the Amazon. Proc
Natl Acad Sci 107(38):16738–42. doi:10.1073/pnas.1004875107.
CAS
PubMed
Google Scholar
Avitabile, V, Herold M, Heuvelink GBM, Lewis SL, Phillips OL, Asner
GP, Armston J, Asthon P, Banin LF, Bayol N, Berry NJ, Boeckx P, de Jong BHJ,
DeVries B, Girardin CAJ, Kearsley E, Lindsell JA, Lopez-Gonzalez G, Lucas R, Malhi
Y, Morel A, Mitchard ETA, Nagy L, Qie L, Quinones MJ, Ryan CM, Slik F, Sunderland
T, Vaglio Laurin G, Valentini R, Verbeeck H, Wijaya A, Willcock S, Ashton PS,
Banin LF, Bayol N, Berry NJ, Boeckx P, de Jong BHJ, DeVries B, Girardin CAJ,
Kearsley E, Lindsell JA, Lopez-Gonzalez G, Lucas R, Malhi Y, Morel A, Mitchard
ETA, Nagy L, Qie L, Quinones MJ, Ryan CM, Ferry SJW, Sunderland T, Laurin GV,
Gatti RC, Valentini R, Verbeeck H, Wijaya A, Willcock S (2016) An integrated
pan-tropical biomass map using multiple reference datasets. Glob Chang Biol
22(4):1406–1420. doi:10.1111/gcb.13139.
PubMed
Google Scholar
Baccini, A, Goetz SJ, Walker WS, Laporte NT, Sun M, Sulla-Menashe
D, Hackler J, Beck PSA, Dubayah R, Friedl Ma, Samanta S, Houghton RA (2012)
Estimated carbon dioxide emissions from tropical deforestation improved by
carbon-density maps. Nat Clim Chang 2(1):1–4. doi:10.1038/nclimate1354.
Google Scholar
Beets, PN, Kimberley MO, Oliver GR, Pearce SH, Graham JD, Brandon A
(2012) Allometric Equations for Estimating Carbon Stocks in Natural Forest in New
Zealand. Forests 3(4):818–839. doi:10.3390/f3030818.
Google Scholar
Bivand, R, Rundel C (2016) rgeos: Interface to Geometry Engine -
Open Source (GEOS). https://cran.r-project.org/package=rgeos. Accessed 1 Oct 2016.
Bivand, R, Keitt T, Rowlingson B (2016) rgdal: Bindings for the
Geospatial Data Abstraction Library. https://cran.r-project.org/package=rgdal. Accessed 1 Oct 2016.
Bradford, JB, Birdsey RA, Joyce LA, Ryan MG (2008) Tree age,
disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain
forests. Glob Chang Biol 14(12):2882–97. doi:10.1111/j.1365-2486.2008.01686.x.
Google Scholar
Bunting, P, Armston J, Clewley D, Lucas R, et al (2011) The Sorted Pulse Data Software Library (SPDLib): Open
source tools for processing LiDAR data In: Proceedings of SilviLaser 2011, 11th
International Conference on LiDAR Applications for Assessing Forest Ecosystems,
University of Tasmania, Australia, 16-20 October 2011. Conference Secretariat,
1–11.
Chen, Q, Baldocchi D, Gong P, Kelly M (2006) Isolating individual
trees in a savanna woodland using small footprint lidar data. Photogramm Eng
Remote Sens 72(8):923–932.
Google Scholar
Chen, Q, Vaglio Laurin G, Valentini R (2015) Uncertainty of
remotely sensed aboveground biomass over an African tropical forest: Propagating
errors from trees to plots to pixels. Remote Sens Environ 160:134–143. doi:10.1016/j.rse.2015.01.009.
Google Scholar
Coomes, DA, Allen RB, Bentley WA, Burrows LE, Canham CD, Fagan L,
Forsyth DM, Gaxiola-Alcantar A, Parfitt RL, Ruscoe WA, Wardle DA, Wilson DJ,
Wright EF (2005) The hare, the tortoise and the crocodile: the ecology of
angiosperm dominance, conifer persistence and fern filtering. J Ecol
93(5):918–935. doi:10.1111/j.1365-2745.2005.01012.x.
