Alberti G, Marelli A, Piovesana D, Peressotti A, Zerbi G, Gottardo E, Bidese F (2006) Carbon stocks and productivity in forest plantations (Kyoto forests) in Friuli Venezia Giulia (Italy). Forest@ 3:488–495
Article
Google Scholar
Alberti G, Boscutti F, Pirotti F, Bertacco C, De Simon G, Sigura M, Cazorzi F, Bonfanti P (2012) A LiDAR-based approach for a multi-purpose characterization of Alpine forests: an Italian case study.” iForest – Biogeosciences and Forestry 6: 156–168. http://www.sisef.it/iforest/contents/?id=ifor0876-006doi:10.3832/ifor0876-006
Almeida P, Altobelli A, D'Aietti L, Feoli E, Ganis P, Giordano F, Napolitano R, Simonetti C (2014) The role of vegetation analysis by remote sensing and GIS technology for planning sustainable development: A case study for the Santos estuary drainage basin (Brazil). Plant Biosyst 148:540–546
Article
Google Scholar
Andersen H-E, McGaughey RJ, Reutebuch SE (2005) Estimating forest canopy fuel parameters using LIDAR data. Remote Sens Environ 94:441–449
Article
Google Scholar
Axelsson P (1999) Processing of laser scanner data – algorithms and applications. ISPRS J Photogramm Remote Sens 54:138–147
Article
Google Scholar
Barilotti A, Sepic F, Abramo E, Crosilla F (2007) Improving the morphological analysis for tree extraction: a dynamic approach to lidar data. In: Proceedings of the ISPRS Workshop on ‘Laser Scanning 2007 and SilviLaser 2007’ Espoo, Finland, 12–14 September 2007. Volume XXXVI, part 3/W52. Published by ISPRS Working Groups, ASPRS Lidar Committee, Finnish Geodetic Institute Institute of Photogrammetry and Remote Sensing, Helsinki University of Technology (TKK).
Barrett DJ, Galbally IE, Graetz RD (2001) Quantifying uncertainty in estimates of C emissions from above-ground biomass due to historic land-use change to cropping in Australia. Glob Change Biol 7:883–902
Article
Google Scholar
Bortolot ZJ, Wynne RH (2005) Estimating forest biomass using footprint LiDAR data: An individual tree-based approach that incorporates training data. J Phot & Remote Sens 59:342–360
Article
Google Scholar
Brack CL, Richards G, Waterworth R (2006) Integrated and comprehensive estimation of greenhouse gas emissions from land systems. Sustain Sci 1:91–106
Article
Google Scholar
Brassard BW, Chen HYH, Bergeron Y (2009) Influence of environmental variability on root dynamics in northern forests. Cr Rev Plant Sci 28:179–197
Article
Google Scholar
Campbell JB (1996) Introduction to Remote Sensing (2nd Ed). Taylor and Francis, London
Google Scholar
Chen Q, Gong P, Baldocchi D, Tian YQ (2007) Estimating basal area and stem volume for individual trees from lidar data. Photogramm Eng Remote Sensing 73:1355–1365
Article
Google Scholar
Clark ML, Clark DB, Roberts DA (2004) Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sens Environment 91:68–89
Article
Google Scholar
Combal B, Baret F, Weiss M, Trubuil A, Mace D, Pragnere A, Myneni R, Knyazikhin Y, Wang L (2003) Retrieval of canopy biophysical variables from bidirectional reflectance — Using prior information to solve the ill-posed inverse problem. Remote Sens Environ 84:1–15
Article
Google Scholar
Coops NC, Thomas H, Wulder MA, St-Onge B, Newnham G, Siggins A, Trofymow JAT (2007) Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR. Trees 21:295–310
Article
Google Scholar
Duggin MJ, Robinove CJ (1990) Assumptions implicit in remote-sensing data acquisition and analysis. Int J Remote Sens 11:1669–1694
Article
Google Scholar
Estornell J, Ruiz LA, Velázquez-Martí HT (2011) Analysis of the factors affecting LiDAR DTM accuracy in a steep shrub area. Int J Digital Earth 4:521–538
Article
Google Scholar
