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Abstract

Background: Natural forests in the Hengduan Mountains Region (HDMR) have pivotal ecological functions and
provide diverse ecosystem services. Capturing long-term forest disturbance and drivers at a regional scale is crucial
for sustainable forest management and biodiversity conservation.

Methods: We used 30-m resolution Landsat time series images and the LandTrendr algorithm on the Google Earth
Engine cloud platform to map forest disturbances at an annual time scale between 1990 and 2020 and attributed
causal agents of forest disturbance, including fire, logging, road construction and insects, using disturbance
properties and spectral and topographic variables in the random forest model.

Results: The conventional and area-adjusted overall accuracies (OAs) of the forest disturbance map were 92.3% and
97.70% ± 0.06%, respectively, and the OA of mapping disturbance agents was 85.80%. The estimated disturbed
forest area totalled 3313.13 km2 (approximately 2.31% of the total forest area in 1990) from 1990 to 2020, with
considerable interannual fluctuations and significant regional differences. The predominant disturbance agent was
fire, which comprised approximately 83.33% of the forest area disturbance, followed by logging (12.2%), insects
(2.4%) and road construction (2.0%). Massive forest disturbances occurred mainly before 2000, and the post-2000
annual disturbance area significantly dropped by 55% compared with the pre-2000 value.

Conclusions: This study provided spatially explicit and retrospective information on annual forest disturbance and
associated agents in the HDMR. The findings suggest that China’s logging bans in natural forests combined with
other forest sustainability programmes have effectively curbed forest disturbances in the HDMR, which has
implications for enhancing future forest management and biodiversity conservation.
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Introduction
Forests have pivotal ecological functions and provide
diverse ecosystem services, such as global climate
regulation, habitat provision, water and soil conserva-
tion, biodiversity preservation, and carbon

sequestration (Bonan 2008; Pan et al. 2011). However,
forest disturbances widely affect the ecological func-
tioning of forest ecosystems and thereby impair the
provision of ecosystem services (Betts et al. 2017). As
reported recently, the area of global forest loss
reached 1.78 × 106 km2 between 1990 and 2020 (FAO
and UNEP 2020), which was mainly caused by an-
thropogenic factors, such as forest exploitation and
land-use conversion (Barlow et al. 2016; FAO and
UNEP 2020). The forest landscape has also been
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altered by natural environmental changes and distur-
bances, such as wildfires, insect infestations, flooding,
and drought, over many decades (FAO and UNEP
2020).
Most forest disturbances occur at small spatial scales,

and regional patterns evolve over long periods (Kim
et al. 2014). Accordingly, effectively tracking small-area
disturbances requires high-resolution spatial datasets
that span long time scales. The free availability of the
United States Geological Survey (USGS) Landsat image
archives in 2008 catalysed Landsat time series analysis
for fine-resolution forest cover change detection via in-
depth mining of dense Landsat analysis-ready image
stacks (Hansen et al. 2013; White et al. 2017, Wulder
et al. 2012; Wulder et al. 2019; Zhu 2017, Zhu et al.
2019). Recently, numerous algorithms for Landsat time
series change detection have been proposed, reviewed
and widely used (Banskota et al. 2014, Cohen et al. 2010;
Cohen et al. 2017; Huang et al. 2009; Kennedy et al.
2010; Zhu 2017, Zhu et al. 2020). A wealth of forest
cover change products from local to global scales have
been generated from a medium- or high-frequency
Landsat time series using these algorithms (Cohen et al.
2016; Czerwinski et al. 2014; Hansen et al. 2016; Mar-
gono et al. 2012; Masek et al. 2008; Potapov et al. 2012;
Schroeder et al. 2007, 2011; White et al. 2017). However,
these products are either region-specific datasets with
high map accuracy or global datasets with high regional
uncertainty in map accuracy. Therefore, individual
target-specific forest disturbance detection is still needed
for a given forest landscape region. To extract annual
time-scale forest disturbances, the Landsat-based detec-
tion of trends in disturbance and recovery (LandTrendr)
proposed by Kennedy et al. (2010) is one of the most
widely used algorithms (Zhu 2017).
The causal agents of forest disturbance have pro-

found ecological and management implications for
forest ecosystems but are difficult to identify and
characterize (Attiwill 1994). Presently, only a few
studies that attempted to map the agents causing for-
est disturbance (Hermosilla et al. 2015; Kennedy et al.
2015; Pickell et al. 2014; Schroeder et al. 2017; Shi-
mizu et al. 2017). Among these studies, disturbance
agents are identified either by classifying the spectral,
geometric, textural, and topographic properties con-
cerning the detected disturbance patches (Kennedy
et al. 2015; Pickell et al. 2014; Schleeweis et al. 2020;
Shimizu et al. 2017) or by direct derivation from
Landsat spectral-temporal metrics and prior know-
ledge of causal event types (Hermosilla et al. 2015;
Moisen et al. 2016; Oeser et al. 2017; Schroeder et al.
2017). In comparison, the former method can pro-
duce a more spatially consistent map of casual agents
than the latter method (Shimizu et al. 2019).