Google Scholar
Coomes, DA, Allen RBR, Scott NNA, Goulding C, Beets P (2002)
Designing systems to monitor carbon stocks in forests and shrublands. For Ecol
Manag 164(1-3):89–108. doi:http://dx.doi.org/16/S0378-1127(01)00592-8.
Coomes, DA, Dalponte M, Jucker T, Asner GP, Banin LF, Burslem DFRP,
Lewis SL, Nilus R, Phillips O, Phuag MH, Qiee L (2017) Area-based vs tree-centric
approaches to mapping forest carbon in Southeast Asian forests with airborne laser
scanning data. Remote Sens Environ.
Coomes, DA, Holdaway RRJ, Kobe RK, Lines ER, Allen RB (2012) A
general integrative framework for modelling woody biomass production and carbon
sequestration rates in forests. J Ecol 100(1):42–64. doi:10.1111/j.1365-2745.2011.01920.x.
CAS
Google Scholar
Dalponte, M, Coomes DA (2016) Tree-centric mapping of forest carbon
density from airborne laser scanning and hyperspectral data. Methods Ecol Evol. doi:10.1111/2041-210X.12575.
Duncanson, LI, Cook BD, Hurtt GC, Dubayah RO (2014) An efficient,
multi-layered crown delineation algorithm for mapping individual tree structure
across multiple ecosystems. Remote Sens Environ 154:378–386.
Google Scholar
Duncanson, LI, Dubayah RO, Cook BD, Rosette J, Parker G (2015) The
importance of spatial detail: Assessing the utility of individual crown
information and scaling approaches for lidar-based biomass density estimation.
Remote Sens Environ 168:102–112. doi:10.1016/j.rse.2015.06.021.
Google Scholar
Duncanson, L, Rourke O, Dubayah R (2015) Small sample sizes yield
biased allometric equations in temperate forests. Sci Rep 5:17153. doi:10.1038/srep17153.
CAS
PubMed
PubMed Central
Google Scholar
Elder, NL (1965) Vegetation of the Ruahine Range: an introduction.
Trans R Soc N Z (Botany) 3:13–66.
Google Scholar
Eysn, L, Hollaus M, Lindberg E, Berger F, Monnet JM, Dalponte M,
Kobal M, Pellegrini M, Lingua E, Mongus D, et
al (2015) A Benchmark of Lidar-Based Single Tree Detection Methods
Using Heterogeneous Forest Data from the Alpine Space. Forests
6(5):1721–1747.
Google Scholar
Ferraz, A, Saatchi S, Mallet C, Meyer V (2016) Lidar detection of
individual tree size in tropical forests. Remote Sens Environ 183:318–333. doi:10.1016/j.rse.2016.05.028.
Google Scholar
Ferry, B, Morneau F, Bontemps JD, Blanc L, Freycon V (2010) Higher
treefall rates on slopes and waterlogged soils result in lower stand biomass and
productivity in a tropical rain forest. J Ecol 98(1):106–116. doi:10.1111/j.1365-2745.2009.01604.x.
Google Scholar
Getzin, S, Fischer R, Knapp N, Huth A (2017) Using airborne LiDAR
to assess spatial heterogeneity in forest structure on Mount Kilimanjaro.
Landscape Ecol 32(9):1881–1894.
Google Scholar
Gibbs, HK, Brown S, Niles JO, Foley JA (2007) Monitoring and
estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett
2(4):045023. doi:10.1088/1748-9326/2/4/045023.
Google Scholar
Gobakken, T, Næsset E (2009) Assessing effects of positioning
errors and sample plot size on biophysical stand properties derived from airborne
laser scanner data. Can J For Res 39(5):1036–1052. doi:10.1139/X09-025.