Franceschini T, Schneider R (2014) Influence of shade tolerance and development stage on the allometry of ten temperate tree species. Oecologia 176:739–749
Article
PubMed
Google Scholar
Gasparini P, Nocetti M, Tabacchi G, Tosi V (1998) Biomass equations and data for forest stands and shrublands of the Eastern Alps. Forest and Range Management Research Institute. I.S.A.F.A. - C.R.A.-, Villazzano, Trento, Italy
Google Scholar
Glenn EP, Huete AR, Nagler PL, Nelson SG (2008) Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape. Sensors 8:2136–2160
Article
PubMed Central
Google Scholar
Hall SA, Burke IC, Box DO, Kaufmann MR, Stoker JM (2005) Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests. For Ecol Manage 208:189–209
Article
Google Scholar
Hamburg SP, Zamolodchikov DG, Korovin GN, Nefedjev V, Utkin AI, Gulbe T (1997) Estimating the carbon content of Russian forests; a comparison of phytomass/volume and allometric projections. Mitig adapt strategies glob chang 2:247–265
Article
Google Scholar
Hansen AJ, Phillips LB, Dubayah R, Goetz S, Hofton M (2014) Regional-scale application of lidar: Variation in forest canopy structure across the southeastern US. Forest Ecol Manag 329:214–226
Article
Google Scholar
Harding DJ, Lefsky MA, Parker GG, Blair JB (2001) Laser altimeter canopy height profiles — Methods and validation for closed-canopy, broadleaf forests. Remote Sens Environ 76:283–297
Article
Google Scholar
Holmgren J, Persson Å (2004) Identifying species of individual trees using airborne laser scanner. Remote Sens Environ 90:415–423
Article
Google Scholar
Hyyppä J, Kelle O, Lehikoinen M, Inkinen M (2001) A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE T Geosci Remote 39:969–975
Article
Google Scholar
Jensen JR (2006) Remote sensing of the environment: an earth resource perspective, 2nd edn. Prentice Hall, New Jersey
Google Scholar
Kim Y, Yang Z, Cohen WB, Pflugmacher D, Lauver CL, Vankat JL (2009) Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA using small-footprint lidar data. Remote Sens Environ 113:2499–2510
Article
Google Scholar
Kimes DS, Ranson KJ, Sun G, Blair JB (2006) Predicting lidar measured forest vertical structure from multi-angle spectral data. Remote Sens Environ 100:503–511
Article
Google Scholar
Korpela I, Hovi A (2013) Korhonen L (2013) Backscattering of individual LiDAR pulses from forest canopies explained by photogrammetrically derived vegetation structure. Isprs J Photogramm 83:81–93
Article
Google Scholar
Kötz B, Schaepman M, Morsdorf F, Bowyer P, Itten K, Allgöwerd B (2004) Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties. Remote Sens Environ 92:332–344
Article
Google Scholar
Kouadio L, Newlands NK, Davidson A, Zhang Y, Chipanshi A (2014) Assessing the performance of MODIS NDVI and EVI for seasonal crop yield forecasting at the ecodistrict scale. Remote Sens 6:10193–10214
Article
Google Scholar
Lefsky MA (2010) A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system. Geophys Res Lett 37:L15401, http://dx.doi.org/10.1029/2010GL043622
Article
Google Scholar
Lefsky MA, Harding D, Cohen WB, Parker G, Shugart HH (1999) Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern maryland, USA. Remote Sens Environ 67:83–98
Article
Google Scholar
Lefsky MA, Cohen WB, PARKER GG, Harding DJ (2002) Lidar Remote Sensing for Ecosystem Studies. Bioscience 52:19–30
Article
Google Scholar
Lefsky M, Harding D, Keller M, Cohen W, Carabajal C, Espirito-Santo F, Hunter M, de Oliveira R (2005). Estimates of forest canopy height and aboveground biomass using ICESat. Geophys Res Lett 32:L22S02. http://dx.doi.org/10.1029/2005GL023971
Leonardi S, Santa Regina I, Rapp M, Gallego HA, Rico M (1996) Biomass, litterfall and nutrient content in Castanea sativa coppice stands of southern Europe. Ann For Sci 53:1071–1081