The Hengduan Mountains Region (HDMR) is one of
the world’s biodiversity hotspots and is covered by a series
of forest ecosystems ranging from subtropical to cool tem-
perate (Xing and Ree 2017). Complex geomorphic units
and diverse forest systems provide unique habitats for
many flora and fauna; therefore, natural forest conserva-
tion in the HDMR has significant impacts on biodiversity
conservation and ecological security at the local, regional
and even global scales (Liu et al. 2019). However, the
HDMR operated as a major timber supply base in South-
west China until China’s Natural Forest Conservation Pro-
gram (NFCP), which includes logging bans on natural
forests, the creation of protected areas, and other forest
policies, was tentatively initiated in 1998 (Yang 2017).
With the full implementation of the NFCP in 2000 (Yang
2017), the priority of natural forest management has dras-
tically shifted from timber exploitation to ecological func-
tion preservation in this region. Thus, whether and how
the abrupt shift in forest management policy affected for-
est ecosystem dynamics is an urgent question to be an-
swered. However, the long-term and fine-resolution
annual dynamics of natural forests and the underlying fac-
tors in the HDMR are poorly understood, which thereby
hampers the robust quantitative evaluation of the effect-
iveness of the NFCP and other forest policies. Therefore,
investigating the characteristics of forest disturbance and
the associated causal agents across this region and over
long time periods is imperative to aid comprehensive
evaluation of and fine-tuning decision making for the im-
plemented forest policies.
The objective of this study is to map forest distur-

bances and causal agents in HDMR using the Land-
Trendr change detection algorithm based on yearly
Landsat time series images acquired from 1990 to 2020.
Specific steps involve (1) analysing the spatiotemporal
dynamics of forest disturbance, (2) attributing the causal
agents of forest disturbances using a random forest (RF)
model with spectral and spatiotemporal properties of the
disturbed patches, and (3) quantifying the disturbed
areas caused by different agents. Spatially explicit, fine-
resolution and annual information on long-term forest
disturbances and the attributing agents can not only im-
prove our understanding of forest dynamics and the
dominant factors but also provide a basis for evaluating
the impacts and effectiveness of policy shifts in forest
management, which will eventually benefit sustainable
forest management and regional ecological security.

Study area
The HDMR (24°39′N–33°34′N, 96°58′E–104°27′E) is
located in Southwest China (Li 1987), covering eastern
and southeastern Tibet, western Sichuan, northwestern
Yunnan, southeastern Qinghai and southwestern Gansu
(Fig. 1). The HDMR is characterized by a chain of
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Fig. 1 Location and topography of the Hengduan Mountains Region (HDMR). Footprints of the 36 Landsat scenes used in this study are also
shown with each path/row in inset (a)
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parallel north-south-oriented mountain ranges and riv-
ers (i.e., Dulong River, Nu River, Lancang River, Jinsha
River, Yalong River, Dadu River and Min River) (Li
1987; Zhang et al. 1997). This region has a sharp altitud-
inal uplift from the southern river valley (appr. 850m) to
the summit of Gongga Mountain (7556 m), which results
in unique and prominent vertical climatic and vegetation
zonation. The regional climate ranges from the subtrop-
ics at the southern low elevations to the alpine frigid
zone at the northern high elevations (Zhang et al. 1997).
Along altitudinal and climatic gradients, vegetation types
vary from succulent thorny shrubs in dry-hot valleys,
montane mixed coniferous and broad-leaved forests,
montane dark coniferous forests, alpine shrub meadows,
and alpine sparse vegetation (Sun et al. 2017; Zhang
et al. 1997).

Data and methods
The process of data analysis can be roughly divided into
two stages: pixel-level forest disturbance detection based
on the LandTrendr temporal segmentation of the yearly
Landsat normalized burned ratio (NBR) time series and
patch-level attribution of disturbance agents using the
RF model of LandTrendr- and DEM-derived spectral
and spatiotemporal variables for the disturbed areas
(Fig. 2).