Google Scholar
Harcombe, PA, Allen RB, Wardle JA, Platt KH (1998) Spatial and
Temporal Patterns in Stand Structure, Biomass, Growth, and Mortality in a
Monospecific Nothofagus solandri var. cliffortioides (Hook, f.) Poole Forest in New Zealand.
J Sustain For 6(3-4):313–345.
Google Scholar
Hijmans, RJ (2015) raster: Geographic Data Analysis and Modeling. https://cran.r-project.org/package=raster. Accessed 1 Oct 2016.
Holdaway, RJ, Easdale TA, Carswell FE, Richardson SJ, Peltzer DA,
Mason NWH, Brandon AM, Coomes DA (2016) Nationally Representative Plot Network
Reveals Contrasting Drivers of Net Biomass Change in Secondary and Old-Growth
Forests. Ecosystems:1–16. doi:10.1007/s10021-016-0084-x.
Holdaway, RJ, Easdale TA, Mason NWH, Carswell FE (2014) LUCAS
Natural Forest Carbon Analysis. Prepared for the Ministry for the Environment by
Landcare Research. Wellington Technical report. Landcare Research New
Zealand.
Holdaway, RJ, Mason NWH, Easdale T, Dymond J, Betts H, Wakelin SJ,
Moore JR (2014) Annual carbon emissions associated with natural disturbance in New
Zealand’s natural and planted forests. Technical report. New Zealand
Government.
Holdaway, RJ, McNeill SJ, Mason NWH, Carswell FE (2014) Propagating
uncertainty in plot-based estimates of forest carbon stock and carbon stock
change. Ecosystems 17(4):627–640.
CAS
Google Scholar
Houghton, RA, Byers B, Nassikas AA (2015) A role for tropical
forests in stabilizing atmospheric CO2. Nat Clim Chang 5(12):1022–1023. doi:10.1038/nclimate2869.
Google Scholar
Hyyppä, J, Kelle O, Lehikoinen M, Inkinen M (2001) A
segmentation-based method to retrieve stem volume estimates from 3-D tree height
models produced by laser scanners. Geosci Remote Sens IEEE Trans
39(5):969–975.
Google Scholar
Jones, PB (1972) A Comparison of the Precision of Traverses
Adjusted by Bowditch Rule and by Least Squares. Surv Rev
21(164):253–273.
Google Scholar
Jucker, T, Asner GP, Dalponte M, Brodrick P, Philipson CD, Vaughn
N, Brelsford C, Burslem DFRP, Deere NJ, Ewers RM, Kvasnica J, Lewis SL, Malhi Y,
Milne S, Nilus R, Pfeifer M, Phillips O, Qie L, Renneboog N, Reynolds G, Riutta T,
Struebig MJ, Svátek M, Teh YA, Turner EC, Coomes DA (2017) A regional model for
estimating the aboveground carbon density of Borneo’s tropical forests from
airborne laser scanning.
Jubanski, J, Ballhorn U, Kronseder K, Franke J, Siegert F (2013)
Detection of large above-ground biomass variability in lowland forest ecosystems
by airborne LiDAR. Biogeosciences 10(6):3917–3930. doi:10.5194/bg-10-3917-2013.
Google Scholar
Jucker, T, Caspersen J, Chave J, Antin C, Barbier N, Bongers F,
Dalponte M, van Ewijk KY, Forrester DI, Haeni M, Higgins SI, Holdaway RJ, Iida Y,
Lorimer C, Marshall PL, Momo S, Moncrieff GR, Ploton P, Poorter L, Rahman KA,
Schlund M, Sonké B, Sterck FJ, Trugman AT, Usoltsev VA, Vanderwel MC, Waldner P,
Wedeux BMM, Wirth C, Wöll H, Woods M, Xiang W, Zimmermann NE, Coomes DA (2016)
Allometric equations for integrating remote sensing imagery into forest monitoring
programmes. Glob Chang Biol. doi:10.1111/gcb.13388.
Korner, C, Körner C (2003) Slow in, Rapid out–Carbon Flux Studies
and Kyoto Targets. Science 300(5623):1242–1243. doi:10.1126/science.1084460.
