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Early detection of pine wilt disease in Pinus ®

tabuliformis in North China using a field
portable spectrometer and UAV-based
hyperspectral imagery
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Abstract

Background: Pine wilt disease (PWD) is a major ecological concern in China that has caused severe damage to
millions of Chinese pines (Pinus tabulaeformis). To control the spread of PWD, it is necessary to develop an effective
approach to detect its presence in the early stage of infection. One potential solution is the use of Unmanned
Airborne Vehicle (UAV) based hyperspectral images (HIs). UAV-based Hlis have high spatial and spectral resolution
and can gather data rapidly, potentially enabling the effective monitoring of large forests. Despite this, few studies
examine the feasibility of HI data use in assessing the stage and severity of PWD infection in Chinese pine.

Method: To fill this gap, we used a Random Forest (RF) algorithm to estimate the stage of PWD infection of trees
sampled using UAV-based HI data and ground-based data (data directly collected from trees in the field). We
compared relative accuracy of each of these data collection methods. We built our RF model using vegetation
indices (VIs), red edge parameters (REPs), moisture indices (Mls), and their combination.

Results: We report several key results. For ground data, the model that combined all parameters (OA: 80.17%,
Kappa: 0.73) performed better than VIs (OA: 75.21%, Kappa: 0.66), REPs (OA: 79.34%, Kappa: 0.67), and Mis (OA:
74.38%, Kappa: 0.65) in predicting the PWD stage of individual pine tree infection. REPs had the highest accuracy
(OA: 80.33%, Kappa: 0.58) in distinguishing trees at the early stage of PWD from healthy trees. UAV-based HI data
yielded similar results: the model combined Vs, REPs and Mis (OA: 74.38%, Kappa: 0.66) exhibited the highest
accuracy in estimating the PWD stage of sampled trees, and REPs performed best in distinguishing healthy trees
from trees at early stage of PWD (OA: 71.67%, Kappa: 0.40).

Conclusion: Overall, our results confirm the validity of using HI data to identify pine trees infected with PWD in its
early stage, although its accuracy must be improved before widespread use is practical. We also show UAV-based
data PWD classifications are less accurate but comparable to those of ground-based data. We believe that these
results can be used to improve preventative measures in the control of PWD.
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Background

The pine wood nematode (PWN; Bursaphelenchus xylo-
philus) is a hazardous invasive species that infests mul-
tiple species of pine (Vicente et al. 2012; Douda et al.
2015). Pine wilt disease (PWD), caused by the PWN, is
widespread throughout East Asia (Mamiya 1988; Hyun
et al. 2007; Ye 2019). Previously isolated to southern
China, PWD is now found throughout the country, in-
cluding Northeast China (Pan et al. 2019; Yu et al
2019). In 2016, PWD first appeared in Dalian, Liaoning
Province, then in May 2017, it happened in Dandong
City, Fushun City, Benxi City and other places (National
Forestry Administration 2018). In addition, Monocha-
mus saltuarius was identified as a new vector of PWD in
Liaoning Province of China (Yu et al. 2018). In the
process of spreading northwards, PWD has infected and
caused severe damage to the Chinese pine (Pinus tabu-
laeformis), Korean pine (P. koraiensis), and larch (Larix
spp.) populations. This has resulted in significant eco-
nomic losses and ecological damage to Chinese pine for-
ests (e.g., Li et al. 2011; Lin 2015; Hui 2018).

To effectively control PWD, it is necessary to identify
infected trees in the early stage of infection. This is a dif-
ficult task because most trees progress from initial infec-
tion to the serious infection stage within 5 weeks
(Umebayashi et al. 2017). Consequently, current PWD
management strategies emphasize the control of infected
trees after the onset of an outbreak by means of fumiga-
tion, burning, and tree felling (Shin 2008; Kim et al.
2018). What is lacking is a methodology that monitors
pine populations that can quickly and efficiently detect
the early signs of PWD (Ma et al. 2011). In addition,
many efforts have been made in early detection of PWD
(Kim et al. 2018; Syifa et al. 2020; Tao et al. 2020), but
not in Chinese pine. In this paper, we present a method
aimed at detecting PWD in Chinese pine in early stage.

A major obstacle in the management of pines infected
by PWD is that the forests they persist in are very large
communities. This can make classical ground identifica-
tion and sampling methods impractical. To solve this
problem, recent studies have used remote sensing (RS)
to examine the impact of PWD on the physiological and
biochemical changes after infection (e.g., Shen et al.
2001; Li et al. 2004; Wang et al. 2007). Advancements in
RS technology increasingly support the prediction effi-
ciency by reducing inherent spatial and temporal con-
straints (Ahmed et al. 2020). Similarly, hyperspectral
remote sensing (HRS) can obtain continuous spectral in-
formation of objects — this has been used to detect
changes in the spectral characteristics of needles on
infected-trees in the process of discoloration caused by
PWN infection (Pan 2011; Kuai 2012).

