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Abstract

Background: The Norwegian forest resource map (SR16) maps forest attributes by combining national forest
inventory (NFI), airborne laser scanning (ALS) and other remotely sensed data. While the ALS data were acquired
over a time interval of 10 years using various sensors and settings, the NFI data are continuously collected. Aims of
this study were to analyze the effects of stratification on models linking remotely sensed and field data, and assess
the accuracy overall and at the ALS project level.

Materials and methods: The model dataset consisted of 9203 NFI field plots and data from 367 ALS projects,
covering 17 Mha and 2/3 of the productive forest in Norway. Mixed-effects regression models were used to
account for differences among ALS projects. Two types of stratification were used to fit models: 1) stratification by
the three main tree species groups spruce, pine and deciduous resulted in species-specific models that can utilize a
satellite-based species map for improving predictions, and 2) stratification by species and maturity class resulted in
stratum-specific models that can be used in forest management inventories where each stand regularly is visually
stratified accordingly. Stratified models were compared to general models that were fit without stratifying the data.

Results: The species-specific models had relative root-mean-squared errors (RMSEs) of 35%, 34%, 31%, and 12% for
volume, aboveground biomass, basal area, and Lorey’s height, respectively. These RMSEs were 2–7 percentage
points (pp) smaller than those of general models. When validating using predicted species, RMSEs were 0–4 pp.
smaller than those of general models. Models stratified by main species and maturity class further improved RMSEs
compared to species-specific models by up to 1.8 pp. Using mixed-effects models over ordinary least squares
models resulted in a decrease of RMSE for timber volume of 1.0–3.9 pp., depending on the main tree species.
RMSEs for timber volume ranged between 19%–59% among individual ALS projects.

Conclusions: The stratification by tree species considerably improved models of forest structural variables. A further
stratification by maturity class improved these models only moderately. The accuracy of the models utilized in SR16
were within the range reported from other ALS-based forest inventories, but local variations are apparent.
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Background
Knowledge of status and trends of ecosystem services
provided by forests is a key requirement for informed
policy and management decisions on various scales,
ranging from national to regional and local scales.
National forest inventories (NFIs) typically provide
this kind of information on the national to regional
scale based on a set of sample plots distributed within
the country (Tomppo et al. 2010; Vidal et al. 2016).
The availability of remotely sensed data – such as
from airborne laser scanning (ALS) or satellite im-
agery – opens up new possibilities for NFIs (McRo-
berts and Tomppo 2007). By combining the field
registrations in the NFI with remotely sensed data, es-
timates can be improved (McRoberts et al. 2002)
which, for example, enables estimates for smaller re-
gions or even local scale (Breidenbach and Astrup
2012; Breidenbach et al. 2021). The principle is to
model the relationship between field measured forest
attributes and metrics derived from the remotely
sensed data. This model is utilized to map informa-
tion of the forest in the areas between NFI sample lo-
cations, which in turn enables estimation for smaller
areas than with the use of NFI field plots alone. The
use of remotely sensed data does also – in addition
to the ability to provide estimates for smaller areas –
enable the production of continuous forest resource
maps, based on remotely sensed and NFI field data,
e.g. (Nord-Larsen and Schumacher 2012; Bohlin et al.
2017; Nilsson et al. 2017).
In 2015, the Norwegian forest resource map (SR16)

based on aerial image matching data, was published for
the 5 Mha Trøndelag region (Rahlf et al. 2017; Astrup
et al. 2019). Following the area-based approach (Næsset
2002), timber volume, biomass, basal area, tree height,
site index – and the respective prediction intervals – are
provided for maps with a grid cell size of 16 m × 16m.
Stand-like segments were generated using object-based
image analysis and segment-level (synthetic) estimates
including model-dependent uncertainties are available
for the mapped forest attributes (Breidenbach et al.
2016). The map covers the entire forested area in the
published region, and provides publicly available forest
information at an unprecedented level of detail in the
area, compared to the regional statistics previously pub-
lished based on the NFI field plots. Also in 2015, the
Norwegian Mapping Agency started a national ALS
campaign that is planned to be finalized in 2021. ALS
data from this campaign are used in the current develop-
ment of SR16 which, as of today, already covers more
than 95% of Norway’s forest area and is freely available
via an online application (NIBIO 2020). SR16 is planned
to be updated annually by utilizing the newest NFI data
and canopy cover loss maps (Hansen et al. 2013). The

latter also opens up for new map layers such as annual
volume and biomass loss (NIBIO 2020; Breidenbach
et al. 2021) which in Norway is largely driven by
harvests.
Stratification is a concept which is often used when

predicting forest attributes using ALS-based models in
smaller-scale forest management inventories (Maltamo
et al. 2021). The relationship between the ALS data
and properties of the forest often vary between forest
types, and in boreal forest individual strata are typic-
ally defined by attributes such as main tree species,
site productivity and development class (Næsset 2002,
2014). The principle is then to fit separate models for
each stratum, and predict using the model corre-
sponding to the stratum which the area of interest
belongs to. One aspect of using stratification is that
the delineation between strata must be known for the
entire area of interest, in order to be able to predict
for that area. Whereas stratifications in for example a
forest management inventory can be based on attri-
butes derived from manual interpretation of aerial im-
agery, this will not be possible at a regional or
national level. Definition of strata must in those cases
therefore be based on information which can more
easily be made available for the entire area; for ex-
ample information derived from remote sensing data.
It is of interest to further explore how stratification
can be utilised in large scale mapping, and the effect
of such a stratification.
One aspect that can be a challenge when creating a