Data sources and preprocessing
Landsat images and preprocessing
The HDMR intersects with 36 Landsat path/row scenes
in the Landsat Worldwide Referencing System (WRS-2)
(inset (a) in Fig. 1). All available Landsat surface reflect-
ance of these scenes for Landsat 5 Thematic Mapper
(TM), Landsat 7 Enhanced Thematic Mapper Plus
(ETM+), and Landsat 8 Operational Land Imager (OLI)
images from 1990 to 2020 were selected and extracted
from the Google Earth Engine (GEE) (ht tps : / /
earthengine.google.com/) cloud computing platform. To
minimize the impact of clouds and cloud shadows,
Landsat images acquired only in the non-growing sea-
sons (October–December and January–March of the
next year) were used in this study.
To make full use of all available clear observations for

producing yearly cloud-free Landsat time series stacks
(LTSSs), the CFmask band of Landsat surface reflectance
data collections containing per-pixel quality information,
which is obtained by the C version function of the mask
algorithm (Zhu et al. 2015), was used to remove cloud-
contaminated and snow-covered pixels. Then, yearly
best-available pixel composites were created based on
pixel-scoring functions of clear observations (White
et al. 2014). Gap-filling of yearly Landsat composite im-
ages was conducted based on the temporally adjacent
pixels (i.e., pixels in the previous and next year of a given

year) of the LTSS (White et al. 2014). Considering the
differences in spectral responses over the Landsat sensor
series, reflectance harmonization proposed by Roy et al.
(2016) was performed to improve the temporal continu-
ity of Landsat time series.

Forest baseline map in 1990 and topographic data
An initial forest/non-forest benchmark is needed to map
forest disturbance using the LandTrendr method (DeV-
ries et al. 2015). Changes occurring within forested areas
during the study period were regarded as forest distur-
bances. A raw forest baseline map was developed from
the forest class of the 1 km-resolution China Land-Use/
cover datasets (CLUDs) produced from a human-
computer interactive interpretation of Landsat TM data
acquired in the late 1980s (Liu et al. 2003a, b). A max-
imum normalized difference vegetation index (NDVI)
composite image was generated from the Landsat TM
images in 1990. Then, we resampled the 1 km-resolution
forest baseline map to 30-m resolution and subsequently
removed the pixels with a negative NDVI value to pro-
duce the final 30-m-resolution forest baseline map.
The void-filling version of the Shuttle Radar Topo-

graphic Mission (SRTM) digital elevation model (DEM)
with a resolution of 30 m provided by the Jet Propulsion
Laboratory (JPL) of America’s National Aeronautics and
Space Administration (NASA) was obtained from the
GEE platform. Topographic variables, such as elevation,
slope, and aspect, were derived from the DEM.

Verification data
Three field campaigns were conducted in August and
September of 2019 and August–September of 2020 (Fig.
1). Geographical references of forest disturbance events
were recorded with a Nikon camera with a global posi-
tioning system (GPS). Reference samples of forest dis-
turbance were obtained by visually interpreting high
spatial resolution images from Google Earth™ and Land-
sat data together with the field records of disturbance
events; subsequently, they were used to produce disturb-
ance agent reference samples by combining temporal
trajectories of spectral indices (e.g., NBR) generated from
the LandTrendr Pixel Time Series Plotter user interface
(https://emaprlab.users.earthengine.app/view/lt-gee-
pixel-time-series) with the spectral-temporal curves of
four typical forest disturbance agents (including fire, log-
ging, road construction and insects), as illustrated in
Fig. 3. A total of 1721 reference samples containing 774
for disturbance and 947 for non-disturbance were cre-
ated (inset (a) in Fig. 1), with more than 10 forest dis-
turbance samples with pixels greater than 9 for each
year. The number of agent-labelled forest disturbance
patch samples with pixels greater than 11 (i.e., patches
with an area above 0.01 km2) was 763, including 515

Li et al. Forest Ecosystems            (2021) 8:73 Page 4 of 17

https://earthengine.google.com/
https://earthengine.google.com/
https://emaprlab.users.earthengine.app/view/lt-gee-pixel-time-series
https://emaprlab.users.earthengine.app/view/lt-gee-pixel-time-series


patches for fire, 192 patches for logging, 40 patches for
constructing roads, and 15 patches for insect outbreaks.

Methods
Pixel-based forest disturbance detection using the
LandTrendr algorithm
LandTrendr, a time series segmentation algorithm used
to capture both abrupt and gradual disturbances in time
series (Kennedy et al. 2007), was used to identify and de-
tect forest disturbances based on the GEE platform
(Kennedy et al. 2018). LandTrendr-based time series

data processing follows two main steps: first, the start
and end of each segment are determined by estimating
the years of change in the LTSSs of a given spectral
index; second, the spectral index values at the segment
breakpoints (also called vertices) are calculated, yielding
a trajectory of interconnected segments that characterize
the disturbance for each pixel (inset (a) in Fig. 2).
The spectral index of NBR is widely used to detect for-

est change events, such as abrupt and continuous
changes, due to its excellent sensitivity to chlorophyll,
charcoal ash and water content in vegetation leaves and

