Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. doi:10.18637/jss.v067.i01
Article
Google Scholar
Becker M, Bert GD, Bouchon J, Dupouey JL, Picard JF, Ulrich E (1995) Long term changes in forest productivity: the dendrochronological approach. In: Landmann G, Bonneau M (eds) Forest decline and atmospheric deposition effects in the French mountains. Springer, Berlin, Heidelberg
Google Scholar
Bender BJ, Mann M, Backofen R, Spiecker H (2012) Microstructure alignment of wood density profiles: an approach to equalize radial differences in growth rate. Trees 26(4):1267–1274. doi:10.1007/s00468-012-0702-y
Article
Google Scholar
Bergès L, Nepveu G, Franc A (2008) Effects of ecological factors on radial growth and wood density components of sessile oak (Quercus petraea Liebl.) in Northern France. For Ecol Manage 255(3–4):567–579. doi:10.1016/j.foreco.2007.09.027
Article
Google Scholar
Boden S, Schinker MG, Duncker P, Spiecker H (2012) Resolution abilities and measuring depth of high-frequency densitometry on wood samples. Measurement 45(7):1913–1921. doi:10.1016/j.measurement.2012.03.013
Article
Google Scholar
Boncina A, Kadunc A, Robic D (2007) Effects of selective thinning on growth and development of beech (Fagus sylvatica L.) forest stands in south-eastern Slovenia. Ann For Sci 64(1):47–57. doi:10.1051/forest:2006087
Article
Google Scholar
Bontemps J, Gelhaye P, Nepveu G, Hervé J (2013) When tree rings behave like foam: moderate historical decrease in the mean ring density of common beech paralleling a strong historical growth increase. Ann For Sci 70(4):329–343. doi:10.1007/s13595-013-0263-2
Article
Google Scholar
Bouriaud O, Bréda N, Le Moguédec G, Nepveu G (2004) Modelling variability of wood density in beech as affected by ring age, radial growth and climate. Trees 18(3):264–276. doi:10.1007/s00468-003-0303-x
Article
Google Scholar
Bouriaud O, Leban J, Bert D, Deleuze C (2005) Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol 25:651–660
Article
CAS
PubMed
Google Scholar
Crawley MJ (2007) The R book. Wiley, England
Book
Google Scholar
Cregg BM, Dougherty PM, Hennessey TC (1988) Growth and wood quality of young loblolly pine trees in relation to stand density and climatic factors. f. Can J For Res 18(7):851–858. doi:10.1139/x88-131
Article
Google Scholar
DeBell DS, Singleton R, Harrington CA, Gartner BL (2002) Wood density and fiber length in young Populus stems: relation to clone, age, growth rate, and pruning. Wood Fiber Sci 34:529–539
CAS
Google Scholar
Diaconu D, Kahle H, Spiecker H (2015) Tree- and stand-level thinning effects on growth of european beech (Fagus sylvatica L.) on a Northeast- and a Southwest-facing slope in Southwest Germany. Forests 6(9):3256–3277. doi:10.3390/f6093256
Article
Google Scholar
Dormann CF (2013) Parametrische Statistik: Verteilungen, Maximum Likelihood und GLM in R. Springer, Berlin
Book
Google Scholar
Eilmann B, Sterck F, Wegner L, de Vries SMG, von Arx G, Mohren GMJ, den Ouden J, Sass-Klaassen U (2014) Wood structural differences between northern and southern beech provenances growing at a moderate site. Tree Physiol 34(8):882–893. doi:10.1093/treephys/tpu069
Article
CAS
PubMed
Google Scholar
Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht: 170 Tabellen, 5., stark veränd. und verb. Aufl. UTB, vol 8104. Ulmer, Stuttgart
Fan Z, Bräuning A, Yang B, Cao K (2009) Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China. Glob Planet Chang 65(1–2):1–11. doi:10.1016/j.gloplacha.2008.10.001
Article
Google Scholar
Filipescu CN, Lowell EC, Koppenaal R, Mitchell AK (2014) Modeling regional and climatic variation of wood density and ring width in intensively managed Douglas-fir. Can J For Res 44(3):220–229. doi:10.1139/cjfr-2013-0275
Article
Google Scholar
Franceschini T, Bontemps J, Gelhaye P, Rittie D, Herve J, Gegout J, Leban J (2010) Decreasing trend and fluctuations in the mean ring density of Norway spruce through the twentieth century. Ann For Sci 67(8):816. doi:10.1051/forest/2010055
Article
Google Scholar
Geßler A, Schrempp S, Matzarakis A, Mayer H, Rennenberg H, Adams MA (2001) Radiation modifies the effect of water availability on the carbon isotope composition of beech (Fagus sylvatica). New Phytol 150:653–664
Article
Google Scholar
