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Abstract

Background: Black alder (Alnus glutinosa) forests are in severe decline across their area of distribution due to a
disease caused by the soil-borne pathogenic Phytophthora alni species complex (class Oomycetes), “alder
Phytopththora”. Mapping of the different types of damages caused by the disease is challenging in high density
ecosystems in which spectral variability is high due to canopy heterogeneity. Data obtained by unmanned aerial
vehicles (UAVs) may be particularly useful for such tasks due to the high resolution, flexibility of acquisition and cost
efficiency of this type of data. In this study, A. glutinosa decline was assessed by considering four categories of tree
health status in the field: asymptomatic, dead and defoliation above and below a 50% threshold. A combination of
multispectral Parrot Sequoia and UAV unmanned aerial vehicles -red green blue (RGB) data were analysed using
classical random forest (RF) and a simple and robust three-step logistic modelling approaches to identify the most
important forest health indicators while adhering to the principle of parsimony. A total of 34 remote sensing
variables were considered, including a set of vegetation indices, texture features from the normalized difference
vegetation index (NDVI) and a digital surface model (DSM), topographic and digital aerial photogrammetry-derived
structural data from the DSM at crown level.

Results: The four categories identified by the RF yielded an overall accuracy of 67%, while aggregation of the
legend to three classes (asymptomatic, defoliated, dead) and to two classes (alive, dead) improved the overall
accuracy to 72% and 91% respectively. On the other hand, the confusion matrix, computed from the three logistic
models by using the leave-out cross-validation method yielded overall accuracies of 75%, 80% and 94% for four-,
three- and two-level classifications, respectively.

Discussion: The study findings provide forest managers with an alternative robust classification method for the
rapid, effective assessment of areas affected and non-affected by the disease, thus enabling them to identify
hotspots for conservation and plan control and restoration measures aimed at preserving black alder forests.
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Introduction

Degradation of forests due to the rapid spread of dam-
aging pests and pathogens, is already threatening forest
functioning and services provision, challenging the Sus-
tainable Development Goals (SDG) and urgently de-
manding innovative and cost-effective tools for their
long term monitoring and for upscaling restoration ef-
forts (European Commission 2020). In the case of forest
ecosystems that are prone to biotic and abiotic distur-
bances, detailed information about tree decay and mor-
tality can be obtained by quantifying different levels of
tree defoliation to assess health status (Cardil et al. 2017,
2019; Navarro-Cerrillo et al. 2019). However, terrestrial
surveys are often hampered by difficult access, the time
and cost of near-term and spatially-explicit data acquisi-
tion over large areas, or by the sensitivity of areas with
high conservation value, such as riparian and floodplain
forests (Diaz-Varela et al. 2015; Rodriguez-Gonzélez
et al. 2017). Hence, forest management increasingly re-
lies on the use of conventional remote sensing (RS) tech-
nology (Padua et al. 2017).

Forests growing on riparian, periodically flooded or
waterlogged soils, are highly valuable, but threatened
ecosystems due to long lasting human impacts (Nilsson
et al. 2005). Among riparian ecosystems, alder wood-
lands are considered of priority for conservation in
European Habitats Directive 92/43/CEE. Alders are un-
usual among European trees in that they fix nitrogen
(Huss-Danell 1997) supporting the riparian ecosystem
and contributing to biodiversity. Despite their high eco-
logical value, alder-dominated forests are threatened due
to the combination of long-lasting human impact on flu-
vial systems and emerging abiotic (i.e. climatic) and bi-
otic (ie. pests and diseases) global changes.
Phytophthora-induced alder decline was first reported in
the 1990s in the UK, but spread across Europe to be-
come one of the most devastating epidemics of common
trees in several countries (Jung and Blaschke 2004). It
has more recently been reported in Spain (Solla et al.
2010) and Portugal (Kanoun-Boulé et al. 2016). Research
efforts have been increased in an attempt to understand
the causes of the decline (Jung et al. 2016), the environ-
mental factors driving the spread (Aguayo et al. 2014)
and also the effects on ecosystems (Bjelke et al. 2016).
However, there remain substantial knowledge gaps re-
garding the most effective ways to prevent infection, to
reduce the intensity and extension of alder forest decline
and to mitigate the effects on ecosystems. Serious impli-
cations are also expected for the future establishment of
forest stands due to widespread infections in nursery
stocks (Jung et al. 2016) and in other forest species,
given the wider host range of other Phytophthora spp.
Mapping, assessing and quantifying these effects is
therefore of the most importance in relation to
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understanding the disease progress and for developing
effective forest management plans.

Focusing on halting the spread of Phytophthora is es-
sential, as prevention is the primary means of defence
against the disease. However, the spatial and temporal
dynamics of the disturbance caused by the disease are
not yet fully understood (Aguayo et al. 2014). Earth ob-
servation satellite data and aerial flight surveys are often
used in forestry applications and are appropriate for
some research objectives (Immitzer and Atzberger 2014;
Immitzer et al. 2016; Fassnacht et al. 2016; Michez et al.
2016; Senf et al. 2017; Zarco-Tejada et al. 2018). None-
theless, their applicability is limited by the low resolution
of freely available satellite imagery as well as high costs
associated with aircraft-based surveys (Immitzer et al
2016). The low resolution of remote sensing is especially
problematical for riparian ecosystems, which exhibit a
predominantly linear dendritic configuration along
hydrographic networks (Huylenbroeck et al. 2020).
Compared to satellite and airplane-based remote sens-
ing, applications based on unmanned aerial vehicles
(UAVs), also called remotely piloted aircraft systems
(RPAS) or simply “drones”, have higher spatio-temporal
resolution and greater flexibility in regard to selecting
payloads and flight plan specifications for an appropriate
spatiotemporal resolution (Guerra-Herndndez et al.
2017; Diaz-Varela et al. 2018).

Developments regarding the automation of small
UAV-based flight and sensor data acquisition and also
the processing of large collections of individual aerial
images into seamless orthomosaics have boosted the po-
tential of UAV systems for accurate and effective forest
monitoring (Goodbody et al. 2017; Guerra-Hernandez
et al. 2017, 2018; Torresan et al. 2017). Furthermore,
these systems enable calculation of classification-
enhancing raster layers such as spectral band ratios,
vegetation indices, texture metrics and structural vari-
ables. Calibrated consumer-grade cameras and more
powerful multispectral and hyperspectral instruments
have been successfully used for mapping individual for-
est stands (Nési et al. 2015, 2018), for crown reconstruc-
tion and individual tree phenotyping (Diaz-Varela et al.
2015; Guerra-Herndndez et al. 2017), identification of
tree species (Laliberte et al. 2010; Ahmed et al. 2017)
and health status (Lehmann et al. 2015; Lisein et al.
2015; Nevalainen et al. 2017; Dash et al. 2017; Senf et al.
2017; Safonova et al. 2019).

Despite the potential advantages of UAVs, few studies
have made use of these systems to detect biotic damage
in forests. A review by Senf et al. (2017) revealed that
studies related to the remote sensing of insect pest
infested has focused on conifer bark beetles and defolia-
tors of deciduous trees. The North American mountain
pine beetle (Dendroctonus ponderosae Hopkins) and the
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European spruce bark beetle (Ips typographus) have been
particularly widely studied among other bark beetles, es-
pecially in the last few years. Lehmann et al. (2015) were
some of the first researchers to use UAV to detect levels
of pest infestation in forest ecosystems. These re-
searchers used multispectral imagery and object-based
image analysis to detect infestation in oak stands. Nasi
et al. (2015) reported the first study that investigated
bark beetle infested at tree-level by means of UAV
photogrammetry and hyperspectral imaging. These re-
searchers showed that different health status stages (i.e.
asymptomatic, infested and dead trees) could be identi-
fied by computer vision technologies based on hyper-
spectral UAV imaging at the individual tree level; an
overall accuracy of 76% was achieved when using three
categories based on colour (asymptomatic, infested,
dead).