Fig. 2 Flowchart of pixel-based disturbance detection and the patch-based attribution process. Inset (a) illustrates an example of LandTrendr
segmentation and spectral trajectory fitted to NBR time series, in which a solid line indicates the spectral trajectory fitted to the NBR observation
(solid dots) and the numbers 1, 2, 3 and 4 denote the start-value, magnitude, duration and end-value of the disturbance segment, respectively.
The User Interface (UI) LandTrendr Pixel Time Series Plotter was provided by the Oregon State University eMapR Laboratory and Google Earth
Engine website: https://emaprlab.users.earthengine.app/view/lt-gee-pixel-time-series
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Fig. 3 Typical LandTrendr temporal segment trajectories (grey dotted line) for four disturbance agents and the corresponding post-disturbance
high-resolution image chips. a Fire, b logging, c road construction, and d insects
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soil (Kennedy et al. 2010; Kennedy et al. 2015; Zhu et al.
2012). In this study, forest disturbances were identified
and characterized based on the NBR time series. To ob-
tain the LandTrendr-derived temporal segments repre-
senting potential forest disturbances, a magnitude
threshold of the NBR value for the temporal segments
was based on the median and standard deviation of NBR
values for the forest disturbance samples with a sliding
threshold method suggested in previous study (Grogan
et al. 2015; Tang et al. 2019). In this case, the optimal
threshold is ΔNBR = 0.277. Then, temporal segments
with an NBR value magnitude greater than the optimal
threshold and a duration less than 3 years were identi-
fied as disturbance events. For each disturbance event,
attributes such as year, duration, and magnitude of dis-
turbance, pre- and post-disturbance NBR value, and
change rate (i.e., the ratio between change magnitude of
NBR value and disturbance duration) were recorded.

Patch-based agent attribution of forest disturbance
Anthropogenic and natural forest disturbances usually
occur over large areas (patches) (Kennedy et al. 2015). In
this study, the spatially adjacent disturbance pixels
within a 3 × 3 window for each year were aggregated as
patches and assumed to be caused by the same disturb-
ance agent. To avoid the effects of small-area unverifi-
able disturbance on the attribution of forest disturbance,
only patches with an area above 0.01 km2 were consid-
ered for attributing the casual agents of forest
disturbance.
Four groups of predictor variables, such as pre- and

post-disturbance spectral conditions, disturbance and
topographical factors (Table 1), were generated to attri-
bute forest disturbance agents. Predictor variables in the
first three groups were derived using LandTrendr-based
temporal segmentation of the LTSSs of the NBR, tas-
selled cap wetness (TCW) and tasselled cap angle
(TCA). As these variables are very sensitive to canopy
moisture and structure and vegetation cover (Hansen
et al. 2001; Powell et al. 2010), the TCW and TCA can

provide different disturbance-related spectral properties
of LandTrendr-derived temporal segments from the
NBR. In total, 27 predictor variables were created for
each disturbance patch.
An RF model was used to determine the causal agents

of forest disturbance by classifying the predictor vari-
ables. Random forest is a nonparametric machine learn-
ing approach for classification and regression and is
robust for a large number of predictor variables (Brei-
man 2001). The output of the model is determined by a
majority vote of the trees that use the randomly selected
training sample subsets and the predictor variables at
each node (Breiman 2001). In this study, the RF model
was built with the default setting of 500 trees suggested
in previous studies (Hermosilla et al. 2015; Kennedy
et al. 2015). Considering that the inclusion of correlated
variables has no accuracy penalty (Schroeder et al.
2017), the number of variables in the random subset at
each node was set to

ffiffiffiffiffi

27
p

(i.e., the square root of the
number of input variables). Subsequently, the con-
structed RF model was applied to all disturbance patches
detected by the LandTrendr algorithm to produce the
disturbance agent map each year. Moreover, the relative
importance of predictor variables was determined using
the ranking of the mean decrease in Gini score in the RF
model (Shimizu et al. 2019). The higher the value of the
mean decrease in the Gini coefficient is, the more im-
portant the variable is in the RF model. The RF models
were built and run using the R software package “ran-
domForest” (Liaw and Wiener 2002).