CAS
PubMed
Google Scholar
Lefsky, M, Cohen W, Acker S, Parker G (1999) Lidar remote sensing
of the canopy structure and biophysical properties of Douglas-fir western hemlock
forests. Remote Sens 70(3):339–361.
Google Scholar
Longo, M, Keller MM, Dos-Santos MN, Leitold V, Pinagé ER, Baccini
A, Saatchi S, Nogueira EM, Batistella M, Morton DC (2016) Aboveground biomass
variability across intact and degraded forests in the Brazilian Amazon. Glob
Biogeochem Cycles:10–10022016005465. doi:10.1002/2016GB005465.
Mason, NWH, Carswell FE, Overton JM, Briggs CM, Hall GMJ (2012)
Estimation of current and potential carbon stocks and Kyoto-compliant carbon gain
on conservation land. Sci Conserv Rep 317:39.
Google Scholar
Morsdorf, F, Meier E, Kötz B, Itten KI, Dobbertin M, Allgöwer B
(2004) LIDAR-based geometric reconstruction of boreal type forest stands at single
tree level for forest and wildland fire management. Remote Sens Environ
92(3):353–362.
Google Scholar
Müller, MU, Shepherd JD, Dymond JR (2015) Support vector machine
classification of woody patches in New Zealand from synthetic aperture radar and
optical data, with LiDAR training. J Appl Remote Sens 9(1):95984. doi:10.1117/1.JRS.9.095984.
Google Scholar
Nelson, R, Krabill W, Tonelli J (1988) Estimating forest biomass
and volume using airborne laser data. Remote Sens Environ 24(2):247–267. doi:10.1016/0034-4257(88)90028-4.
Google Scholar
Pan, Y, Birdsey RA, Fang J, Houghton RA, Kauppi PE, Kurz WA,
Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW,
McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D, Canadell JG, Khatiwala S,
Primeau F, Hall T, Quéré CL, Dixon RK, Kauppi PE, Kurz WA, Stinson G, Rampley GJ,
Dymond CC, Neilson ET, Stinson G, Birdsey RA, Pregitzer K, Lucier A, Kauppi PE,
Pan Y, Pan Y, Birdsey RA, Hom J, McCullough K, Mantgem PJv, Breshears DD, Ciais P,
Fang J, Chen A, Peng C, Zhao S, Ci L, Lewis SL, Phillips OL, Gloor M, Lewis SL,
Lloyd J, Sitch S, Mitchard ETA, Laurance WF, Houghton RA, Friedlingstein P,
Tarnocai C, Hooijer A, Page SE, Rieley JO, Banks CJ, McGuire AD, Goodale CL,
Sarmiento JL, Schulze ED, Pacala SW, Phillips OL, Metsaranta JM, Kurz WA, Neilson
ET, Stinson G, Zhao M, Running SW, Houghton RA (2011) A Large and Persistent
Carbon Sink in the World’s Forests. Science 333(6045):988–993. doi:10.1126/science.1201609.
CAS
PubMed
Google Scholar
Pan, Y, Birdsey RA, Phillips OL, Jackson RB (2013) The structure,
distribution, and biomass of the world’s forests. Ann Rev Ecol Evol Syst
44(1):593–622. doi:10.1146/annurev-ecolsys-110512-135914.
Google Scholar
Payton, IJ, Newell CL, Beets PN (2004) New Zealand Carbon
Monitoring System. Indigenous forest and shrubland data collection manual. Manaaki
Whenua Landcare Research, Lincoln.
Google Scholar
Platt, I, Griffiths A, Wootton M (2014) Assessment of Cyclone Ita
Wind-blow Damage to West Coast Indigenous Forests. Technical report. Ministry for
Primary Industries, Wellington, New Zealand. http://www.mpi.govt.nz/news-resources/publications.aspx. Accessed Oct 2016.
Popescu, SC, Zhao K, Neuenschwander A, Lin C (2011) Satellite lidar
vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass
estimates and forest structure metrics at footprint level. Remote Sens
Environ:1–12. doi:10.1016/j.rse.2011.01.026.