forest resource map at a national level, is to handle het-
erogeneous sets of data. In a comparable application
(Nilsson et al. 2017) models were fitted with NFI plots
from close-by locations. The ALS data used in the
present study consist of hundreds of smaller projects,
each with differences in attributes such as acquisition
time, sensor model, sensor settings, flying altitude, and
point density. The NFI data used as the ground refer-
ence are coherent in terms of data acquisition, but are
acquired over a period of 5 years, and are also relatively
sparsely distributed spatially. The sparse spatial distribu-
tion of NFI data in addition to the varying ALS project
area sizes lead to ALS projects with only few or no NFI
field plots. We therefore used mixed-effects models, in
order to account for the diverse nature of the ALS data
as well as the spatial distribution of the ground reference
data.
The aim of this study was to document and assess the

methods used to produce the forest resource map SR16
at national level utilizing heterogeneous sets of data,
with a focus on these key issues:

� Assessing the effect – in terms of accuracy – of
using species-specific models and models stratified
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by main species and maturity class, by comparing
with predictions from general models.

� Analyzing the effect of using mixed-effects models
and quantifying uncertainties at the ALS project
level, as well as for the entire study area.

Materials and methods
Study area
The 17 Mha study area consists of areas in the
southern half of Norway for which ALS data were
available (Fig. 1) and comprises 2/3 of the product-
ive forest area in Norway. The study area is located
almost entirely in the boreal climate zone and the
forests are mostly dominated by Norway spruce
(Picea abies (L.) H. Karst.) or Scots pine (Pinus syl-
vestris L.). Areas dominated by birch (Betula pubes-
cens Ehrh.) do also occur, typically towards the
mountains. More information on the spatial distribu-
tion of the main tree species in Norway can be
found in Breidenbach et al. (2021).

Field data
The Norwegian NFI’s permanent field plots were used as
field reference data, with the dataset consisting of all NFI
field plots within the study area. Within circular 250 m2

plots, all trees with a diameter at breast height (DBH) ≥ 5
cm were measured, and DBH and species recorded. A sam-
ple of the trees within the plot were selected for an add-
itional height measurement, and the heights of these trees
recorded using a Haglöfs Vertex 3 hypsometer. Maturity
class was registered on plots in productive forest – defined
as having a yearly increment of > 1m3∙ha− 1∙year− 1. The
maturity class was assessed according to a classification sys-
tem ranging from class 2 (young forest) to class 5 (mature
forest). Nordic species-specific allometric models were used
to predict tree-level timber volume and biomass from
which plot-level per-ha values were estimated. Uncertain-
ties due to these allometric models were in the following ig-
nored, as we consider assessment of these outside the
scope of this study. More information on the Norwegian
NFI can be found in Breidenbach et al. (2020).

Fig. 1 Map of the study area
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The following attributes were used in the present
study: timber volume (with bark), aboveground biomass,
basal area, and Lorey’s height.
The species with the largest volume was defined as the

main species on the plot.

Forecasting NFI field plot values
The permanent NFI field plots in Norway are re-
measured every fifth year, meaning that the age of the
newest registrations for a set of plots range from zero to
5 years. In order to have a coherent set of NFI field plots
in the modelling dataset, plot attributes – such as vol-
ume and basal area – were forecasted to a common field
reference date. In the present study this reference date
was set to be after the growing season in 2019. The fore-
casting was carried out by adding an estimated yearly in-
crement to the attributes. This estimated yearly
increment was calculated using the observed increment
at the plot in the previous five-year period, using mea-
surements from two points in time. The observed incre-
ment was determined utilizing the accurate registration
of trees – including local tree ids – on the NFI field
plots. The accurate registration of trees enabled us to se-
lect a set consisting of all trees measured at both points
in time. Using this set, an annual increment was calcu-
lated for each field plot, based on the number of growing
seasons between the field measurements. The method
was chosen over the use of more general allometric in-
crement models as we believe the locally recorded incre-
ment is the best predictor for future growth at a
particular location. The method does not take into ac-
count ingrowth of trees reaching the 5-cm DBH thresh-
old after the time of the last field registration.
The forecasting method described above is limited to

locations where field measurements from two points in
time exist, and can therefore only be applied at locations
such as NFI field plots.
This procedure ensured that the model dataset, and

therefore the model predictions, were valid for the same
point in time over the entire mapped area, across mul-
tiple ALS projects from multiple years (further described
in section “Predictive models”). A summary of the NFI
field plot data after the forecasting is given in Table 1.

Field plot data measured in the period 2009–2013 and
2014–2018 were used in this study.

Removal of outliers
NFI field plots with harvest operations after the field
work, but before acquisition of ALS data (see section
“ALS data”) were removed from the dataset (Table 1).
Identification of these plots were based on manual in-
spection of an initial dataset, and available aerial
imagery.