Geßler A, Jung K, Gasche R, Papen H, Heidenfelder A, Börner E, Metzler B, Augustin S, Hildebrand E, Rennenberg H (2005) Climate and forest management influence nitrogen balance of European beech forests: microbial N transformations and inorganic N net uptake capacity of mycorrhizal roots. Eur J Forest Res 124(2):95–111. doi:10.1007/s10342-005-0055-9
Article
Google Scholar
Guilley E, Herve J, Huber F, Nepveu G (1999) Modelling variability of within-ring density components in Quercus petraea Liebl. with mixed-effect models and simulating the influence of contrasting silvicultures on wood density. Ann For Sci 56:449–458
Article
Google Scholar
Guilley E, Hervé J, Nepveu G (2004) The influence of site quality, silviculture and region on wood density mixed model in Quercus petraea Liebl. For Ecol Manage 189(1–3):111–121. doi:10.1016/j.foreco.2003.07.033
Article
Google Scholar
Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126(4):457–461. doi:10.1007/s004420100628
Article
Google Scholar
Hackenberg J, Wassenberg M, Spiecker H, Sun D (2015) Non destructive method for biomass prediction combining TLS derived tree volume and wood density. Forests 6(4):1274–1300. doi:10.3390/f6041274
Article
Google Scholar
Hauser S (2003). Dynamik hochaufgelöster radialer Schaftveränderungen und des Dickenwachstums bei Buchen (FAgus sylvatica L.) der Schwäbischen Alb unter dem Einfluss von Witterung und Bewirtschaftung. Dissertation, Albert-Ludwigs Universität Freiburg
Hildebrand E, Augustin S, Schack-Kirchner H (1998) Bodenkundliche Charakterisierung der Kernflächen. In: Rennenberg H (ed) Buchendominierte Laubwälder unter dem Einfluß von Klima und Bewirtschaftung: Ökologische, waldbauliche und sozialwissenschaftliche Analysen - Vorcharakterisierung der Untersuchungsflächen. Eigenverlag der Universität Freiburg, Freiburg, pp 7–12
Google Scholar
Jozsa LA, Brix H (1989) The effects of fertilization and thinning on wood quality of a 24-year-old Douglas-fir stand. Can J For Res 19(9):1137–1145. doi:10.1139/x89-172
Article
Google Scholar
Kahle HP, Karjalainen T, Schuck A, Å GI, Kellomäki S, Mellert K, Prietzel J, Rehfuess KE, Spiecker H (2008) Causes and consequences of forest growth trends in Europe: Results of the Recognition project. In: European Forest Institute Research Report, vol 21. Brill, Leiden
Google Scholar
Kuznetsova A, Brunn Brockhoff P, Haubo Bojesen Christensen R (2014). lmerTest: Tests in Linear Mixed Effects Models. r package version 2.0-29. https://cran.r-project.org/web/packages/lmerTest/index.html. Accessed 22 May 2015
Le Goff N, Ottorini J (1993) Thinning and climate effects on growth of beech (Fagus sylvatica L.) in experimental stands. For Ecol Manage 62:1–14
Article
Google Scholar
Le Goff N, Ottorini J (1999) Effects of thinning on beech growth. Interaction with climatic factors. Rev For Fr 51:355–364
Google Scholar
Mäkinen H, Jaakkola T, Piispanen R, Saranpää P (2007) Predicting wood and tracheid properties of Norway spruce. For Ecol Manage 241(1–3):175–188. doi:10.1016/j.foreco.2007.01.017
Article
Google Scholar
Mayer H, Holst T, Schindler D (2002) Microclimate within beech stands - part I: photosynthetically active radiation. Forstwiss Cent 121(6):301–321. doi:10.1046/j.1439-0337.2002.02038.x
Article
Google Scholar
Montwé D, Spiecker H, Hamann A (2014) An experimentally controlled extreme drought in a Norway spruce forest reveals fast hydraulic response and subsequent recovery of growth rates. Trees 28(3):891–900. doi:10.1007/s00468-014-1002-5
Article
Google Scholar
Niklas KJ, Spatz H (2010) Worldwide correlations of mechanical properties and green wood density. Am J Bot 97(10):1587–1594. doi:10.3732/ajb.1000150
Article
PubMed
Google Scholar
Piispanen R, Heinonen J, Valkonen S, Mäkinen H, Lundqvist S, Saranpää P (2014) Wood density of Norway spruce in uneven-aged stands 1. Can J For Res 44(2):136–144. doi:10.1139/cjfr-2013-0201
Article
Google Scholar
Pinheiro JC, Bates DM (2000) Mixed-Effects Models in S and S-PLUS. Statistics and computing, Springer, New York
Book
Google Scholar
Preston KA, Cornwell WK, Denoyer JL (2006) Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytol 170(4):807–818. doi:10.1111/j.1469-8137.2006.01712.x
Article
PubMed
Google Scholar
R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Available online at http://www.R-project.org/
Google Scholar
Rennenberg H (1998) Buchendominierte Laubwälder unter dem Einfluß von Klima und Bewirtschaftung: Ökologische, waldbauliche und sozialwissenschaftliche Analysen - Vorcharakterisierung der Untersuchungsflächen. Eigenverlag der Universität Freiburg, Freiburg