Accuracy assessment
The accuracy of forest disturbance mapping was eval-
uated using the confusion matrix of disturbed and
undisturbed forest classes. Traditional and area-
adjusted accuracy measures, including overall accuracy
(OA), user accuracy (UA) and producer accuracy
(PA), were individually calculated. Considering the
very few area proportions of disturbed forests in the

Table 1 Predictor variables extracted from forest disturbance patches and used in the random forest model

Metric group Variables Specific indices

Pre-disturbance spectral condition Average spectral value (preval_Mean) NBR, TCW, TCA

Standard deviation of spectral value (preval_Std) NBR, TCW, TCA

Post-disturbance spectral condition Average spectral value (postval_Mean) NBR, TCW, TCA

Standard deviation of spectral value (postval_Std) NBR, TCW, TCA

Disturbance Average (mag_Mean) and standard deviation (mag_Std) of disturbance magnitude NBR, TCW, TCA

Average (rate_Mean) and standard deviation (rate_Std) of disturbance rate NBR, TCW, TCA

Topography Elevation average (Elevation_Mean) Altitude

Slope average (Slope_Mean) Slope

Aspect average (Aspect_Mean) Aspect
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HDMR, an error-adjusted estimator of area was com-
puted and then applied to produce area-adjusted ac-
curacy measures from the error matrix of estimated
area proportions, as proposed by Olofsson et al.
(2013, 2014). In this case, variances for the accuracy
measures were quantified by the 95% confidence in-
tervals of the disturbed and non-disturbed forest
areas. More detailed descriptions of calculating trad-
itional and area-adjusted accuracy measures were pro-
vided by Congalton (1991), Liu et al. (2007) and
Olofsson et al. (2013, 2014).
The mapping accuracy of disturbance agent attribution

in the RF model was calculated using the “out-of-bag”
(OOB) estimation technique, which employs an unbiased
estimate of the test set error (Breiman 2001). In our
study, the RF model was trained using 70% of agent-
labelled forest disturbance patch samples generated by a
stratified sampling method and tested using the
remaining 30% of samples. The accuracies of attributing
disturbed patches to different causal agents were com-
puted from the confusion matrix produced by the RF
model.

Statistical analyse
A two-sample t-test was employed to determine the sig-
nificance of the differences in the means of forest loss
areas between 1990 and 2000 and 2001–2020 at the 5%
significance level (α = 0.05) via the R programming
language.

Results
Accuracy of forest disturbance detection and attribution
Overall map accuracy
Table 2 shows that the conventional and area-adjusted
OAs of the disturbance map were high, with values of
92.39% and 97.70% ± 0.06%, respectively. The disturb-
ance class presented higher UA (94.25%) and lower PA
(77.39%) than the non-disturbance class (91.84% and
98.18%, respectively) for the conventional method, but
had lower area-adjusted UA (77.39% ± 0.32%) and PA
(50.17% ± 0.88%) values than the non-disturbance class
(98.18% ± 0.06% and 99.46% ± 0.07%, respectively).
The OA of agent classification of disturbed forest

patches was 85.80% (Table 3). The fire agent class has
the highest UA (94.42%) and PA (86.48%), whereas the

insect agent class exhibits the lowest UA (28.57%) and
PA (66.67%), with the highest commission error of
71.43%. The UA and PA of the logging agent class are
moderate, with values of 72.06% and 83.05%, respect-
ively. The road construction class presents high PA
(93.33%) and low UA (53.85%), with a commission error
of approximately 46%.

Importance of predictor metrics
As illustrated in Fig. 4, the predictor variables derived
from TCW and NBR had higher relative importance in
classifying disturbance agents than those derived from
TCA and topographical variables. The two most import-
ant predictor variables are the mean disturbance magni-
tude and pre-disturbance value of TCW, followed by the
four NBR-derived metrics, such as the mean value of
pre- and post-disturbance NBR and the standard devi-
ation of the change magnitude and post-disturbance
value of NBR. Among the topographical variables, the
mean elevation exhibited the highest importance.

Spatiotemporal characteristics of forest disturbance
The area of disturbed forests from 1990 to 2020 was
3313.13 km2 (Fig. 5), roughly accounting for 2.31% of
the total forest area (143,357.56 km2) across the HDMR
in 1990. The annual forest disturbance area varied from
16.71 km2 (in 2017) to 502.69 km2 (in 1991), with an
average value of 165.79 km2 in 1990–2000 and 74.47
km2 in 2001–2020.
As depicted in Fig. 6, forest disturbance mainly oc-

curred in the transition areas between forest and
non-forest, especially at the forest edges. Forest dis-
turbance in the southern HDMR exhibited more
widespread and larger patches than that in the north-
ern HDMR. In addition, forest disturbance was more
prone to reoccur in the proximity of the foregone-
disturbed areas. Site A in Fig. 6 illustrates that a
newly disturbed forest in 2014 occurred in the vicin-
ity of the forest areas disturbed in 2011. Site C in
Fig. 6 also shows that forest disturbance reoccurred
in 1994 near the areas disturbed in 1992.
Figure 7 shows that forest disturbances mainly oc-

curred in areas with altitudes of 2500–4000 m and areas
with slope degrees of 15°–45° and that S and SE slopes
(sunny slopes) observed more forest disturbances than N

Table 2 Accuracy results of the disturbance map based on two accuracy assessment methods

Class Method UA (%) PA (%) OA (%)

Disturbance Conventional 94.25 77.39 92.39

Non-disturbance 91.84 98.18

Disturbance Area-adjusted estimator 77.39 ± 0.32 50.17 ± 0.88 97.70 ± 0.06

Non-disturbance 98.18 ± 0.06 99.46 ± 0.07

Note: OA, UA and PA indicate overall accuracy, user accuracy and producer accuracy, respectively
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and NW slopes (shady slopes). Compared with the dis-
tribution of forest area in 1990, the occurrence percent-
age of forest disturbance was higher at moderate
elevations between 2000 and 3500m and sunny slopes
(Figs. 7a and c) but was rarely slope-dependent (Fig. 7b).