Minafik and Langhammer (2016) reported preliminary
findings obtained with a UAV equipped with a multi-
spectral sensor for mapping bark beetle (Ips typogra-
phus) infestations. Dash et al. (2017) used a UAV with a
multispectral sensor to classify a disease outbreak in ma-
ture Pinus radiata D. Don. More recently, Kloucek et al.
(2019) and Safonova et al. (2019) studied bark beetle in-
festations on trees by using low-cost and customized
UAYV sensors to detect stages of bark beetle attack in
spruce (Picea abies) and fir (Abies sibirica Ledeb) forests
in the Czech republic and Russia, respectively. However,
very few studies aimed at the fine-scale assessment of
forests severely affected by diseases caused by pathogens
of the genus Phytophthora have used remote sensing
techniques (Cerrillo et al. 2005; Medcalf et al. 2011;
Michez et al. 2016; Barnes et al. 2017).

Several studies have reported that texture analysis can
improve the accuracy of health status classification in
forests (see for example Coburn and Roberts 2004;
Franklin et al. 2000). However, much work remains to
be done in relation to the efficacy of texture analysis in
studies of tree decay and mortality (Moskal and Franklin
2004). In this regard, textural and structural variables
derived from digital surface models (DSMs) require fur-
ther development and testing in forestry and ecological
mapping applications. In addition, there is a recent trend
to use UAV technology combined with object-based
classification methods such as object-based image ana-
lysis (OBIA) and Random Forest (RF), which perform
well for analysing complex high spatial resolution data,
including multispectral, and textural data (Blaschke
2010; Duro et al. 2012; Hossain and Chen 2019; Otsu
et al. 2019). Although these object-based image classifi-
cation methods using RF are generally considered to be
more accurate than other methods (Ahmed et al. 2017;
Franklin and Ahmed 2017; Otsu et al. 2019), RF models
have practical limitations, notably the space-complexity
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of RF estimation from large amounts of data and the dif-
ficulty in transferring the models at landscape level from
different data sets. Considering some difficulties encoun-
tered with these complex and computationally resource-
demanding models, other simpler, robust approaches are
urgently required to enhance the potential of high-
resolution imagery data such as textural and structural
data (Otsu et al. 2019). However, to the best of our
knowledge, no studies have yet applied such simple, ro-
bust logistics models in combination with very high
spatial resolution UAS imagery, to detect biotic decay in
forest applications.

The transferability of these models will inspire further
research and applications involving a combination of
methods applying the results to different areas with
similar characteristics or allowing the scaling up of the
predictive models on multispectral by integrating satel-
lite remote sensing information in the assessments over
large spatial scales (Dash et al. 2018). In this respect,
calibration and parametrization of these models are cru-
cial as this represents a starting point for quantifying
and analysing the variation spatial-temporal of deterior-
ation of tree health using multitemporal data in this type
of ecosystem.

The present study combines the use of multispectral
imaging and a red, green, blue (RGB) sensor from UAV
for: 1) assessing the separability of health status categor-
ies in relation to infection by Phytophthora in Alnus glu-
tinosa trees based on comparison of spectral responses
and vegetation indices and ii) developing and comparing
models to classify the health status from UAV-derived
variables using a three-step logistic approach and Ran-
dom Forest.

Material and methods

Study area

The study area is located in a deciduous floodplain for-
est covering an area of approximately 41.71 ha (Fig. 1b),
within a Protected Area (Natura 2000 SCI Rio Lima
PTCONO0020; Ramsar Site 1613 “Lagoas de Bertiandos e
Sdo Pedro d’Arcos”) in the Municipality of Ponte de
Lima (NW Portugal). The wetland forest is located along
the downstream alluvial floodplain of Estordos, a stream
with a drainage area of 54.4 km? and which is a tributary
of the Lima river. The elevation in the alluvial floodplain
ranges between 4 and 10 m a.s.l. (meter above sea level),
the average annual rainfall in the region is 1385.9 mm,
and the average annual temperature, 14 °C. Land use in
the floodplain is a combination of forest alternated with
pastures managed at different levels and also abandoned
areas where the forest has recovered naturally. The
major native forest species are Alnus glutinosa, Salix
atrocinerea and Quercus robur, with the occasional pres-
ence of Fraxinus angustifolia. Old plantations of
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Fig. 1 a—c Location of the ‘Bertiandos’ forest study site (outlined in yellow) and d—g examples of delineated crowns of trees (indicated in blue),
showing enlarged views of high resolution crown orthophotomosaics (ground sample distance (GSD), 5 cm) consisting of four categories of
forest health status: d asymptomatic, e less than 50% defoliation; f more than 50% defoliation, and g dead
J

Fig. 2 Health status categories in Alnus glutinosa trees considered in this study: healthy (asymptomatic), less than 50% crown defoliation, more
than 50% crown defoliation, and dead (pictures, from left to right)
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Eucalyptus camaldulensis, Acacia wmelanoxylon and
Populus spp. are also present, representing ca. 1% of the
forest area.

Field data

In the field, 81 black alder trees (Alnus glutinosa) with
distinctive crowns were surveyed and located using a
hand-held Ashtech Mobile Mapper 100 submetric GPS
unit (Fig. 1c). These 81 trees were representative of the
four health status classes considered: healthy (asymp-
tomatic) trees (A, n = 30); trees with less than 50% crown
defoliation (B, n = 12); trees with more than 50% crown
defoliation (C, n = 14); and dead trees (D, n = 25) (Fig. 2).
Apart from tree defoliation percentage, the survey in-
cluded a detailed forest inventory of the following vari-
ables (measured in all trees): height, diameter at breast
height, number of dead and alive stems, and occurrence
of other health status symptoms such as presence of
canker in the stems. The crown of each tree sampled in
the field was manually delineated based on visual inter-
pretation of the UAV orthomosaic. Field data were used
as reference for the tree health status predictive model-
ling based on UAV imagery as described in the section
“Data analysis”.

Remote sensing data acquisition and pre-processing

The airborne data collection campaigns were conducted
on 27 September, 2018. Weather conditions were char-
acterized by calm winds and clear atmospheric condi-
tions at the flight time. RGB and Multispectral flights
were done closer to solar noon. The RGB data were col-
lected between 12.31 and 12.53 pm to minimize the ef-
fect of shading. An RGB S.O.D.A. 10.2 (20 MP) camera
(senseFly Co, Cheseaux-Lausanne, Switzerland) was
mounted, with nadir view, on a fixed-wing UAV (Sense-
Fly eBee) (Fig. 3). The camera, equipped with a 12.75
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mm x 8.5mm sensor and 5472 x 3648 pixel detector,
was used in manual mode, and exposure settings (ISO
150 and shutter speed of 1/1000) were established before
each take-off according to the atmospheric conditions.
This provided a mean ~ 5 cm-pixel ' resolution for a
mean altitude of 170 m above ground level. eMotion V.
3.2.4 flight planning and monitoring software was used
to determine the main flight parameters. A longitudinal
and lateral overlapping of 85% and flight line spacing of
25 m were used to collect the images. A total of 570 im-
ages were used to generate orthomosaics and DSMs in
further analyses. Two-block flights were required to cap-
ture the entire forest study area (the orthomosaic cov-
ered an area of approximately 175ha). For further
details of sensor and flight parameters see the steps out-
lined in Guerra-Hernéandez et al. (2018).