ALS data
Data from the national ALS campaign initiated in 2015
by the Norwegian Mapping Agency were used to pro-
duce the current version of SR16. The campaign serves
multiple purposes, and is scheduled to be completed in
2021. The main goal of the scanning campaign is to pro-
duce a detailed digital terrain model for the entire
country.
The acquisition of ALS data in the campaign is orga-

nized into projects covering predefined areas. Each pro-
ject is acquired, processed and delivered by a private
contractor to the Norwegian Mapping Agency as one
unit. Attributes – such as sensor type and point density
– are the same for acquisitions within each project area,
but vary between projects. For some areas existing ALS
data were used, i.e. acquired before 2015. All ALS pro-
jects were acquired between 2009 and 2019, some dur-
ing leaf-off conditions.
The tessellation of the country into project areas – as

well as the prioritizing of these areas – were based on a
range of criteria such as terrain features, municipality
borders, existing ALS data and requests from local ad-
ministrations. The individual projects will be referred to
as ALS projects in this paper, and a summary of the
characteristics of these ALS projects is given in Table 2.
Two products derived from the 367 ALS projects were
used: the point cloud, and a 1 m × 1m resolution digital
terrain model. The ALS echo heights in the point cloud
were normalized by subtracting the terrain model height,
using bi-directional interpolation.

Table 1 Summary of attributes observed at the NFI field plots used. The values given in the table are: min–max (mean, standard
deviation)

Main species n Volume (m3∙ha− 1) Lorey’s height (m) Basal area (m2∙ha− 1) Aboveground biomass (t∙ha− 1)

min–max (mean, sd)

Spruce 3321 0–1116 (177, 161) 3.2–33.8 (13.9, 5.1) 0.1–96.9 (22.9, 15.3) 0–642 (114, 92)

Pine 3555 0–964 (109, 103) 2.5–28.0 (11.9, 4.4) 0.1–95.0 (16.0, 11.9) 0–488 (66, 56)

Deciduous 2327 0–707 (77, 84) 2.8–26.3 (9.5, 4.2) 0.1–71.1 (13.5, 11.6) 0–436 (56, 60)

All – productive forest 6746 0–1116 (159, 135) 3.8–33.8 (13.7, 4.5) 0.1–96.9 (21.9, 13.4) 0–642 (101, 78)

All 9203 0–1116 (125, 130) 2.5–33.7 (12.1, 4.9) 0.1–96.9 (17.9, 13.7) 0–642 (81, 76)
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Predictive models
The heterogeneity of the combined ALS dataset – in
terms of acquisition date and characteristics such as point
density – poses a challenge when the ALS data are paired
with field observations to create a coherent modelling
dataset. The sparse distribution of the NFI field plots on a
systematic 3 km× 3 km or 3 km× 9 km grid means that
many of the ALS projects will contain relatively few NFI
field plots (see Table 2). Fitting models for each ALS pro-
ject, which is used in many local ALS-based forest man-
agement inventories (e.g. Næsset 2004) is then not
directly applicable, since the number of field plots con-
tained in each ALS project is too small. In order to utilize
a dataset consisting of multiple ALS projects combined
with sparsely distributed field plots we therefore used lin-
ear mixed-effects regression models, in which the system-
atic differences between ALS projects are accounted for in
the models through random effects (Breidenbach et al.
2008). Mixed-effects models were chosen because some
ALS projects did not contain any NFI field plots. The glo-
bal part of the model can in these cases be used. Model
parameters were estimated using the model

yi j ¼ β0 þ ðbi þ β1Þ�1i j þ β2�2i j þ β3�3i j;…; βk�ki j þ εi j

i ¼ 1;…;m; j ¼ 1;…; ni; bi∼Nð0; σ2
bÞ; εi∼Nð0;W iσ2

εÞ
ð1Þ

where yij is the forecasted field measured attribute at field
plot j in ALS project i, k is the number of explanatory vari-
ables denoted ×1, ×2, .., ×k, β0, β1, β2, .., βk are the corre-
sponding fixed effects regression parameters, bi is a
predicted random effect, ni is the number of field plots in
ALS project i and m is the number of ALS projects. σ2b is
the variance of the random effect and σ2εWi is the residual
variance, where σ2

ε is the mean square residual and Wi is a
ni × ni matrix. For modelling of volume, basal area and
biomass, heteroskedasticity in the residuals was accounted

for by letting the diagonal elements of Wi contain weights
obtained from a variance model. For modelling of Lorey’s
height all diagonal elements were 1, i.e. Wi is an identity
matrix (Breidenbach et al. 2016).
For modelling of volume, basal area and biomass we

used ALS metric Hmean as variable × 1 in Eq. 1. For
modelling of Lorey’s height we used H95 as variable × 1.
The selection of these most important metrics were
based on previous experience. The selection of further
variables is described in the next section. The models
were fit using the nlme package (Pinheiro et al. 2020) in
R (R Core Team 2020).

Model selection
The ALS metrics in the fixed effects terms of the models
were chosen by comparing an initial model using a pre-
defined set of metrics to a model with a set of ALS met-
rics obtained through a stepwise selection: Based on a
leave-one-out cross validation (CV), the stepwise models
were preferred if the CV revealed an improvement in
root mean squared error (RMSE, see section “Accuracy
assessment”). We defined a requirement of at least 1
percentage point improvement in RMSE% (see section
“Accuracy assessment” for definition) for selecting the
stepwise model. Otherwise the initial model with the
predefined set of metrics was used. The predefined set
of ALS metrics were similar for all modelled attributes,
except for Lorey’s height (see Table 3). The selection of
the predefined metrics was based on previous experience
and testing. All metrics are listed in Table 3.