Spatiotemporal patterns of forest disturbance agents
As shown in Figs. 5 and 8, fire was the predominant agent
of forest disturbance in the HDMR, followed by logging, in-
sects, and road construction. Forest areas disturbed by the
four causal agents were 2760.19, 404.25, 80.10, and 68.60

Table 3 Confusion matrix for disturbance agents based on patch numbers

References

Agent class Fire Logging Road construction Insects UA (%) PA (%) OA (%)

Map Fire 339 19 0 1 94.42 86.48 85.80

Logging 38 98 0 0 72.06 83.05

Road construction 11 1 14 0 53.85 93.33

Insects 4 0 1 2 28.57 66.67

Total 392 118 15 3

Note: OA, UA and PA indicate overall accuracy, user accuracy and producer accuracy, respectively

Fig. 4 The relative importance of predictor variables ranked by classification mean decrease in Gini. The relative importance derived from the RF
model of the predictor metrics is the average over all trees for the total decrease in the node heterogeneity in variable segmentations
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km2, accounting for 83.31%, 12.20%, 2.42% and 2.07% of the
total disturbed area, respectively (inset (a) in Fig. 8). The
statistical results in Fig. 5 further show that the four agents
caused larger forest disturbance areas in 1990–2000 than in
2001–2020. The yearly average forested areas disturbed in
1990–2000 and 2001–2020 were 126.27 and 68.56 km2 for
fire, 29.34 and 4.08 km2 for logging, 3.33 and 1.60 km2 for
road construction, and 6.85 and 0.24 km2 for insects, re-
spectively. Three of the four severely fire-affected years had
a total burned area above 0.2 × 103 km2 between 1990 and
2000. The t-test statistics further show that the differences
in annual mean forest loss areas between the two periods
were statistically significant (α = 0.05) for logging agents but
insignificant (α= 0.05) for fire agents. Fire-affected forested
areas were remarkably widespread and dominated by large
patches across the entire HDMR, whereas the forested areas
disturbed by the other three agents were relatively scattered
and prevailed in small patches (Fig. 8). Additionally, different
disturbance agents co-occurred in a given region (Sites A
and B in Fig. 8). Except for disturbances caused by insect
agents, which mainly occurred in areas with elevations
above 4000m and slopes below 25°, the spatial distributions
of the other three agents changed weakly with topographical
factors (Fig. 7).

Discussion
Forest disturbance dynamics and attribution agents
The total area of disturbed forests during 1990–2020
was 3313.13 km2, approximately 2.31% of forested areas
in 1990. The forest disturbance rate is far lower than the

global forest loss rate of 4.2% over the same period
(FAO 2020) and 17% in Europe between 1986 and 2016
(Senf and Seidl 2020). As a well-known global biodiver-
sity hotspot, HDMR possesses many nature reserves, for-
est parks and scenic areas from the local to national
level, which effectively reduces human-induced forest
disturbance (Ren et al. 2015; Yin et al. 2020). In addition,
the annual forest disturbance area dropped significantly
(α = 0.05) from 165.79 km2 in 1990–2000 to 74.47 km2

in 2001–2020 and from 29.34 to 4.08 km2 for logging
agents. This finding reflects that the NFCP initiated in
1998 (Zhang et al. 2000), especially the logging bans on
natural forests have effectively inhibited human-induced
forest loss and greatly improved forest cover in the
HDMR (Qu et al. 2018; Ren et al. 2015).
Across the HDMR, forest fires were the overwhelm-

ingly predominant disturbance agents. Between 1990
and 2020, the forest area disturbed by fire agents
reached 2760.19 km2, approximately 83.33% of the total
disturbed area. Previous studies on fire history indicated
that fire driven mainly by dry season temperature and
drought under the monsoonal climate (Han et al. 2018;
Li et al. 2017) was an essential factor affecting forest dy-
namics in the HDMR and its surroundings (Han et al.
2018; Sun et al. 2016; Xiao et al. 2017). Some endemic
species, such as Pinus yunnanensis, depend heavily on
fire for their persistence and ecosystem sustainability in
the HDMR (Pausas et al. 2021; Su et al. 2015). Further-
more, variability in fire regime can cause population di-
vergence and sympatric speciation (Pausas et al. 2021).