In addition, 447 discrete-band multispectral images
were obtained with a 1.2-megapixel Parrot Sequoia
camera (focal length 3.98 mm), which captures ~ 50
nm wide bands in the green (Bl ~550 nm), red (B2 ~
660 nm), and near-infrared (B4 ~790 nm) regions, and
a~10nm wide band in the red-edge (B3~ 735nm)
region. Ancillary data for radiometric correction and
orthorectification (irradiance, sensor coordinates and
position) were captured synchronically for each multi-
spectral image. The Parrot Sequoia also captures sim-
ultaneous true-colour imagery with a 16-megapixel
sensor (RGB Sequoia, not used in the current study).
Imagery acquisition was also conducted on 27 Sep-
tember, 2018 between 11.00am and 11.45am, before
the RGB S.O.D.A. flight, using the same previously
described fixed wing UAV. Multispectral Sequoia im-
ages were acquired for an mean altitude of 140m
above ground level, with 80% longitudinal overlap and
80% lateral overlap, yielding a ground sample distance
(GSD) of 10 cm.

Fig. 3 UAV platform and sensors used to acquire aerial images
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Photogrammetric processing of UAV data

The UAV images were processed using Agisoft Photo-
scan version 1.4.5 (Agisoft 2018), and three products
were generated for the study area: 1) RGB and multi-
spectral reflectance orthomosaics with pixel size of 5
cm x 5cm; 2) a point cloud with a density of approxi-
mately 143 points-m~ > and 3) a DSM with a pixel size of
10 cm x 10 cm. The most important parameters used for
photogrammetric reconstruction in Photoscan are sum-
marized in Table 1. Images were initially geotagged on
the basis of data from the aircraft’s on-board global posi-
tioning system (GPS), and angular offsets were deter-
mined on the basis of data obtained from the on-board
inertial measurement unit. During processing, sets of
images were georeferenced to 9 ground control points
(GCPs) geolocated throughout the study area by using a
survey-grade GPS (centimetre-level accuracy). The num-
ber of GCPs used in the image sets depended on area
coverage, resulting in root mean square error (RMSE)
values of X=0.65cm, Y=0.183cm and Z=0.183cm
and total 0.240 cm.

Multispectral imagery was radiometrically calibrated to
absolute ground reflectance on the basis of incident ir-
radiance measures for each capture and reference re-
flectance from a calibration target (AIRINOV Co., Paris,
France; reference reflectance values green: 17%, red:
21.3%, red edge: 26.2%, NIR: 36.2%) recorded with the
Parrot Sequoia camera on the ground prior to each
flight.

Geospatial products derived from RGB sensor in-
cluded orthomosaics, point clouds and digital surface
models, while those derived from multispectral imagery
included four orthomosaic reflectance bands and the
normalized difference vegetation index (NDVI). Multi-
spectral orthomosaics were subsequently used to elabor-
ate other vegetation indices than NDVI as described in
section “Feature layer generation and data extraction”.
Some examples of the derived products are shown in
Fig. 4a—d.

Feature layer generation and data extraction
We extracted 34 candidate explanatory variables from
the UAV data at crown scale, including both spectral
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and 3D structural features of the tree canopy. We hy-
pothesized that these variables would potentially dis-
criminate between the different categories of crown
defoliation.

We used the set of selected spectral indices (Table 2)
to extract the values for tree crowns with different levels
of defoliation. The aim was to analyse the informative
value of different spectral indices to detect the different
stages of defoliation based on four spectral bands. Spec-
tral indices were selected from previous research, on the
basis of the spectral bands available in the multispectral
data set and evidence of correlation with plant physio-
logical stress and leaf cover. The NDVI is a widely used
indices that has been demonstrated to be correlated with
physiological stress and photosynthetic activity in a dif-
ferent range of environments (Lausch et al. 2016, 2017,
2018). The green NDVI (GNDVI), the Normalized
Green-Red Vegetation Index (NGRVI) and the red-edge
NDVI (RENDVI) were specifically included to examine
the sensitivity of indices including the red-edge, green
and red bands (c.f. Table 2 for each index specification)
and to compare these directly to an index based on
near-infrared band. The non-linear index (NLI) was se-
lected because some previous research findings suggest
that the relationship between spectral indices and some
tree biophysical characteristics are non-linear (Goel and
Qin 1994; Dash et al. 2017). Therefore, the NLI may be
a good indicator of various stages of physiological stress
as it can be transformed to express the non-linear rela-
tionships in a linear manner. The optimized soil adjusted
vegetation index (OSAVI) (Huete 1988), which was ori-
ginally designed to correct soil contamination using
vegetation signals, may detect subtle differences in
crowns with relatively low green vegetation coverage. A
Raster stack of spectral band was generated in RStudio
to obtain the spectral indices using raster package (R
Core Team 2020).

As stated in the introduction, different levels of defoli-
ation may be reflected in the textural and geometric in-
formation from the canopy (Moskal and Franklin 2004).
Hence, the NDVI Gray-level Co-occurrence Matrix
(GLCM) was used to compute texture variables (Hara-
lick and Shanmugam 1973) using the glcmm package in R

Table 1 Summary of the most important parameters included in the photogrammetric processing with Agisoft Photoscan. Other
parameters are available in the software but here we report only the most relevant ones and those that were modified from default

settings for this application

Processing step

Parameter name

Parameter value

Alignment

Densification

Optimization

Location of ground control points

Accuracy High
Quiality High
Depth filtering Aggressive
Default

Manual
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Fig. 4 Mosaic images showing: a RGB orthomosaic with GCPs, b DSM raster, ¢ near infrared (NIR) reflectance band and d NDVI
.

Table 2 Spectral indices and texture from NDVI computed from the images captured by the Parrot Sequoia multispectral sensor at

crown level

Class Variable

Formula

Reference

Spectral (Multispectral sensor)

Normalized difference NDVI
vegetation index
Green NDVI GNDVI
Red edge normalised RENDVI
difference Vegetation index
Green RENVI REGNDVI
Red RENVI RERNDVI
Normalized green-red vege-  NGRVI
tation index
Non-linear index NLI
Optimized soil adjusted OSAVI
vegetation index

Texture navi_GLCM

(window size of 3 x 3 pixels
and a 45 degree shift)

NDVI= (B4 — B2) / (B4 +B2)

GNDVI= (B4 - B1) / (B4 +B1)

RENDVI = (B4 - B3) / (B4 +B3)

REGNDVI= (B3 - B1) / (B3 +B1)

REGNDVI= (B3 - B2) / (B3 +B2)

NGRVI=(B1 - B2) / (B1 +B2)

NLI= (B412 - B2) / (B472 + B2)

SAVI=((B4 - B2) / (B4 +B2) +0.15)) x (1 +0.5)

"on o

“mean’, “variance”,

“entropy”,

homogeneity”, “contrast’, “dissimilarity”,

v

second_moment”, “correlation”

(Rouse Jr et al.
1974)

(Gitelson et al.
1996)

(Gitelson and
Merzlyak 1994)

(Buschmann and
Nagel 1993)

(Barnes et al.
2000)

(Motohka et al.
2010)

(Goel and Qin
1994)

(Huete 1988)

B1: Green Band; B2: Red Band; B3: Red-edge Band; B4: NIR band
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(Zvoleff 2019). The textural variables (Table 2) included
the mean, variance, homogeneity, contrast, dissimilarity,
entropy and second moment (ndvi GLCM_mean, ndvi_
GLCM _variance, ndvi_GLCM_homogeneity, ndvi_
GLCM_contrast, ndvi_GLCM_dissimilarity, ndvi_
GLCM_entropy, ndvi_GLCM_secondmoment). All of the
variables were calculated using a window size of 3 x 3
pixels and a 45-degree shift. The latter parameter deter-
mined the direction (45°) along which the textural vari-
ables were calculated. Rather than using all the
directions, this procedure allowed to limit computational
time.