Quantifying the effect of using mixed-effects models
Mixed-effects models were used in order to account for
differences among ALS projects. We assessed the poten-
tial gain of using mixed-effects models by inspecting the

Table 2 Summary of the ALS project characteristics

Number of ALS projects 367

Project area Total (all projects) 17.0 Mha

Mean 46,400 ha

Min 941 ha

Max 300,000 ha

Acquisition year Range 2009–2019

Point densitya Mean 3.5

Min 0.2

Max 10.0

Number of NFI field plots within an ALS project Mean 25

Min 1b

Max 186
aNumber of laser echoes per m2 as reported for each ALS project by the Norwegian Mapping Authority
bALS projects containing at least one NFI field plot were included, predictions in ALS projects without any NFI plots were not analyzed in this study
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variability of the random effects, that is, σ2
ε in Eq. 1. An

estimate for the variance of the random effect, and a
95% confidence interval for this estimate, were obtained
using the nlme package (Pinheiro et al. 2020). We quan-
tified the effect by comparing the accuracies of predic-
tions from a mixed-effects model (Eq. 1) with
predictions from an ordinary least squares model with
the following general form

y j ¼ β0 þ β1�1 j þ β2�2 j;…; βk�k j þ ε j

j ¼ 1;…; ni; εi∼Nð0; σ2
εÞ

ð2Þ

where yj is the forecasted field measured attribute at field
plot j, n is the total number of field plots, k is the number
of explanatory variables denoted ×1, ×2, .., ×k, β0, β1, β2, ..,
βk are the regression parameters, and σ2

ε is the residual
variance. The model described in Eq. 2 was fitted to sets
of NFI field plots according to main species, and RMSE
obtained through a CV. This was compared to RMSE
values derived using the same set of field plots and model
variables but with mixed-effects models as described in
section “Predictive models”. The predefined metrics
marked in Table 3 were used in both cases.

Time differences between field reference and ALS
acquisition date
The acquisition dates for the ALS data ranged from 2009
to 2019 (Table 2), meaning that the time difference be-
tween the acquisition of ALS data and the field reference
date was up to 10 years. Note that the field reference date
denotes the date to which the field data were forecasted, as
described in section “Field data”. In order to account for
the growth between the time of ALS acquisition and the
field reference date, information about this time difference
was incorporated into the models. The number of growing

seasons between the ALS acquisition date and the field ref-
erence date is known for the entire dataset since the acqui-
sition date is an integrated part of the ALS data, and the
field reference date is one fixed date (Fig. 2). This enabled
the time difference information to be included as an add-
itional variable (Timediff), and to estimate a corresponding
regression coefficient in the models which is used for pre-
dictions. The expected effect of the Timediff variable in the
models would be to obtain a positive coefficient in the
model fitting, meaning that the predicted forest attribute
values will increase with an increase of Timediff. In other
words, when the value of Timediff is large, the particular
ALS data represent the forest as it was in the past, and the
growth that has since occurred will be taken into account
in the predictions through the Timediff variable.
The value of Timediff was in the present study given as

the number of growing seasons between the ALS acquisi-
tion date and the field reference date (Fig. 2). Growing sea-
sons was used instead of years or other measures of time
since it more accurately represents the time period in which
the actual growth occurs. For example: the actual growth in
two time periods of equal length can differ by up to one full
growing season, depending on the start and end of the two
periods. Note that in the present study, the value of Timediff
was never negative since the field reference date was chosen
to be after the acquisition date of all the ALS data used.

Stratification according to main tree species
Dividing the study area into strata and fitting separate
models for each stratum has been shown to yield predic-
tions with higher accuracy, and is commonly done when
modelling forest attributes using ALS data in forest man-
agement inventories (Næsset 2002). The model dataset was
stratified according to the main tree species derived from
the field measurements: spruce, pine or deciduous trees,

Table 3 Candidate ALS metrics used in the models. The predefined metrics for Lorey’s height are marked with †, and for the other
attributes with *

Metrica Description

Hmean * Mean echo height

Hmean
2 * Square of the mean echo height

Hvar Variance of the echo heights

HProp_above_mean Proportion of echoes above Hmean

HProp_above_2m * † Proportion of echoes above 2 m

H25 25th percentile of the echo height distribution

H50 50th percentile of the echo height distribution

H75 75th percentile of the echo height distribution

H90 90th percentile of the echo height distribution

H95 † 95th percentile of the echo height distribution

TerrainSlope * † Slope, calculated from the digital terrain model.

Timediff * † Time between the ALS acquisition date and the field reference date, expressed as a decimal number of growth seasons.
aMetrics were calculated from the set of laser echoes categorised as being a first or only return
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and separate models were fit to each of these strata (Fig. 3).
Models based on data stratified by tree species will be re-
ferred to as species-specific models. For the predictions we
used a map of the main species in order to decide which
strata a prediction unit (pixel) belonged to. The species
map is based on Sentinel-2 and other auxiliary data, and is
further described in Breidenbach et al. (2021). As an alter-
native to using the field observed species, we also tried the
predicted tree species for stratifying the model dataset.
However, some species misclassifications resulted in large
residuals with adverse effects on the models. Results from
this test are not further documented here.