Previous studies show the presence of PWD is signifi-
cantly linearly correlated with water and chlorophyll
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content. Therefore, water and chlorophyll content could
be used as indicators of PWD (Huang 2020). This is im-
portant because RS and HRS methods can be used to es-
timate water and chlorophyll content. For example,
using a field portable spectrometer to measure the spec-
tral characteristics of P. thunbergii and P. massoniana at
different stages of PWN infection, Xu et al. (2011) found
the reflectance spectrum curve in the mid-infrared band
may indicate the early stage of PWD with the analysis of
the spectral characteristic parameters and changes in
chlorophyll levels. Similarly, Xiang et al. (2018) used a
field portable spectrometer, analyzing the relationship
between spectral properties and chlorophyll, showing
that the chlorophyll content of pine decreases with the
stage of PWD (later, more severe stages are associated
with lower chlorophyll content). In addition, the position
of red edge, the wavelength of red edge, the height of
green peak, and the depth of red band absorption all
strongly correlate with chlorophyll content (e.g., Xiang
et al. 2018). Correspondingly, the area surrounded by
the first-order differential spectrum in the 490-530 nm
range and that in the 680-760 nm range was found to
be a significant hyperspectral feature indicating the oc-
currence of PWD (e.g., Huang et al. 2012). These studies
all used a field portable spectrometer, which cannot be
applied in a large-scale area.

Past studies used satellite imagery such as Landsat,
IKONOS, Quick Bird, and GF-2 images to detect forest
pest disease (e.g., Franklin et al. 2003; White et al. 2005;
Hicke and Logan 2009; Zhan et al. 2020). However, due
to limitations in spatial, temporal, spectral resolution as
well as weather complications, satellite imagery cannot
obtain real-time data (Santoso et al. 2016). Because of
these limitations, the detection scale of forest pest dis-
ease has shifted to Unmanned Airborne Vehicle (UAV)
remote sensing, which offers the advantages of low con-
sumables and operating costs, high ground resolution
data collection, and more precise accuracy (Tang et al
2015). For example, Huang et al. (2018) used a fixed-
wing unmanned aerial vehicle to monitor dead pine
trees caused by PWD, successfully monitoring pine tree
mortality with over 80% accuracy. Li et al. (2020) used
UAVs to acquire remote sensing images of forest areas
to assess the presence of PWD, successfully recognizing
infection with 90.4% accuracy. Huang (2020) used UAV
multispectral data to draw a conclusion that the first de-
rivative of healthy and infected P. thunbergii changed
markedly at 710 nm. Except RGB and multispectral cam-
era, hyperspectral imagery was also applied in detecting
forest pest diseases. Abdel-Rahman et al. (2014) used
airborne hyperspectral data, random forest and support
vector machines classifiers to distinguish amongst
healthy, Sirex noctilio grey-attacked and lightning-
damaged pine trees. Zhang et al. (2018) utilized the
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ISIC-SPA-P-PLSR framework based on UAV-based
hyperspectral image to identify the degree of damage
trees caused by Dendrolimus tabulaeformis. lordache
et al. (2020) acquired airborne multispectral and hyper-
spectral data, and used Random Forest algorithms to
compare the classification accuracies of the two datasets
in detecting PWD, finding that both datasets performed
well in identifying the infected, suspicious, and healthy
trees. Importantly, however, in detecting the PWD, most
studies focus on distinguishing between healthy and in-
fected trees using RGB (red, green and blue bands) cam-
era, multispectral data, and ground hyperspectral data,
but UAV-based hyperspectral data were not widely stud-
ied. In addition, few studies emphasized the identifica-
tion of trees in each stage of PWD infection in Chinese
pine, which we focus on in this study. In our study, we
systematically divided the infection stage into four
stages, making the detection more accurate. Because
high spatial and spectral resolutions, and feasibility of
large-scale area application are needed to distinguish the
subtle difference between healthy and the early stage of
infected trees, we consider UAV-based hyperspectral
imagery.