The selection of variables obtained directly from
UAV-DSM (Digital Surface Model) can also be useful
for describing forest canopy structures. Furthermore, the
use of these variables avoids the need to normalize the
point cloud, which prevents introducing random errors
and further propagating in the Canopy Height Models
(CHMs) (Giannetti et al. 2018). Such errors may be es-
pecially serious in complex scenarios as our study area,
where errors of Digital Elevation Models (DEMs) ob-
tained from UAV photogrammetric data (Fig. 5a) or
even Airborne Laser scanning (ALS) data (e.g. due to re-
duced penetration of pulses to the ground and greater
uncertainty of the ground classification of ALS data)
might propagate errors in the normalization of DSM
(Fig. 5a and b). The DSM variables were computed using
the raw DSM values (i.e. in m above sea level) of all
pixels within the area corresponding to each crown and
including the mean (TPL,00s TR, cnm
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ROUGHNESS,,..,) and standard deviation (SLOPE,,,
TPl,;, TRI,;, ROUGHNESS,,) of the following topo-
graphic variables, calculated using the terrain function
in the R package raster (Hijmans et al. 2015): slope,
topographical position index (7PI), terrain roughness
index (TRI) and roughness (ROUGHNESS). Eight neigh-
boring cells were used to compute slope for any cell.
These variables were used to describe the horizontal var-
iations in tree canopy height and possibly different
crown patterns associated with different levels of defoli-
ation at crown scale.

To provide further description of the horizontal varia-
tions of the canopy surface, textural variables were cal-
culated using the DSM with the same parameters as
previously described for spectral textural variables in the
NDVI. The mean (dsm_GLCM_mean, dsm_GLCM_vari-
ance, dsm_GLCM_homogeneity, dsm_GLCM_contrast,
dsm_GLCM_dissimilarity, dsm_GLCM_entropy, dsm_
GLCM_secondmoment) were then computed using all
pixels within the crown. A window size of 3 x 3 pixels
and a 45-degree shift was used in addition to NDVI
textures.

Training / validation data extraction at crown level
was based on the identification and manual delineation
on the RGB orthomosaics of the trees surveyed in the
field and stored as polygon vectors. Pixel values of the
candidate explanatory variables were retrieved for each
tree crown polygon using the extract function embedded
in the raster package in R. The extracted values were
used to calculate the mean and standard deviation of the

Fig. 5 Examples of DSM point clouds from the study area: (a) SfM (Structure from Motion) point cloud classification in ground (brown color) and high
vegetation (green colour) in high canopy cover conditions, (b) DSM and nadir view of defoliated trees in DSM point clouds affected by the disease
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Table 3 Metrics computed from the DMS S.0.D.A-RGB-UAV-data at crown level

Class Variable Formula Reference
(“Terrain” package, Hijmans et al. 2015)
DSM
Slope SLOPE,, Slope (Horn 1981)
8
Topographic TPlean and TPl where TPl = y— Z% with y is the altitude of a cell and y; is the altitude of ~ (Wilson et al.
position index the i-th adjacent=cell 2007)

Terrain
ruggedness index

TRimean and TRiy

Roughness ROUGHNESS pean and
ROUGHNESS.
Texture dsm_GLCM_mean

(window size of 3 x 3 pixels and a
45 degree shift)

8
where TRl = ZMT’Y‘, with y is the altitude of a cell and y; is the altitude of
the i-th adjacent cell

Roughness is the difference between the maximum and the minimum
value of a cell and its 8 surrounding cells

non

“mean”, “variance”, "homogeneity”, “contrast’, “dissimilarity”, “entropy”,
“second_moment”, “correlation”

variables or each individual tree crown (Tables 2 and 3).
The derived statistics were included in a database and
used as the input data for further analysis using RF
(Random Forest) classifiers and logistic models.

Data analysis

Data analysis was conducted in two steps as described
below: i) an initial step of exploratory analysis based on
assessing the separability of damage classes based on
comparison of spectral responses and vegetation indices
and ii) a second step of modelling, where two different
approaches of classifications were implemented, one
based on random forest and other based on a cascade of
logistic models. Results of these two alternative classifi-
cations were used to compare their performance as
health status predictors. Field data were used as refer-
ence for training and validation purposes.

In addition, throughout the modelling stage, we
assessed for each of the classification methods (i.e. ran-
dom forest and logistic models respectively) the per-
formance of three different levels of complexity
(generalization or grouping) of classes, namely: the ori-
ginal four classes discriminated in the field (A, B, C, D),
three classes by merging the two classes of alive trees
with defoliation (A, B + C, D) and two classes discrimin-
ating alive vs dead trees (A + B+ C, D).

Exploratory analysis: reflectance/VI thresholding

Boxplot from reflectance value of the spectral bands
were empirically analysed at crown level by using the
four health status categories. On the other hand, one-
way ANOVA was then used to determine the differences
between the means of the spectral characteristics of the
four classes considered based on the indices values cal-
culated from the images. These previous analyses were
done to see possibilities for discrimination and possible
overlaps of spectral responses between the target classes.

Tree health status modelling by random forest

The tree health status was modelled using a random
forest (RF) model implemented in the randomForest
package of R (Liaw and Wiener 2002). RF models
were fitted using the four health status categories
-classes of defoliation- considered in the field tree
health assessment as response variables and the vari-
ables computed from both sensors as candidate pre-
dictor variables. RF is a machine learning method
which relies on the generation of classification trees
and on the aggregation of their results. It uses an in-
put feature vector, which is classified with all trees in
the forest. This results in a class label for the training
sample in the terminal node where it is finally lo-
cated. Iterating this procedure over all trees yields the
random forest prediction. All trees are trained with
the same features but with different training sets,
which are generated from the original training set.
The regression trees are generated through bagging
(Breiman 1996), so that trees are randomly selected
through bootstrapping of the response and dependent
variables. In the forest building process, when boot-
strap sample set is drawn by sampling with replace-
ment for each tree, about 1/3 of original instances are
left out (Adelabu et al. 2015). A randomly selected
subset of the variables at each node are used to find
the best split. The number of classification trees was
set to 500, as the error rates were reaching the
asymptote for this value. Seven variables were tested
at each split as this was found to be the most suitable
number based on a trial and error approach.

To assess image classification accuracy for each of the
three levels of generalization of health status classes, we
computed the corresponding confusion matrices, produ-
cer, user and overall accuracies and Kappa indices (Cohen
1968) by comparing the predicted and reference class on
the 81 selected trees that were surveyed in the field.
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A measure of the explanatory power of the input vari-
ables known as the Variable Importance (VI) was ob-
tained by random permutation and reassessment of the
misclassification rate for each variable (Breiman 2001).

Finally, RF classifications were also conducted and
checked by excluding the textural variables derived from
the NDVI and DSM and topographic variables related to
DSM from SfM point clouds.

Tree health status modelling by logistic regression
Although most cumulative distribution functions may
perform well in modelling the probability of occurrence
in classification problems, the logistic function is the
most widely used (e.g. Vanclay 1994; Monserud and
Sterba 1999) because it is mathematically flexible and
has a meaningful interpretation (Hosmer Jr et al. 2013).
The logistic regression predicts a probability of an oc-
currence ranging continuously between 0 and 1.