Google Scholar
Sass U, Eckstein D (1995) The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation. Trees 9:247–252
Article
Google Scholar
Schinker MG, Hansen N, Spiecker H (2003) High-frequency densitometry - a new method for the rapid evaluation of wood density variations. IAWA J 24(3):231–239
Article
Google Scholar
Shchupakivskyy R, Clauder L, Linke N, Pfriem A (2014) Application of high-frequency densitometry to detect changes in early- and latewood density of oak (Quercus robur L.) due to thermal modification. Eur J Wood Wood Prod 72(1):5–10. doi:10.1007/s00107-013-0744-x
Article
Google Scholar
Shmulsky R, Jones PD (2011) Hardwood Structure. In: Forest Products and Wood Science An Introduction, Sixthth edn. Wiley-Blackwell, Oxford. doi:10.1002/9780470960035.ch5
Chapter
Google Scholar
Skomarkova MV, Vaganov EA, Mund M, Knohl A, Linke P, Boerner A, Schulze E (2006) Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees 20(5):571–586. doi:10.1007/s00468-006-0072-4
Article
Google Scholar
Spiecker H (2002) Tree rings and forest management in Europe. Dendrochronologia 20(1–2):191–202. doi:10.1078/1125-7865-00016
Article
Google Scholar
Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (1996) Growth Trends in European Forests: Studies from 12 Countries. Springer, Berlin, Heidelberg
Book
Google Scholar
Spiecker H, Ebding T, Park Y, Hansen J, Schinker MG, Döll W (2000) Cell structure in tree rings: novel methods for preparation and image analysis of large cross sections. IAWA J 21(3):361–373. doi:10.1163/22941932-90000253
Article
Google Scholar
Spiecker H, Kahle H, Hauser S (2001) Klima und Witterung als Einflußfaktoren für das Baumwachstum in Laubwäldern: retrospektiven Analysen und Monitoring. In: Rennenberg, H. (ed) Buchendominierte Laubwälder unter dem Einfluß von Klima und Bewirtschaftung: Ökologische, waldbauliche und sozialwissenschaftliche Analysen - Vorcharakterisierung der Untersuchungsflächen; Abschlußbericht des SFB 443. Eigenverlag der Universität Freiburg, Freiburg, pp 307–333.
Google Scholar
Torgovnikov GI (1993) Dielectric Properties of Wood and Wood-Based Materials. Springer, Berlin, Heidelberg
Book
Google Scholar
van der Maaten E (2012) Intra- and interannual growth responses of European beech (Fagus sylvativa L.) to climate, aspect and thinning in the Swabian Alb - southwestern Germany. Dissertation, Albert-Ludwigs-Universität Freiburg
von Arx G, Kueffer C, Fonti P (2013) Quantifying plasticity in vessel grouping – added value from the image analysis tool ROXAS. IAWA J 34(4):433–445. doi:10.1163/22941932-00000035
Article
Google Scholar
Walsh C, Mac Nally R (2013) hier.part: Hierarchical Partitioning: Variance partition of a multivariate data set. https://cran.r-project.org/web/packages/hier.part/hier.part.pdf. Accessed 21 May 2015
Wassenberg M, Montwé D, Kahle H, Spiecker H (2014) Exploring high frequency densitometry calibration functions for different tree species. Dendrochronologia 32(3):273–281. doi:10.1016/j.dendro.2014.07.001
Article
Google Scholar
Wassenberg M, Chiu H, Guo W, Spiecker H (2015a) Analysis of wood density profiles of tree stems: incorporating vertical variations to optimize wood sampling strategies for density and biomass estimations. Trees 29(2):551–561. doi:10.1007/s00468-014-1134-7
Article
CAS
Google Scholar
Wassenberg M, Schinker M, Spiecker H (2015b) Technical aspects of applying high frequency densitometry: Probe-sample contact, sample surface preparation and integration width of different dielectric probes. Dendrochronologia 34:10–18. doi:10.1016/j.dendro.2015.03.001
Article
Google Scholar
Wickham H (2007) Reshaping data with the reshape package. J Stat Softw 21:1–20
Article
Google Scholar
Wickham H (2009) Ggplot2: Elegant graphics for data analysis. In: Gentleman R, Hornik K, Parmigiani G (eds) Use R! Springer, New York. doi:10.1007/978-0-387-98141-3
Google Scholar
Wickham H (2011) The split-apply-combine sttrategy for data analysis. J Stat Softw 40:1–29
Google Scholar
Z’Graggen S (1992) Dendrohistometrisch-klimatologische Untersuchung an Buchen (Fagus silvatica L.). Dissertation, University of Basel
Zhang SY (1995) Effect of growth rate on wood specific gravity and selected mechanical properties in individual species from distinct wood categories. Wood Sci Technol 29:451–465
Article
CAS
Google Scholar