Stratum-specific models for use with local forest
management inventories
In order to increase the usability of SR16 in local forest
management inventories we provide prediction maps
based on stratum-specific models.
A common practice in ALS-based inventories is to div-

ide the forest into strata, and fit separate models for

each stratum (Næsset 2014). In Norway this is typically
done through manual delineation and classification of
forest stands according to species and maturity class
using aerial imagery. To accommodate users of SR16
that already know the main species and maturity class
for stands in an area of interest – because a manual
stand-delineation is available – a set of stratum-specific
models were fitted. These model parameters were esti-
mated using the same procedure as described above, but
the data were split corresponding to six strata in pro-
ductive forest. The strata were defined by combinations
of tree species and maturity class (Fig. 3).
Prediction maps based on these stratum-specific models

are available for the full study area, but the use of these
data will rely on an additional or existing stratification in
the area of interest.

Final models
Several tests were performed before deciding on the final
set of explanatory variables. The variable Timediff was

Fig. 2 Conceptual overview of the time differences in the data. The field reference date denotes the date to which the field data were forecasted
(see section “Field data”). Note that the ALS acquisition date in this figure is one example out of multiple acquisition dates used in the study

Fig. 3 Overview of the division of the model dataset according to main tree species strata (left), and strata defined by main tree species and
maturity class (right). The number of plots is given for each subset. The stratum-specific datasets consist of plots from productive forest only,
because the maturity class is registered in the field only in productive forest (see section “Field data”)
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inspected and removed if the parameter estimate was
negative. Because the field reference date was set to be
after the acquisition time for all ALS data, a decrease in
the predicted attribute value with increasing Timediff is
not logical. We further removed the variable Terrainslope
if its p-value was > 0.05.
Final models for prediction were fitted to each of three

subsets of the model data, split according to main spe-
cies, as described in section “Time differences between
field reference and ALS acquisition date”. The applica-
tion of the appropriate model was based on a map of
predicted species, described in Breidenbach et al. (2021).
The level of uncertainty for the predicted attribute

values in the final forest resource map is important in-
formation for the user. We therefore calculated predic-
tion intervals at the 16 m × 16m pixel level as described
by Breidenbach et al. (2016). The identity was used in
the calculation of the prediction intervals for Lorey’s
height because the residual variance was homogeneous
(no heteroscedasticity).

Accuracy assessment
Predictions were compared to field reference values at
the plot level by computing the RMSE and mean differ-
ence (MD) as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

X

m

i¼1

X

ni

j¼1

ŷij−yij
� �2

v

u

u

t

MD ¼ 1
n

X

m

i¼1

X

ni

j¼1

ŷij−yij
� �

where yij and ŷij is the field measured and predicted at-
tribute at field plot j in ALS project i, ni is the number
of field plots in ALS project i, n is the total number of
field plots and m is the number of ALS projects. Pre-
dicted attributes were based on a CV. Relative RMSE
and MD were calculated as a percentage of the mean
field measured value, and denoted RMSE% and MD%,
respectively.
The accuracy was assessed overall, and for subsets of

plots according to a stratum. RMSE and MD were also
calculated for individual ALS projects containing at least
30 NFI field plots.

Results
Variable selection
The comparison of predictions from models with a
predefined set of ALS metrics and from models with
ALS metrics derived through a stepwise selection pro-
cedure resulted only in small differences. This re-
sulted in the selection and use of models with the

predefined set of ALS metrics in all cases (the metrics
are listed in Table 3).

The effect of using mixed-effects models
The main effect of using a mixed-effects model is to
have a model which will account for differences between
the ALS projects, and have the ability to adapt to
project-specific conditions. The variability of the random
effects shows that there are differences between the ALS
projects that are not reflected in the fixed-effects terms,
and the comparison of RMSEs show that mixed-effects
models performed better than ordinary least squares
models (Table 4). The gain of using a mixed-effects
model varied between the modelled attributes with the
decrease in RMSE when using a mixed-effects model –
in percentage of the mean field measured value – ran-
ging from 0.3% for basal area in pine forest, to 6.3% for
Lorey’s height in deciduous forest (Table 4).

Species-specific models
The RMSEs of the species-specific models were 44
m3∙ha− 1 (35%) for volume, 1.5 m (12%) for Lorey’s
height, 5.5 m2∙ha− 1 (31%) for basal area and 26 t∙ha− 1