Two different approaches can be used in logistic re-
gression to model the probability of belonging to a spe-
cific category: the first is based on the use of a single
multinomial logistic regression and the second is based
on the use of a set of binary logistic regressions. As we
wish to compare probability estimation models with dif-
ferent number of classes (4 classes: A, B, C and D; or 3
classes: A, B+ C and D) a set of binary logistic regres-
sions was used; in addition, this method does not require
assumption of the hypothesis of independence from ir-
relevant alternatives that it is necessary to assume in
multinomial logistic regression (Paramesh 1973).

The logistic model is formulated as

1
- 1+ e_(ﬁ0+ﬁlx1+'"+ﬁpxp)

(1)

T

where 7 is the probability of occurrence of event
(decay class selected), x; to x,, are independent variables,
Po is the intercept, and f5; to j3, are parameters to be es-
timated or regression coefficients.

Different classification sequences of the categories
considered were tested using binary logistic regression
models. The best results were obtained by first fitting a
model to estimate the probability of belonging to class A
(asymptomatic trees) versus non-class A, then a model
to estimate the probability of belonging to class D (dead
trees) versus defoliated trees (class B or C) and finally a
model to estimate the probability of belonging to class B
(Iess than 50% defoliation) versus C (more than 50%
defoliation).

The independent variables were selected using the
stepwise approach of the LOGISTIC procedure of SAS/
STAT® (Institute SAS 2004). Collinearity between regres-
sors was prevented by checking the variance inflation
factor (VIF). In this study, regressors with VIF above 10
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were disregarded (Belsley et al. 2005). The performance
of the models was evaluated in terms of percentage of
concordant pairs, generalized coefficient of determin-
ation (R% Cox and Snell 1989) and adjusted coefficient
of determination (adj. R% Nagelkerke 1991). Once each
logistic regression model was fitted, the threshold for de-
ciding whether to classify a tree as an event or non-
event (class A versus no A or class D versus B+ C or
class B versus C, depending on the model) was obtained
by maximizing both the sensitivity and specificity of the
model. Finally, the confusion matrix was obtained using
the previously selected thresholds.

Leave-one-out cross-validation was performed for each
binary logistic regression model using the glm function
of the R statistical software (Dobson and Barnett 2008;
Marschner et al. 2018) and the confusion matrix for
cross-validation was obtained using the previously ob-
tained set of thresholds. As in the random forest classifi-
cation, confusion matrices, accuracies and kappa indices
were computed comparing the predicted vs. reference
values for the set of 81 trees and considering the three
classification schemes assessment.

Results

Reflectance/vegetation indices thresholding

Analysis of SEQUOIA-sensor spectral bands was con-
ducted to determine the spectral profiles of the asymp-
tomatic, defoliated (2 classes) and dead trees (Fig. 6).
The spectral differences between asymptomatic (class A)
and defoliated trees (classes B and C) were distinguish-
able both in the visible and near-infrared and were
higher in the red-edge and near-infrared (NIR) bands
(B3 and B4, respectively) than in the visible bands (B1
and B2). Spectra of the dead trees (class D) differed from
the normal canopy reflectance spectra; the spectra were
brighter at the visible wavelengths and darker at the NIR
wavelengths. Only minor differences were observed in
the spectra of defoliated and asymptomatic trees; com-
pared to the asymptomatic trees, the defoliated trees had
a higher reflectivity in the red and green portions of the
spectrum and lower reflectivity in the NIR part of the
spectrum. The results suggest that the red band is more
valuable for detecting defoliation induced by the Phy-
tophthora alni species complex.

The differences of the vegetation indices values can be
visually assessed in Fig. 7. The box plots show overlap-
ping in the vegetation indices values between the classes
and different behaviours depending on the particular
classes and indices. The overlapping is particularly clear
for the classes B and A with NGRVI, NLI and OSAVL
Class C also showed a higher level of dispersion for all
the tested indices and only a low level of overlapping
with other classes for the NGRVI index.
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Fig. 6 Boxplot from reflectance value of the spectral bands (B1-Green; B2-Red; B3-red-edge; B4-NIR) by categories: (A) asymptomatic, (B) crown
defoliation less than 50%, (C) crown defoliation more than 50% and (D) Dead

83 B4

ANOVA was then used to determine the difference
between the means of the spectral characteristics of the
four classes considered (Table 4). The confidence inter-
val for this statistic was 95%. The ANOVA revealed the
existence of significant differences between the NDVI
values for the different classes (ANOVA, p<0.001). A
pairwise multiple comparison of means showed that
NDVI was robust enough to separate the dead from the
living trees (class D vs. classes A + B + C in Table 4) and
also to separate most of the pairs of classes. However,
the results of the Tukey’s test indicated that differences
in NDVI between asymptomatic trees and trees with less
than 50% crown defoliation (A vs. B) were not significant
in this parametric test as well as the other indices. As
NDVI, the Tukey’s test also indicated significant differ-
ences between classes C and D for NGRVI, NLI and
OSAVI indices.

Random forest classification

The results for the overall accuracy was 67% when using
the four classes considered (Table 5). The accuracies for
each class revealed a high level of confusion between the
two categories of defoliation (B and C).

The RF classification for the generalized three-class
scheme (A = Asymptomatic, B + C = defoliated and C=
dead trees) yielded an increase of 5% in terms of the
overall accuracy (72%). As expected, the fusion of the
classes of partially defoliated trees in a single class in-
creased the accuracies of this class to around 57% for
user accuracy and 46% for producer’s accuracy
(Table 6).

Finally, good separation was obtained when only two
classes of trees were considered (alive and dead)
(Table 7). The data set provided the best results with an
overall accuracy of 91% and also increased per class ac-
curacies to values higher than 80%. The overall Kappa
value indicated good agreement between reference and
predicted values, close to the interval of almost perfect
agreement (0.81-1.00) according to the scale proposed
by Landis and Koch (1977).

Regarding the different choices of variables tested, the
exclusion of image texture decreased by 7%, 10% and 4%
for four classes, three classes and two classes, respect-
ively (Table 8). After removing the DSM-derived vari-
ables, the classification results showed that the overall
classification accuracy decreased by 7%, 11% and 5% for
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four classes, three classes and two classes, respectively
(Table 8).

Variable importance was tested by means of the Mean
Decrease in Gini metric (Han et al. 2016). The results
shown in Fig. 8 indicate that the textural spectral vari-
ables from NDVI and the spectral indices as NDVI and

Table 4 p-values for the Turkey's test for pairwise comparison
of the four classes of tree health status considered are shown
for each index. A) Asymptomatic, B) defoliated less than 50%, C)
defoliated more than 50%, D) dead

Index ANOVA (Tukey test) p-value

A-B C-A D-A C-B D-B D-C
NDVI ns *xk *%% % . P
GNDVI ns > > ns P *xx
RENDVI ns *x ok ns xxx ns
REGNDVI ns xrx *xx ns *xx *%
RERNDVI ns sk > ns P *xx
NGRVI ns - - *x wx *xx
NLI ns Xk *kx *x Xk %
OSAVI ns wox ek xx xwx M

RERNDVI were the most important variables for the 4
classes scheme, while DSM-variables proved to be less
important in modelling the defoliation. Interestingly, for
the selected tree-defoliation-based models, geometric
and topographical variables from DSM were never

Table 5 Image classification accuracy by group in the four
classes considered, where A = Asymptomatic trees, B = trees
with less than 50% defoliation, C = trees with more than 50%
defoliation, D = dead trees, PA = producer’s accuracy, UA = user’s
accuracy, value shown in bold = overall accuracy. Classification
and reference (field check) frequencies are arranged in rows
and columns respectively

Predicted

Health status A B C D Y PA
Observed A 24 4 2 0 30 080

B 7 4 1 0 12033

C 3 3 2 6 14 014

D 0 0 1 24 25 096

> 34 11 6 30 54

UA 071 036 033 080 0.67

p-value <0.0001 **¥, <0.001 **, <0.01 *

Kappa index =0.52
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Table 6 Image classification accuracy by group in three classes,
where A = Asymptomatic trees, B + C = defoliated trees, D =
dead trees, PA = producer’s accuracy, UA = user’s accuracy, value
shown in bold = overall accuracy. Classification and reference
(field check) frequencies are arranged in rows and columns
respectively

Predicted
Health status A B+C D b3 PA
Observed A 23 7 0 30 0.77
B+C 9 12 5 26 046
D 0 2 23 25 0.92
)2 32 21 28 58
UA 0.72 0.57 0.82 0.72

Kappa index = 0.62

among the five most important explanatory variables in
terms of the Mean Decrease in Gini metric.