Article
Google Scholar
Lim K, Treitz P, Wulder M, St-Onge B, Flood M (2003) Lidar remote sensing of forest structure. Prog Phys Geog 27:88–106
Article
Google Scholar
Lindberg E, Olofsson K, Holmgren J, Olsson H (2012) Estimation of 3D vegetation structure from waveform and discrete return airborne laser scanning data. Remote Sens Environ 118:151–161
Article
Google Scholar
Lucas R, Lee A, Armston J, Breyer J, Bunting P, Carreiras J (2008) Advances in forest characterisation, mapping and monitoring through integration of LiDAR and other remote sensing datasets. SilviLaser, Edinburgh, UK
Google Scholar
Magnussen S, Boudewyn P (1998) Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators. Can J For Res 28:1016–1031
Article
Google Scholar
Means JE, Acker SA, Harding DJ, Blair JB, Lefsky MA, Cohen WB, Harmon ME, McKee WA (1999) Use of large-footprint scanning airborne lidar to estimate forest stand characteristics in the western cascades of Oregon. Remote Sens Environ 67:298–308
Article
Google Scholar
Means JE, Acker SA, Brandon JF, Renslow M, Emerson L, Hendrix CJ (2000) Predicting forest stand characteristics with airborne scanning lidar. Photogramm Eng Remote Sens 66:1367–1371
Google Scholar
Montagnoli A, Terzaghi M, Di Iorio A, Scippa GS, Chiatante D (2012a) Fine-root morphological and growth traits in a Turkey-oak stand in relation to seasonal changes in soil moisture in the southern Apennines, Italy. Ecol Res 27:725–733
Article
Google Scholar
Montagnoli A, Terzaghi M, Di Iorio A, Scippa GS, Chiatante D (2012b) Fine-root seasonal pattern, production and turnover rate of European beech (Fagus sylvatica L.) stands in Italy Prealps: Possible implications of coppice conversion to high forest. Plant Biosyst 146:1012–1022
Article
Google Scholar
Montagnoli A, Di Iorio A, Terzaghi M, Trupiano D, Scippa GS, Chiatante D (2014) Influence of soil temperature and water content on fine-root seasonal growth of European beech natural forest in Southern Alps, Italy. Eur J Forest Res, doi:10.1007/s10342-014-0814-6
Morsdorf F, Meier E, Kötz B, Itten KI, Dobbertin M, Allgöwer B (2004) LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wild land fire management. Remote Sens Environ 92:353–362
Article
Google Scholar
Næsset E (1997) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens Environ 61:246–253
Article
Google Scholar
Næsset E, Bjerknes KO (2001) Estimating tree heights and number of stems in young forest stands using airborne laser scanner. Remote Sens Environ 78:328–340
Article
Google Scholar
Næsset E, Gobakken T (2005) Estimating forest growth using canopy metrics derived from airborne laser scanner data. Remote Sens Environ 96:453–465
Article
Google Scholar
Næsset E, Økland T (2002) Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sens Environ 79:105–115
Article
Google Scholar
Nilsson M (1994) Estimation of tree heights and stand volume using airborne lidar system. In: Report 57, Dept of Forest Survey. Swedish Univ of Agric Sciences, Umeå, p 59
Google Scholar
Nilsson M (1996) Estimation of tree heights and stand volume using an airborne lidar system. Remote Sens Environ 56:1–7
Article
Google Scholar
Ota T, Ahmed OS, Franklin SE, Wulder MA, Kajisa T, Mizoue N, Yoshida S, Takao G, Hirata Y, Furuya N, Sano T, Heng S, Vuthy M (2014) Estimation of airborne lidar-derived tropical forest canopy height using landsat time series in Cambodia. Remote Sens 6:10751–10772
Article
Google Scholar
Palombo C, Marchetti M, Tognetti R (2014) Mountain vegetation at risk: Current perspectives and research reeds. Plant Biosys 148:35–41
Article
Google Scholar