(34%) for aboveground biomass (Table 5 and Fig. 4).
The MD% was low for all six combinations of main tree
species and attributes, and were all in the range between
0 and 0.3%.
The use of species-specific models – compared to

using one general model – resulted in a reduction in
RMSE% of 7.1, 2.5, 2.2 and 5.1 percentage points for vol-
ume, Lorey’s height, basal area and aboveground bio-
mass, respectively (Table 5).
In SR16, the models are ultimately used to produce

predictions for a set of 16 m × 16m pixels covering the
entire study area. The species-specific models require in-
formation about the main species for each pixel, and we
conducted a CV in which the main species for the left-
out plot was the predicted main species for the 16m ×
16m pixel containing the plot center. The species map
used here is based on Sentinel-2 and other auxiliary data
which is further described in Breidenbach et al. (2021).
This procedure resulted in predictions which incorpor-
ate the errors introduced by using predicted species, in
contrast to the use of the main species determined from
field measurements. A slight increase in RMSE% was ob-
served when using the predicted species, with a 3.4 per-
centage points increase overall for volume (Table 5). For
Lorey’s height, basal area and biomass the overall in-
crease in RMSE% when using the predicted species in
the validation were 2.1, 1.4 and 3.1 percentage points,
respectively. For pine dominated forest, results in Table
5 imply that a general model is better than the species-
specific models. Contrary to this, deciduous forest
profits most from stratifying the dataset by tree species.
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Stratum-specific models for local forest management
inventory applications
Model parameters were estimated using data stratified
by main species and maturity class (Fig. 3). Using the
cross-validated predictions, the RMSE% and MD% were
calculated for each stratum. In order to assess the effect
of fitting separate models for each stratum we also cal-
culated – for the plots within each stratum – RMSE%
and MD% with predictions from the species-specific
models. The results show that the stratum-specific
models in most cases yielded lower RMSE% than the
species-specific models applied within the corresponding
stratum (Table 6). The RMSE% of the 6 × 4 combina-
tions of strata and response variables listed in Table 6,
ranged between 8.1% – 39.0% with an average of 25.1%.
The MD% for the stratum-specific models ranged from
− 0.1 – 0.6% with a mean of 0.2%. The MD% were for all
6 × 4 combinations of strata and attributes closer to zero
with the stratum-specific models than with the general
models (Table 7). The average decrease in MD% due to
the usage of stratum-specific models was found to be 1.2
percentage points.

Accuracy at the ALS project level
In addition to the overall and stratum-wise accuracy, we
assessed the accuracy at the individual ALS project level,
using the species-specific model predictions and ob-
served values for the NFI field plots within each ALS
project. The per-project RMSEs and MDs for the 115

ALS projects with more than 30 NFI field plots are sum-
marised in Table 8. Note that predicted values used in
the calculations are derived using the species-specific
models, and the predicted main species (see section
“Stratification according to main tree species”). On aver-
age the RMSE and MD at the individual ALS project
level corresponded with the observed overall accuracy.
For the 115 ALS projects, the mean per-project RMSE%
were 34.7%, 14.0%, 29.9% and 34.4% for volume, Lorey’s
height, basal area and biomass, respectively (Table 8).
RMSE% values within individual ALS projects ranged up
to 59.0%, 17.6%, 46.6% and 54.2% for volume, Lorey’s
height, basal area and biomass, respectively. Correspond-
ingly, the highest MD% values at the individual ALS pro-
ject level were 15.9%, 3.7%, 24.3% and 19% for volume,
Lorey’s height, basal area and biomass (Table 8). Plots of
observed vs predicted volume for the individual ALS
projects with the largest RMSE and MD are shown in
Fig. 5.

Discussion
Large-scale forest resource mapping using 3D remotely-
sensed data is an active endeavor in several countries
that offers new opportunities for forest management and
research. The plot-level RMSEs in this study were com-
parable to RMSEs found in other similar studies: Nilsson
et al. (2017) describe a nationwide mapping of forest in
Sweden using ALS and NFI field plot data, and report
RMSEs after a CV in three of 397 ALS projects: 31–44

Table 4 Effect of using mixed-effects models at the large scale: 1) Variability of the random effects, shown as the estimated
standard deviation of the random effect (σ̂b) and a 95% confidence interval for this estimate in parenthesis. 2) Differences in RMSE
between using a mixed-effects model, and an ordinary least squares model, ΔRMSE = RMSE (ordinary least squares model) – RMSE
(mixed model). The ΔRMSE is also given as a percentage of the mean field measured value, in parenthesis. More details in section
“Quantifying the effect of using mixed-effects models”

Main species Volume Lorey’s height Basal area Biomass

Spruce σ̂b 4.9 (4.3–5.5) 0.26 (0.22 − 0.34) 0.52 (0.46–0.58) 2.9 (2.6–3.2)

ΔRMSE 2.5 m3∙ha−1 (1.4%) 0.17 m (1.2%) 0.26 m2∙ha− 1 (1.1%) 1.53 t∙ha− 1 (1.3%)

Pine σ̂b 4.2 (3.8–4.8) 0.37 (0.95–0.45) 0.50 (0.44–0.57) 2.21 (1.95–2.51)

ΔRMSE 1.1 m3∙ha−1 (1.0%) 0.27 m (2.3%) 0.05 m2∙ha− 1 (0.3%) 0.41 t∙ha− 1 (0.6%)

Deciduous σ̂b 4.8 (4.2–5.3) 0.62 (0.53–0.73) 0.59 (0.51–0.67) 3.10 (2.74–3.51)

ΔRMSE 3.0 m3∙ha−1 (3.9%) 0.60 m (6.3%) 0.21 m2∙ha− 1 (1.6%) 1.57 t∙ha− 1 (2.8%)