Logistic regression

Three logistic models were adjusted in a three-step ap-
proach to discriminate and classify the 4 categories of
defoliation in the study (Estimated parameters, standard
errors (SE), z values statistics and p-values for the
models are presented in Additional file 1).

The first logistic model (logit1) predicts the probability
of the tree belonging to class A (asymptomatic trees) as
shown in Table 9. Hence, the model distinguishes be-
tween class A and the other trees (B and C, defoliated
trees and D dead trees). The model included only 2 vari-
ables as significant predictors, the GNDVI and dsm_
Glem_dissimilarity as a texture feature from the DSM.

The fitted model is expressed as

exp(-17.085 + 29.038 x GNDVI-18.669 X DSMGLCMqimiorsy)

A) =
mA) =17 exp(~17.085 + 29.038 x GNDVI-18.669 X DSMg1cye,

mr‘lnnty)
and the complementary model is therefore expressed as

1

n(not A) =
1+ exp(-17.085+29.038 x GNDVI-18.669 X DSMGLCM yiony)

Table 7 Image classification accuracy by group in two classes
where A+ B+ C=alive trees, D = dead trees, PA = producer’s
accuracy, UA = user's accuracy, value shown in bold = overall
accuracy

Predicted
Health status A+B+C D b3 PA
Observed A+B+C 50 6 56 0.89
D 1 24 25 0.96
)2 51 30 73
UA 0.98 0.80 0.91

Kappa index = 0.82
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The percentage of concordant pairs was
91.21%. The probability threshold for discriminating
between belonging to group A or not was established
to be 0.37. Therefore, trees for which probabilities
higher than 0.37 were observed, belong to category A.
The logistic model estimated sign (positive) indicates
that an increase in GNDVI will increase the likelihood
of the tree of belonging to class A. On the other
hand, lower variability in canopy surface height from
DSM texture (i.e. lower values of the GLCM dissimi-
larity parameter) increases the likelihood of the tree
belonging to class A.

The second logistic model /Jogit2 discriminates be-
tween the remaining classes D (dead trees) and defo-
liated trees (B and C) (Table 10). The model included
as predictive variables the ndvi_Glcm_variance related
to texture from NDVI and dsm_Glcm_variance as a
texture measure related to canopy height from DSM.

The fitted model is expressed as:

exp(-11.8445 4 39.6708 X NDVIGLcpM,, e T 0-02244 X DSMGLCM,0inee)

D) =
(D) 1+ exp(-11.8445 + 39.6708 x NDVIgicum +0.02244 X DSMGrem, i)

;;;;;;;;

and the complementary model, as:

1
ot D, among B. C. D) = 4 11 5445 1 39.6708 x NDVIgunr..... + 002244 x DSMarcnr.s)

The percentage of concordant pairs was 95.69%. Ac-
cording to Hosmer Jr et al. (2013), the area under the
ROC curve (0.9569) indicated excellent discrimination of
the model. A cut-off point discriminating between be-
longing to group D (dead trees) or group B+ C (defo-
liated trees) was established at 0.50. In other words, at
probabilities higher than 0.50 the tree belongs to class D
(once it has been ruled out that the tree belongs to class
A, asymptomatic trees). The model indicates that an in-
crease in the variability of canopy height from DSM and
higher variability in contrast from NDVI texture in-
creases the likelihood of tree belonging to the class D
(dead).

Finally, the third logit3 model discriminated between
classes B and C, after elimination of alive and dead trees
(classes A and D, respectively) (Table 11). This model
only included the NGRVI.

The fitted model is expressed as

exp(-14.7280 + 38.2480 x NGRVI)
1+ exp(-14.7280 + 38.2480 x NGRVI)

n(B) =

and the complementary model as

1
tB Band C) =
mnot B, among B and C) = 4= 1 7580 + 382480 x NGRVI)
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Table 8 Evaluation of the accuracy of RF classification for the
different classes and set of variables

No. of Overall accuracy Overall accuracy Overall

classes for all variables  without accuracy

considered texture variables without
from NDVI and variables
DSM from DSM

4 classes 67% 60% 59%

3 classes 72% 62% 61%

2 classes 90% 86% 85%

The percentage of concordant pairs was 85.71%, and
the cut-off point for determining whether trees belong
to class B or C was established at 0.41. Therefore, trees
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for probabilities higher than 0.40 were observed belong
to class B.

The confusion matrix computed for all the logistic
models using cross validation showed an overall accur-
acy of 75%, 80% and 94% for 4, 3 and 2 classes, respect-
ively (Tables 9, 10 and 11).

Discussion

Rapidly increasing disease-induced forest disturbance is
a global threat to forest sustainability, and accurate and
cost-efficient detection of stand and tree conditions for
timely forest management is therefore needed (Lausch
et al. 2016, 2017, 2018). The emergence of new sensors
and UAS provides an opportunity to augment traditional
field-based approaches by combining remotely-sensed
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Table 9 Image classification accuracy by group in four classes,
where A = Asymptomatic trees, B =trees defoliated less than
50%, C =trees defoliated more than 50% and D = dead trees,
PA = producer’s accuracy, UA = user’s accuracy, value shown in
bold = overall accuracy. Classification and reference (field check)
frequencies are arranged in rows and columns respectively

Predicted

Health status A B C D b3 PA
Observed A 24 5 1 0 30 08

B 2 6 4 0 1205

C 3 0 8 3 14 057

D 0 0 2 23 25 092

> 29 " 15 26 61

UA 0823 054 053 088 0.75

Kappa index = 0.65

data products to produce enhanced information about
forest condition (Padua et al. 2017).

Lightweight sensors mounted on UAV platforms has
proven to be particularly suitable for forestry applica-
tions (Guimardes et al. 2020) but might suffer from
shortcoming for wide-scale applications, due to their
relative low yields. Previous works (Matese et al. 2015;
Manfreda et al. 2018) pointed out that UAV is a cost-
effective solution for areas equal or less than 20 ha. In
our case we developed and tested the sensitivity of
multispectral and RBG images obtained from UAVs to
detect disease-induced defoliation in a natural floodplain
forest in northern Portugal on an area of around 200 ha,
flown in a single day, pointing out that acceptable yields
might be reached with lightweight UAVs on significantly
larger areas. Furthermore, such yields are still far lower
than satellite remote sensing, but like in our study case,
the use of UAV showed advantages for the detection of
anomalies at tree scale, useful for an early stage detec-
tion of disease outbreak. In fact, it was argued that even
high-resolution satellite imagery requires clusters of at

Table 10 Image classification accuracy by group in three
classes, where A = Asymptomatic trees, B + C = defoliated trees,
D =dead trees, PA = producer’s accuracy, UA = user's accuracy,
value shown in bold = overall accuracy. Classification and
reference (field check) frequencies are arranged in rows and
columns respectively

Predicted
Health status A B+C D )2 PA
Observed A 24 6 0 30 08
B+ C 5 18 3 26 069
D 0 2 23 25 0.92
b3 29 26 26 65
UA 0.83 0.69 0.88 0.80

Kappa index =0.73
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Table 11 Image classification accuracy by group in two classes
where A+ B+ C=alive trees, D = dead trees, PA = producer’s
accuracy, UA = user’s accuracy, value shown in bold = overall
accuracy

Predicted
Health status A+B+C D 2 PA
Observed A+B+C 53 3 56 0.95
D 2 23 25 092
2 55 26 76
UA 0.96 0.88 0.94

Kappa index = 0.86

least three or four mature trees for detecting stress,
making them more suitable for large-scale detection of
advanced stages of damage (Dash et al. 2018).