Reitberger, J, Schnörr C, Krzystek P, Stilla U (2009) 3D
segmentation of single trees exploiting full waveform LIDAR data. ISPRS J
Photogramm Remote Sens 64(6):561–574.
Google Scholar
Réjou-Méchain, M, Tymen B, Blanc L, Fauset S, Feldpausch TR,
Monteagudo A, Phillips OL, Richard H, Chave J (2015) Using repeated
small-footprint LiDAR acquisitions to infer spatial and temporal variations of a
high-biomass Neotropical forest. Remote Sens Environ 169:93–101. doi:10.1016/j.rse.2015.08.001.
Google Scholar
Seidl, R, Schelhaas MJ, Lexer MJ (2011) Unraveling the drivers of
intensifying forest disturbance regimes in Europe. Glob Chang Biol
17(9):2842–2852. doi:10.1111/j.1365-2486.2011.02452.x.
Google Scholar
Singh, M, Evans D, Coomes DA, Friess DA, Suy Tan B, Samean Nin C
(2016) Incorporating Canopy Cover for Airborne-Derived Assessments of Forest
Biomass in the Tropical Forests of Cambodia. PLoS One 11(5):0154307. doi:10.1371/journal.pone.0154307.
Google Scholar
Shugart, HH, Asner GP, Fischer R, Huth A, Knapp N, Le Toan T,
Shuman JK (2015) Computer and remote-sensing infrastructure to enhance large-scale
testing of individual-based forest models. Front Ecol Environ 13(9):503–511. doi:10.1890/140327.
Google Scholar
Spriggs, R (2015) Robust methods for estimating forest stand
characteristics across landscapes using airborne LiDAR. PhD thesis. University of
Cambridge.
Vauhkonen, J, Ene L, Gupta S, Heinzel J, Holmgren J, Pitkanen J,
Solberg S, Wang Y, Weinacker H, Hauglin KM, Lien V, Packalen P, Gobakken T, Koch
B, Naesset E, Tokola T, Maltamo M (2012) Comparative testing of single-tree
detection algorithms under different types of forest. Forestry 85(1):27–40. doi:10.1093/forestry/cpr051.
Google Scholar
Vincent, G, Sabatier D, Blanc L, Chave J, Weissenbacher E,
Pélissier R, Fonty E, Molino JF, Couteron P (2012) Accuracy of small footprint
airborne LiDAR in its predictions of tropical moist forest stand structure. Remote
Sens Environ 125(null):23–33. doi:10.1016/j.rse.2012.06.019.
Google Scholar
Wardle, P (2002) Vegetation of New Zealand. Blackburn
Press.
Wiser, SK, Hurst JM, Wright EF, Allen RB (2011) New Zealand’s
forest and shrubland communities: a quantitative classification based on a
nationally representative plot network. Appl Veg Sci 14(4):506–523. doi:10.1111/j.1654-109X.2011.01146.x.
Google Scholar
Wulder, MA, White JC, Nelson RF, Næsset E, Ørka HO, Coops NC,
Hilker T, Bater CW, Gobakken T (2012) Lidar sampling for large-area forest
characterization: A review. Remote Sens Environ 121:196–209. doi:10.1016/j.rse.2012.02.001.
Google Scholar
Yu, X, Hyyppä J, Vastaranta M, Holopainen M, Viitala R (2011)
Predicting individual tree attributes from airborne laser point clouds based on
the random forests technique. ISPRS J Photogramm Remote Sens
66(1):28–37.
Google Scholar
Zeide, B (2005) How to measure stand density. Trees-Structure Funct
19(1):1–14.
Google Scholar
Zotov, VD, Elder NL, Beddie AD, Sainsbury GOK, Hodgson EA (1938) An
outline of the vegetation and flora of the Tararua mountains
68:239–324.
Zolkos, SG, Goetz SJ, Dubayah R (2013) A meta-analysis of
terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens
Environ 128:289–298. doi:10.1016/j.rse.2012.10.017.
Google Scholar