Table 5 Plot level cross-validated RMSEs of A) species-specific models, B) general models not stratified by tree species, and C)
species-specific models, using a predicted main tree species in the cross validation. B and C are given as differences to A in
percentage points, with positive values representing an increase compared to A

Main
species

Volume Lorey’s height Basal area Biomass

A B C A B C A B C A B C

Spruce 30.9% 4.9 1.9 9.7% 3.4 3.1 27.4% 2.0 1.0 29.8% 4.4 2.2

Pine 33.2% 0.8 3.4 8.8% 4.1 4.3 30.0% 0.2 1.2 31.7% 3.1 4.2

Deciduous 48.2% 25.5 9.5 14.3% 5.8 5.0 40.2% 5.7 2.8 47.3% 9.5 4.4

All 35.0% 7.1 3.4 12.1% 2.5 2.1 30.9% 2.2 1.4 34.2% 5.1 3.1
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Fig. 4 Observed vs. predicted volume, Lorey’s height, basal area and aboveground biomass for NFI field plots with spruce, pine and deciduous
trees as the main species. Predictions are based on a CV using the species-specific models
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m3∙ha− 1 for volume, 1.2–1.9 m for Lorey’s height and
4.9–5.9 m2∙ha− 1 for basal area. The mean per-project
RMSEs in the present study were all within the range re-
ported by Nilsson et al. (2017). It could be noted that
the results from the Swedish study were from only three
of 397 ALS projects, and that the overall RMSE for all
ALS projects might be different. This comparison only
gives a cursory impression because RMSEs are affected
by the properties of the studied population.
Differences between ALS projects were handled differ-

ently in the Swedish approach, namely by using local re-
gression models. Nilsson et al. (2017) fitted separate
models using data from geographical sub-regions. Pre-
dictions were then made for each of the 397 ALS project
areas separately, using a local model. Data from the local
ALS project as well as the closest similar projects were
used. The Swedish ALS data were collected in a more
systematic fashion than in Norway, with rectangular and
regularly sized project areas, and were therefore more
suitable for using an approach with local models. The
mixed-model approach used by us does, however, sim-
plifies modelling, since separate models are not needed
for each individual ALS project.
The mixed-effects model approach is intended to in-

corporate in the models differences between ALS pro-
jects, and the results show that the mixed-effects models
performed better than ordinary least squares models.
The improved performance was however most

pronounced for volume and biomass, and less for Lor-
ey’s height and basal area.
Nord-Larsen and Schumacher (2012) report in a simi-

lar study using ALS and NFI data from Denmark an
overall RMSE of 80.4 m3∙ha− 1 for volume and 7.4
m2∙ha− 1 for basal area. This corresponds to 44.8% and
47.7% of the reported mean field measured values for
volume and basal area, respectively. The RMSEs re-
ported in the Danish study are – both in absolute and
relative terms – slightly higher than the RMSEs for vol-
ume and basal area we found. Several differences be-
tween the data in the two studies may be the underlying
cause for the observed difference in accuracy. The mean
ALS point density was, for example, lower in the study
by Nord-Larsen and Schumacher (2012).
Using separate models fitted to stratified sets of data

has been shown to improve the prediction accuracy (e.g.
Næsset and Gobakken 2008), and it is commonly used
in forest management inventories in the Nordic coun-
tries (Maltamo et al. 2020). Stratification did also im-
prove the predictions in our case, with the use of
separate models according to main tree species resulting
in a lower overall RMSE, even when including the errors
introduced by using remote sensing based predictions of
main species. For pixels in which the predicted main
species is wrong, this approach might result in larger er-
rors for the modelled attributes, compared to using one
general model. One related and positive side-effect is,

Table 6 Plot level RMSE% for A) stratum-specific models and B) species-specific models. B is given as a difference to A in
percentage points, with positive values representing an increase in RMSE (reduction in precision) compared to A

Stratum Volume Lorey’s height Basal area Biomass

A B A B A B A B

Spruce Young forest 28.0% 0.2 11.6% 0.0 24.4% –0.3 26.9% 0.3

Mature forest 26.9% −0.1 8.9% 0.0 24.6% 0.1 26.1% 0.0

Pine Young forest 28.7% −1.2 10.8% 0.5 25.3% −0.8 27.0% −0.8

Mature forest 26.9% 0.2 8.1% 0.1 25.6% 0.2 26.0% 0.2

Deciduous Young forest 38.2% 1.6 14.0% 0.1 32.4% 0.5 37.6% 1.8

Mature forest 39.0% 0.1 14.3% 0.0 32.8% 0.3 37.9% 0.2

Table 7 Plot level MD% for A) stratum-specific models and B) species-specific models. B is given as differences to A in percentage
points, with positive values representing an increase compared to A