The proposed approaches showed a high potential for
detection of disease outbreaks in a spatial explicit way
over small-medium size forest stands at detailed scale
based on a limited field sample. The method might also
be extended to other scenarios, either requiring a new
collection of training data or, in the case of the logistic
model approach, even considering the same regression
coefficients and therefore avoiding such data collection,
as discussed in the section “Logistic regression”. The
method might also be extended to the multitemporal
monitoring of the disease evolution when applied on
multitemporal collections. Of course, the extrapolation
to other geographical settings or to a multitemporal ana-
lyses relies on the availability of datasets with compar-
able resolutions (radiometric, spatial, spectral) and good
quality standards to avoid artefacts due to data differ-
ences. In fact, even complex radiometric corrections of
multispectral images based on reflectance calibration
panels and synchronically irradiance records might not
address conveniently the complexity of radiometric
normalization and some artefacts might remain (Man-
freda et al. 2018). In any case such potential problems in
radiometric correction and homogeneity are by far com-
pensated by the sensitivity of UAV data to minor differ-
ences of vegetation cover characteristics, attributable to
their acquisition flexibility, spatial resolution and specifi-
city of spectral bands recorded (Dash et al. 2018; Man-
freda et al. 2018; Guimarées et al. 2020).

Reflectance/VI thresholding

Although the significance of the NIR band has already
been demonstrated (Minafik and Langhammer 2016;
Abdullah et al. 2018; Stoyanova et al. 2018; Kloucek
et al. 2019), detection of the pre-visual stage of this dis-
ease attack (“green attack”) remains challenging, espe-
cially using inexpensive cameras. Asymptomatic
vegetation typically takes up much of the visible light
that falls on it and reflects much of the nearby infrared



Guerra-Hernandez et al. Forest Ecosystems (2021) 8:61

area. According to this general principle, our study con-
firmed that in comparison to asymptomatic trees, defo-
liated trees have a higher reflectance in the green and
red intervals of the spectrum and lower in the NIR (c.f.
Fig. 5), which corresponds with the findings of Nsi et al.
(2015) at tree level and those of Abdullah et al. (2018) at
leaf level. Hence, in the visible region, the mean reflect-
ance was higher in the defoliated crown than in the
asymptomatic canopy, in conjunction with the absence
of leaves and also with pigment and leaf structure deg-
radation. In any case, important overlaps between spec-
tral signatures were detected, pointing out limitations
and the need of further elaboration of the reflectance
data.

The concentration of pigments such as total chloro-
phyll is the main factor for determining leaf spectral
variation and absorption peaks (Carter and Knapp 2001).
The defoliated trees had significantly lower chlorophyll
concentrations than the asymptomatic ones, resulting in
lower absorption and higher scattering. There was a lar-
ger difference between defoliated and asymptomatic
crowns in the near-infrared (~ 790 nm) region, as well as
in the ~ 10 nm wide band in the red-edge (~ 735 nm), as
the asymptomatic crowns had higher reflectance com-
pared to the average defoliated crown spectra as an evi-
dent effect of pigment signal decrease due to the
reduction of green biomass. Hence, in healthy plants, re-
flectance is generally greater in the NIR region than in
diseased and stressed plants, and reflectance can there-
fore be used to distinguish one from the other. The pos-
ition and amplitude of the red-edge transition between
the high red absorption and the high NIR reflection by
vegetation have also shown a good correlation with pig-
ment concentration and canopy structure features such
as leaf area index (Filella and Penuelas 1994; Ju et al.
2010). One of the key features of remote pigment assess-
ment is the capacity to separate the signals related to in-
dividual pigments and structural changes in tree
canopies. These assessment methods must account for
overlapping signals, especially when differentiating be-
tween chlorophyll and other pigment groups (Hernan-
dez-Clemente et al. 2014).

Considering these general principles, several vegetation
indices combining visible, red-edge and NIR spectral
bands were chosen for study as we aimed to evaluate the
joint effect of changes in pigments and leaf/canopy
structure as an indicator of defoliations caused by the
disease. In all the cases, the separation between the
asymptomatic and the early stages of defoliation proved
to be problematic based only in the comparison of vege-
tation indices values. The NDVI proved to be sufficiently
robust to separate the dead from live trees (class D vs.
classes A + B+ C in Table 4) and also between most of
the pairs of classes. Although many indices have been
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used in remote sensing research in the last 40 years
(Bannari et al. 1995), the NDVI has been extensively
used to discriminate healthy from senescent foliage in
forest stands affected by insects and disease attack
(Spruce et al. 2011; Lottering and Mutanga 2016; Dash
et al. 2017). NLI and OSAVI computed with red and
NIR bands (like the NDVI) indicated significant differ-
ences between the two classes of defoliated crowns. Our
findings showed that the combination of red-edge and
NIR region (RENDVI) was less capable than NDVI of
detecting defoliation classes induced by alder Phy-
tophthora. NGRVI calculated from the visible green and
red bands also revealed significant differences between
the two defoliated categories and was selected as a sig-
nificant variable in the third logistic model to classify the
defoliated trees. In fact, as pointed out by Motohka et al.
(2010), this index is particularly suited to detecting sub-
tle changes in canopy pigmentation in the range of yel-
low colours in the autumn stage of deciduous forests
than other indices based on red-edge or NIR wave-
lengths. Our findings suggest that the index also might
detect such changes, in this case associated with differ-
ent levels of biotic defoliation.

Random forest
An RF model was chosen to predict defoliation levels, as
such models have been demonstrated to be suitable for
predicting tree health status (Adelabu et al. 2015). As
the previous studies (Nési et al. 2015) distinguished well
between asymptomatic and dead trees (with an overall
accuracy of 91%), we focused our attention on distin-
guishing between asymptomatic, dead and two categor-
ies of defoliated trees. Categorization into two classes
(dead vs. alive) provided good results, also with an over-
all accuracy of 91% and Cohen’s kappa of 0.82. However,
separation between the two classes of partial defoliation
to produce a total of four health status categories yielded
poorer results, with an overall accuracy of 67% and
Cohen’s kappa of 0.52 pointing out the complexity of
the discrimination between classes of partial defoliation.
Our results regarding overall accuracy (72%) using the
RF approach with 3 classes (asymptomatic, defoliated,
dead) complement those reported by Kloucek et al.
(2019), who evaluated UAV-based detection on mosaics
based on images acquired during a single mission. In the
corresponding acquisition time (at a different latitude),
these researchers recorded a 78% overall accuracy. Our
results with 3 classes are also similar to those of Nisi
et al. (2015), who reported an overall accuracy of 76%
based on hyperspectral UAV imaging at the individual
tree level when using three classes (asymptomatic, defo-
liated, dead) in urban spruce forests.