Patenaude G, Hill R, Milne R, Gaveau D, Briggs B, Dawson T (2004) Quantifying forest above ground carbon content using lidar remote sensing. Remote Sens Environ 93:368–380
Article
Google Scholar
Pettorelli N, Safi K, Turner W (2014) Satellite remote sensing, biodiversity research and conservation of the future. Philos Trans R Soc Lond B Biol Sci 369:20130190, doi:10.1098/rstb.2013.0190
Article
PubMed Central
PubMed
Google Scholar
Pflugmacher D, Cohen WB, Kennedy RE, Yang Z (2012) Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sens Environ 122:146–165
Article
Google Scholar
Pilli R, Anfodillo R, Carrer M (2006) Toward a functional and simplified allometry for estimating forest biomass. Forest Ecol Manag 237:583–593
Article
Google Scholar
Popescu SC (2007) Estimating biomass of individual pine trees using airborne LiDAR. Biomass Bioenerg 31:646–655
Article
Google Scholar
Popescu SC, Wynne RH, Scrivani JA (2004) Fusion of small foot print LiDAR and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia, USA. Forest Sci 50:551–565
Google Scholar
Raber GT, Jensen JR, Schill SR, Schuckman K (2002) Creation of digital terrain models using an adaptive lidar vegetation point removal process. Photogramm Eng Remote Sens 68:1307–1315
Google Scholar
Rosenqvist Å, Milne A, Lucas R, Imhoff M, Dobson C (2003) A review of remote sensing technology in support of the Kyoto Protocol. Environ Sci Policy 6:441–455
Article
Google Scholar
Schulze ED, Valentini R, Sanz MJ (2002) The long way from Kyoto to Marrakesh: Implications of the Kyoto Protocol negotiations for global ecology. Glob Change Biol 8:505–518
Article
Google Scholar
Sileshi GW (2014) A critical review of forest biomass estimation models, common mistakes and corrective measures. For Ecol Manag 329:237–254
Article
Google Scholar
Stepper C, Straub C, Pretzsch H (2014) Assessing height changes in a highly structured forest using regularly acquired aerial image data. Forestry 0: 1–13, doi:10.1093/forestry/cpu050
Suárez JC, Ontiveros C, Smith S, Snape S (2005) Use of airborne LiDAR and aerial photography in the estimation of individual tree heights in forestry. Computers & Geosciences 31:253–262
Article
Google Scholar
Tabacchi G, Di Cosmo L, Gasparini P (2011) Aboveground tree volume and phytomass prediction equations for forest species in Italy. Eur J Forest Res 130:911–934
Article
Google Scholar
UNFCCC (1997) Kyoto Protocol to the United Nations Framework Convention on Climate Change adopted at COP3 in Kyoto, Japan, on 11 December 1997
Google Scholar
Verstraete MM, Pinty B, Myneni R (1996) Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing. Remote Sens Environ 58:201–214
Article
Google Scholar
Wallerman J, Holmgren J (2007) Estimating field-plot data forest stands using airborne laser scanning and SPOT HRG data. Remote Sens Environ 110:501–508
Article
Google Scholar
Wang Z, Sassen K (2001) Cloud type and property retrieval using multiple remote sensors. J Appl Meteorol 40:1665–1682
Article
Google Scholar
Wang Y, Weinacker H, Koch B (2008) A lidar point cloud based procedure for vertical canopy structure analysis and 3D single tree modelling in forest. Sensors 8:3938–3951
Article
PubMed Central
Google Scholar
Wang K, Franklin SE, Guo X, Cattet M (2010) Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists. Sensors 10:9647–9667, doi:10.3390/s101109647
Article
PubMed Central
PubMed
Google Scholar
White K, Pontius J, Schaberg P (2014) Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty. Remote Sens Environ 148:97–107
Article
Google Scholar
Zianis D, Muukkonen P, Mäkipääand R, Mencuccini M (2005) Biomass and stem volume equations for tree species in Europe. Silva Fenn Monogr 4(1–2):5–63
Google Scholar