Stratum Volume Lorey’s height Basal area Biomass

A B A B A B A B

Spruce Young forest 0.3% 0.9 0 0.6 0.4% 0.7 0.4% 3.0

Mature forest 0.4% 1.5 0 0.2 0.3% 1.5 0.4% 2.2

Pine Young forest 0 1.7 −0.1% 1.4 0.0% 0.5 0 1.4

Mature forest 0.1% 0.3 0 0.3 0.1% 0.5 0.1% 0.5

Deciduous Young forest 0.4% 1.8 0 1.4 0.3% 0.3 0.6% 2.2

Mature forest 0.3% 2.2 0 0.2 0.2% 2.1 0.2% 2.3
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however, that any improvements in the species predic-
tions – for example by using multitemporal instead of
bi-temporal satellite data (Persson et al. 2018; Breiden-
bach et al. 2021) – will also lead to improvements in the
modelled attributes.
The results further show that stratum-specific models

using species and maturity class improve the accuracy.
The improvements in terms of RMSE over using
species-specific models were however modest, with
slightly larger improvements in MD than in RMSE.
The RMSE and MD at the individual ALS project level

was on average similar to the overall values, but larger
values of RMSE and MD were observed for some indi-
vidual ALS projects. Factors such as acquisition specifi-
cations, flying date and species predictions contribute to
the prediction accuracy and uncertainty at the project
level. While our approach shares many aspects of the
methodology used in local forest management inventor-
ies, application at a national level has to rely on auto-
mated processing to a greater degree. Due to the large
number of field plots, only limited manual inspection of
the dataset was carried out. Comparison of predicted
versus observed attribute values at the individual ALS
project level (e.g. Fig. 5) indicate that further manual in-
spection of individual observations in the modelling
dataset might reveal additional outliers. Identification
and removal of such outliers could improve the predic-
tion at the ALS project level.
Systematic errors are of concern when applying

models in one ALS project which have been developed
with data from other ALS projects (Næsset 2009; Noor-
dermeer et al. 2019; Tompalski et al. 2019). The average
and per-project MD% for the projects with 30 or more
NFI field plots show that the systematic errors overall
were small, but with systematic errors at the project
level of up to e.g. 16% for volume. Measures could be
taken to increase the accuracy locally, for example by

combining the NFI field plots with a small set of local
field plots (Rahlf et al. 2021).
The current study was conducted in boreal forest with

a structure and species composition which differ from
forests in temperate and tropical regions. Modeling of
forest attributes using ALS data has however also been
demonstrated in other climate zones such as in temper-
ate (e.g. van Leeuwen and Nieuwenhuis 2010) and trop-
ical forest (e.g. Asner et al. 2012; Ioki et al. 2014; Hansen
et al. 2015; Mauya et al. 2015). Building on the experi-
ence from such studies, an application of the mapping
described in the current study should be possible also
for these forest types. The availability of representative
field measurements is however a requirement to ensure
consistent and reliable maps. Because field and ALS data
are relatively costly to acquire, it is likely the main obs-
tacle for development of similar forest resource maps in
many countries. An alternative to ALS data would be to
use available satellite imagery, as described by Reese
et al. (2003). This would however influence the accuracy
and types of attributes possible to include in the map.
While further research is needed, there are promising re-
sults from predictions in temperate and tropical forest
using data derived from Sentinel2 imagery (e.g. Gon-
çalves et al. 2019; Ahmadi et al. 2020).
The combination of NFI and remotely sensed data

is useful for mapping forest attributes and the im-
provement of estimates on various scales. It is cur-
rently analysed whether further variables, for example
those related to stand age (Schumacher et al. 2020)
and the protective functions of forests, can be in-
cluded in the forest resource map SR16. Because of
their fine spatial resolution and relatively high accur-
acy, forest resource maps offer new insights and deci-
sion support for example with respect to harvest
monitoring (Breidenbach et al. 2021) and road net-
work planning.

Table 8 Summary of RMSE and MD calculated using NFI field plots within individual ALS projects. Predictions from a CV, using the
species-specific models and predicted species as described in section “Stratification according to main tree species”. The 115 ALS
projects with 30 or more NFI field plots were included

RMSE MD

mean (min – max) mean (min – max)

Volume m3∙ha−1 39.4 (10.0–81.1) 0 (−8.8–16.2)

%a 31.9% (17.3% – 59.0%) 0 (−7.8% – 15.9%)

Lorey’s height m 1.4 (1.0–2.2) 0 (−0.4–0.5)

%a 9.8% (5.8% – 17.6%) 0.2% (−2.7% – 3.7%)

Basal area m2∙ha−1 5.1 (1.6–9.0) 0 (− 1.3–3.6)

%a 28.8% (16.5% – 46.6%) −0.1% (− 7.6% – 24.3%)

Biomass Mg∙ha−1 25.1 (6.2–52.5) 0 (−5.8–11.8)

%a 31.5% (17.9% – 54.2%) − 0.1% (− 7.0% – 19.0%)
a RMSE% and MD% were calculated using the mean field measured values for each ALS project
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Fig. 5 Predicted vs. observed volume for the NFI field plots in individual ALS projects. The projects with the highest RMSE (#311, #301 and
#1854), and the highest MD (#311, #213 and #929)
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Conclusion
The present study documents some of the methods
used, and the accuracies obtained, when producing the
Norwegian forest resource map SR16 using ALS data
and the following conclusions can be drawn:

� Mixed-effects regression models were an effective
choice for modelling forest attributes using data
from multiple ALS projects.

� The use of separate models for each main tree
species improved the prediction accuracy.

� A slight improvement was obtained for separate
models within strata defined according to the
combination of main tree species and maturity class.

� The overall prediction accuracy was comparable to
comparable studies, with an observed variation in
prediction accuracy at the individual ALS project
level.
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