Comparable applications of airborne image texture
analysis in forest health studies using UAV-derived data
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are scarce (Moskal and Franklin 2004). The texture and
crown surface height information denoted the shape of
the defoliated crowns, adding a spatial domain to the
spectral domain. Texture processing generally improved
the classification accuracy in the order of 5+ 10%, which
is slightly lower than the accuracy obtained by (Moskal
and Franklin 2004) for aspen (Populus tremula) defoli-
ation (increase of 15%) from multispectral imagery and
also using NDVI texture. The present study demon-
strated that the severity of black alder crown defoliation
can be detected with multispectral and RGB UAV image
data, specifically by the incorporation of imagery spatial
component captured by image texture from NDVI and
DSM.

In contrast to previous findings based on satellite data
applications for early detection of physiological stress
(Dash et al. 2018), indices based on red-edge bands were
not prominent in the discrimination of defoliation levels.
In turn, GNDVI and textural variables from NDVI were
the most important predictors of the first and second
model. RENDVI was less important predictor of the cat-
egories tested using the RF approach for four and three
classes, respectively. The greater importance of NDVI
may be attributable to the broader coverage of the NIR
from this sensor (50 nm wide band in the red-edge (~
790 nm) than the red edge region covered by the UAV
mounted sensor, which is limited to a narrower spectral
window (10 nm wide band in the red-edge (~ 735 nm)).
The considerably narrow band and the location of the
red-edge band in this particular multispectral sensor
may result in failure to detect spectral differences associ-
ated with pigment/leaf structure differences reflected at
a given point of the red to NIR transition not recorded
by the sensor.

Logistic regression

A robust and parsimonious first logistic model (logitI)
was developed by using only two variables to distinguish
asymptomatic trees from defoliated and dead trees. The
model indicates that an increase in the mean value of
GNDVI from the crown and lower dissimilarity from
DSM increases the likelihood of tree belonging to class
A (asymptomatic trees). The GNDVI is attributed to the
chlorophyll content of the leaves (Shanahan et al. 2001).
The chlorophyll content reflects the physiological state
of vegetation as it decreases in stressed plants and can
therefore be used as a measurement of plant health. In
our case, the GNDVI also succeeded in the detection of
levels defoliation in trees in concordance with the
chlorophyll contents. The dsm_Glcm_dissimilarity as a
texture predictor from the DSM feature is a measure of
the amount of local variations from the crown surface
height. Therefore, a large amount of local variation
present in defoliated trees incremented the probability
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of not belonging to the class A (ie.
defoliation).

Regarding the second logistic approach (logit2) to dis-
criminating between the group D (dead trees) and
groups B and C (defoliated trees), our results in terms of
percentage of concordant pairs displayed a greater fitting
capacity (i.e. model efficiency with higher value of con-
cordance - 0.95) than in other studies developed for tree
mortality using biometric and topographic variables at
tree level (Botequim et al. 2017) and stand level (Gonza-
lez et al. 2004). The significant variables selected suggest
that both NDVI and DSM textures also affect the cap-
acity of the models to explain the probability of belong-
ing to the dead class, which is consistent with the
importance of the variables indicated by the RF model.
These variables were used to describe the variations in
tree canopy height surface and spectral behaviour be-
tween pixels and possibly different crown patterns asso-
ciated with different levels of defoliation at crown scale.
The DSM showed that spatial variations in surface
height reflect the changes over the different crown con-
ditions. Hence, in the case of DSM_Glcm_variance, the
positive sign in the parameter of the model indicates
that greater variance from DSM increases the probability
of belonging to the dead class. This effect may be ex-
plained as variability in canopy height increased within
the dead crowns and consequently increased the prob-
ability of the tree dying, while a smoother surface due to
the leaf coverage indicated crowns with a certain level of
leaf coverage. This finding is consistent with the bio-
logical meaning of the first model including a textural
significant variable from the DSM. In addition, higher
variability in contrast of the NDVI texture increased the
likelihood of a tree belonging to the dead class and indi-
cated a significant impact on the spectral response in a
given dead crown. In the present case, ndvi_Glcm_con-
trast was also positively correlated with the probability
of mortality as the contrast of NDVI between pixels was
higher in death crowns probably due the effects of
shadows between naked branches. Thus, forest managers
may wish to consider textural variables from the DSM
and NDVI, in order to detect black alder crown
mortality.

Finally, the third model (logit3), which aimed to dis-
criminate between categories B and C (defoliated trees)
achieved a value of 85.71% in terms of concordance of
pair value. In this case the model basically relied on the
NGRVI. The NGRVI was based on green and red bands
and showed a lower dispersion for all the tested indices
and only low overlaps with other classes for the defo-
liated class C (c.f. Fig. 7). Our findings for NGRVI con-
firmed that the green and red bands had higher
discriminatory power than other tested predictors for
classifying the defoliated trees, in accordance with the

indicating
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results of earlier studies focused on plant stress (Carter
1993; Carter and Knapp 2001; Zarco-Tejada and
Sepulcre-Canté 2007) and confirming that pigment con-
centration signal retrieved by vegetation indices in the
visual spectrum successfully discriminated between
intermediate levels of crown defoliation.

This research estimated a set of models through two
alternative approaches to predicting classes of defoliation
that represent a step forward for managing broadleaved
forest stands under risk conditions in areas affected by
the disease, and identifying remotely sensed features that
enable reliable estimation of the level of defoliation. Our
study highlighted the simplicity and replicability of a lo-
gistic method that suggests combining the best variables
for a series of classifications to extract the relevant infor-
mation on different vegetation features categories. This
novel approach showed advantages in the overall per-
formance of the method and in the transparency and
replicability relative to the RF approach. In fact, the ab-
solute values of the binary regression model might be
directly extrapolated to datasets other forest under simi-
lar conditions, avoiding a new collection of reference
data. This line of research appears particularly useful for
designing prescriptions that could enable forest man-
agers to reduce the ecological and economic effects of
disease-induced decline particularly in ecosystems where
disease is recurrent.

Conclusions

The aim of this study was to develop and test innovative
methodological approaches for assessing spatial and
qualitative aspects of forest disturbance at high spatial
resolution from close-range remote sensing data ob-
tained with inexpensive sensors. Regarding the perform-
ance of the methods tested for classification crown
defoliation, a high level of overlapping between classes
was observed for an effective discrimination between
classes using reflectance/Vegetation indices thresholding.
On the other hand, we observed differences between the
RF and logistic models depending on the classification
scheme considered. Both methods performed well in dis-
criminating between live and dead trees, but there were
notable differences in more complex classification
schemes of three and four classes, in which the logit
models outperformed the RF approach (by up to 8 per-
centage points) in overall accuracy. With the aim of de-
veloping a simple and robust monitoring tool for forest
managers, we used a three-step logistic analytical
method that achieved the highest overall accuracy of
75% by considering 4 classes scheme. The findings sug-
gest that simple, robust logistic models could be applied
to enable forest technicians to obtain timely information
and monitor forest defoliation at the operational level as
an alternative classification method to the more complex
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random forests approach. The method could also lead to
savings through model transfer and reductions in data
acquisition costs (i.e. by using only RGB and multispec-
tral data). In future studies, the robustness of the best
performing models for differentiating specific crown de-
foliation levels should be tested in different study areas
and at different times in order to contribute to forest
health monitoring at the operational level. The survey
method based on a combination of high-resolution
multispectral and RGB imaging will be of great practical
value for forest health management as it is capable of in-
dicating the potential severity of black alder crown de-
foliation at a given time. This approach provides a
reliable and cost-effective tool to support the monitoring
and assessment of changes in alder floodplain forests,
and can be used as an aid to design conservation and
restoration plans, transferable to other rivers and catch-
ments across the whole distribution where these ecosys-
tems naturally occur.
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