Fig. 5 Yearly disturbed areas for different agent classes in the HDMR between 1990 and 2020. The blue and red dotted lines represent the
average disturbance areas in 1990–2000 and 2001–2020, respectively. The difference in the average disturbance areas between 1990 and 2000
and 2001–2020 was statistically significant at the 5% significance level (α = 0.05)
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Although existing evidence has demonstrated that rich
biodiversity is uplift-driven diversification in the HDMR
(Xing and Ree 2017), fire undoubtedly plays a key role in
shaping regional plant evolution, biodiversity and terres-
trial ecosystem processes (Huffman 2014; Kelly et al.
2020; Pausas et al. 2021; Su et al. 2015). With the imple-
mentation of a series of strict forest management mea-
sures, such as the NFCP (Zhang et al. 2000), Forest
Ecosystem Compensation Fund (2001–2016) (Bryan
et al. 2018), and Wildlife Conservation and Nature Pro-
tection Program (2001–2050) (Bryan et al. 2018), the an-
nual fire-caused forest disturbance area shrank by half,
from 126.27 km2 in 1990–2000 to 68.56 km2 in 2001–
2020. However, the implications of the reduction in

burned area to forest ecosystems remain to be explored,
especially for fire-dependent ecosystems at the landscape
scale (Han et al. 2018; Su et al. 2015). The accurate and
spatiotemporally explicit information on fire disturbance
in this study provided a basis for further investigating
postfire forest regeneration and biodiversity patterns
(Pettorelli et al. 2016).

Performance of the LandTrendr algorithm and RF model
using Landsat time series of non-growing season image
composites
The high accuracies of mapping forest disturbances and
attributing disturbance agents across the HDMR indicate
that the LandTrendr algorithm and RF classification

Fig. 6 Forest disturbances during 1990–2020 in the HDMR. A, B, C and D are zoomed-in images of four typical sites marked in the left panel with
the corresponding letters
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Fig. 7 (See legend on next page.)
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model performed well based on Landsat time series of
annual non-growing season image composites. The
unique deep gorges and high mountain environment
with sharp altitudinal and climatic differentiation to-
gether with the prevailing southwest monsoon in the
HDMR (Zhang et al. 1997) lead to very poor availability
of cloud- and snow-free Landsat images in the growing
season. Therefore, a time series of composite Landsat

images acquired in the nongrowing season spanning Oc-
tober to March of the following year was employed to
map forest disturbance and the attribution agents using
the LandTrendr algorithm and RF model in this study.
The resultant mapping OAs reach 92.30% (97.70% ±
0.06% for area-adjusted) for forest disturbance and
85.80% for disturbance agent attribution; these values
are higher than 71.8% and 84.7% of the results of

(See figure on previous page.)
Fig. 7 Disturbed areas caused by four disturbance agents under different topographic factors in the HDMR. a Elevation, b slope, and c aspect.
The division of slope and aspect is based on the Technical Regulations for the Inventory for Forest Management Planning and Design (GB/T
26424–2010) issued by the National Forestry and Grassland Administration of China. Different aspects are abbreviated as follows: north (N),
northeast (NE), east (E), southeast (SE), south (S), southwest (SW), west (W), and northwest (NW)

Fig. 8 Map of forest disturbances attributed to different agent classes in the HDMR. A, B, C and D are four typical forested sites disturbed by fire,
logging, road construction and insect disturbance agents, respectively. The inset (a) in the left panel depicts the area and percentage of forest
affected by different casual agents

Li et al. Forest Ecosystems            (2021) 8:73 Page 13 of 17



Shimizu et al. (2017) in the Bago Mountains of
Myanmar based on non-growing season (November–
February) Landsat images, approximately 80% and 84%
of the work of Kennedy et al. (2015) in Puget Sound,
USA, based on growing season (July–August) Landsat
images, 83.6%–87.5% and 73.0%–80.7% of the results of
Nguyen et al. (2018) in eastern Victoria, Australia, based
on growing season (December–March) Landsat images,
respectively. The results are also comparable to 92% ±
1.6% and 91.6% of the results of Hermosilla et al. (2015)
in the Canadian Prairies based on growing season (July–
August) Landsat images, and 90.8%–96.6% and 78%–
91% of the work of Oeser et al. (2017) at three sites in
Central Europe based on all available Landsat images.
Compared with the previous studies mentioned above,
the HDMR investigated here has a larger geographical
extent, more complex topographical conditions and
more heterogeneous and diverse forest landscapes. Here,
the ability to detect forest disturbance and the causal
agents was undoubtedly compromised by the topo-
graphic and phenological effects in Landsat composites
resulting from the wide intra-annual span of image ac-
quisition time. Removing these unfavourable effects
prior to running the LandTrendr algorithm and RF
model can considerably improve the accuracies of detec-
tion and attribution of forest disturbance in future work.
Among the four investigated disturbance agents, the

fire agent was best discriminated, followed by logging,
whereas the RF model performed poorly for identifying
insect disturbances. This result is supported by the re-
sults of Neigh et al. (2014), which demonstrated a low
attribution accuracy of insect disturbance. The yearly
Landsat composite images used in this study together
with inadequate fine-resolution verification data of insect
disturbance considerably hampered the accurate and ef-
fective detectability of defoliation and stand mortality of
infested forests (Neigh et al. 2014; Senf et al. 2017). In
addition, insect disturbance often occurs with other dis-
turbances, such as fire or logging disturbances, and thus
might not be explicitly separated from other causal
agents (Hermosilla et al. 2019; Meigs et al. 2015). Al-
though intra-annual data availability has been improved
in recent years by integrating multi-source optical time
series of varying sensors (such as Sentinel-2), discrimin-
ating insect disturbance from other disturbance agents
remains challenging in areas (e.g., HDMR) with frequent
cloud cover. With the increasing availability of micro-
wave remote sensing data (such as Sentinel-1), combin-
ing dense time series of optical and microwave data will
help enhance the potential for separating insect distur-
bances from other disturbances (Hirschmugl et al. 2020).
Spectral metrics, such as the change magnitude in

TCW, pre-disturbance TCW, and pre- and post-
disturbance NBR, exhibited higher relative importance

for attributing the causal agents of forest disturbance in
the RF model. The top list of most important predictor
variables covers the TCW- and NBR-derived metrics
and the mean elevation, whereas the TCA-derived met-
rics and other topographical factors are less important.
The effectiveness of spectral change magnitude in separ-
ating forest disturbance agents agrees with the results of
previous studies (Hermosilla et al. 2015; Kennedy et al.
2015; Nguyen et al. 2018; Schroeder et al. 2017; Shimizu
et al. 2017; Shimizu et al. 2019), which highlighted the
importance of disturbance magnitude and pre- and post-
disturbance spectral values. The inclusion of the tem-
poral trajectories of multiple spectral indices into the RF
attribution model might improve the accuracy of dis-
turbance agent maps (Cohen et al. 2016; Nguyen et al.
2018; Shimizu et al. 2019; Vogelmann et al. 2012). How-
ever, the relative importance of different spectral indices
varies with the examined agent types, especially the
dominant disturbance agent. The most important con-
tributor to attributing different disturbance agents is the
mean elevation in the cases of disturbances caused pre-
dominantly by forest management and urbanization
(Kennedy et al. 2015) and by windthrow and bark beetles
(Oeser et al. 2017), the TCW magnitude in the areas
mainly disturbed by logging and water invasion (Shimizu
et al. 2017; Shimizu et al. 2019), and the TCB magnitude
and pre-disturbance NBR value in the wildfire-affected
forested areas (Nguyen et al. 2018). Similar to the result
of Nguyen et al. (2018), elevation exhibited a moderate
relative importance because fire occurrences are rarely
elevation-dependent (see Fig. 7).

Conclusions
A comprehensive understanding of long-term forest dy-
namics over vast geographical areas is crucial for sus-
tainable forest management, biodiversity conservation
and achieving carbon neutrality goals. In this study, we
accurately mapped the fine-resolution spatiotemporal
patterns and causes of forest disturbances over the
HDMR’s forested ecosystems from 1990 to 2020 by
combining the LandTrendr algorithm with the RF
model, with forest disturbance mapping accuracies of
92.3% (conventional) and 97.70% ± 0.06% (area-adjusted)
and a disturbance attribution mapping accuracy of
85.80%. Over the examined period, only 2.31% of for-
ested areas underwent disturbances, and fire was the
predominant disturbance agent, contributing 83.33% of
the disturbance area in the HDMR. From 2001 onward,
the annual area of disturbed forests dropped signifi-
cantly, by 55%, compared with the disturbance area in
1990–2000 because China’s logging bans on natural for-
ests together with other sustainability programmes came
into operation. Moreover, the occurrences of forest dis-
turbance and the attribution agents were weakly
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topography-dependent. The outcomes of this study pro-
vide insights regarding the long-term and high-
resolution spatiotemporal dynamics of forest disturbance
and the attributing agents and can inform the effective-
ness and efficacy of forest management policies and na-
ture protection programmes. Although soundly accurate,
further work can be conducted to remove the potential
topographic effects in Landsat images covering a wide
intra-annual time span and to improve the detectability
of diverse disturbance agents by integrating multi-source
optical and microwave satellite data.
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