Spectral indices, such as Vegetation indices (VIs), red
edge parameters (REPs), and moisture indices (MIs), can
reflect the infection condition of PWD (e.g., Kim et al.
2018; Huang 2020). VIs is a combination of different re-
mote sensing spectral bands, which can be regarded as a
sign of relative abundance and activity of green vegeta-
tion (Jones and Vaughan 2010). Over the past years, VIs
had been widely applied to extract sensitive estimates of
plant biochemical characteristics (e.g., He et al. 2015; De
Klerk and Buchanan, 2017), such as the normalized dif-
ference vegetation index (NDVI) that decreases with in-
creasing tree PWD stage severity (Kim et al. 2018), and
the presence of PWD can be detected by calculating the
VIs based on ground, aerial, and satellite data (e.g.,
White et al. 2007; Pan et al. 2014; Jung and Park 2019;
Iordache et al. 2020). The REPs are derived from Red
edge (680—780 nm), which is the most obvious feature of
plant spectral curve. As an indicator of plant stress and
often used to study the growth and health of plants
(Boochs et al. 1990; Dawson and Curran 1998), it also
had been well studied in detecting the PWD (Du et al.
2009; Huang et al. 2012). Additionally, pine trees killed
by PWD by blocking transmission of water (Yang 2002),
and the water content of pine needles decreased with in-
creasing PWD infection severity (Chen, 2005). Thus,
changes in MlIs (also derived from radiometric data) can
be used to detect the presence of trees infected with
PWD (Xu et al. 2012; Song et al. 2018).

Although spectral indices were widely used to detect
the PWD, there is no study that yet provides good pa-
rameters to predict each stage (healthy, early, middle,
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and serious stages) of PWD infection in Chinese pine
trees. Additionally, analyses of PWD simultaneously
considering ground and UAV-based hyperspectral data
have not been widely conducted.

Therefore, to fill this gap, in this study, our objective is
to explore the capacity of ground and airborne hyper-
spectral data using VIs, REPs, and MIs to classify the
stage of PWD infection in Chinese pine at the tree level.
Furthermore, we also aim to provide a useful and fairly
accurate method of distinguishing between trees in the
early stage of PWD infection from healthy trees.

Materials and methods

Study area and ground survey

We conducted our study in Cangshi Village, located in
Fushun County, Liaoning Province, in northeastern
China (124°21'-124°24" E, 41°53'-41°57" N; Fig. 1). In
the study area, the species of plantation forests is domi-
nated by Chinese pine (P. tabulaeformis), and the age of
them is approximately 40—-50 years. The total area of for-
est cover in Fushun County is approximately 12.43 x 10*
ha, of which P. tabulaeformis makes up >30%. In
addition, the broadleaf tree species and understory vege-
tation in the study site mainly include, Quercus acutis-
sima, Quercus mongolica, grass, et al. The area is
situated in the Middle Temperate Zone. It has a contin-
ental monsoon climate and experiences approximately
804.2 mm of precipitation per year. The mean annual air
temperature is approximately 6.6 °C.

According to local Forestry Administration records,
PWD has resulted in the death of tens of thousands of
pine trees since the onset of outbreaks in 2016 in Liaoning
Province (National Forestry Administration 2018).

Field measurements were conducted in 12—-18 August
2019. We established three 30 m x 30 m plots located
northeast of Cangshi Village (Fig. 1). The coordinates of
the plot boundary and the location of each tree were re-
corded using a handheld differential global positioning
system (DGPS, Version S760) with sub-meter accuracy.
In each plot, we recorded tree growth state including
tree height (H), diameter at breast height (DBH), crown
diameter (CD), and PWD infection stage. In addition, we
measured biochemical parameters: the leaf chlorophyll
content (Cab) and water content (WC) of each tree. Cab
was derived by averaging the Cab of needles from four
different directions using a calibrated CCM-300 Chloro-
phyll Content Meter. The Cab of seriously damaged
trees was 0 measured by the CCM-300. Meanwhile, WC
of each tree was determined by the fresh weight (FW)
minus the dry weight (DW) divided by the FW: (WC =
(FW — DW)/FW x 100%). Finally, a total of 218 pine
trees (healthy: 76; early stage: 54; middle stage: 47; ser-
ious stage: 41) were measured. Summary statistics of
three plots are given in Table 1.
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Fig. 1 (@) The map of China; (b) The map of Liaoning Province; (c) The location of the study area. The purple and red rectangles represent three

Additionally, we randomly selected 20 discolored pine
trees as samples from each plot, and took them back to
the laboratory for testing by Behrman funnel method.
The result showed that they all carried pine wood
nematode.

Infected stage division

On the basis of previous studies (Xu et al. 2011; Santos
and de Vasconcelos, 2012), we combined needle, ground
tree, and UAV images to categorize PWD infection into
four stages: (1) Healthy, (2) Early stage, (3) Middle stage,
and (4) Serious stage (Fig. 2). Stages were defined by color
of needles, growth vigor, and resin secretion (Table 2). We
had four people classified each tree, and took the major-
ity’s opinion as final results to reduce subjective errors. Fi-
nally, we used the following definitions: “Healthy” trees

Table 1 Statistics of three plots variables (tree numbers = 218)

were defined as having dark green needles, normal resin
secretion, and vigorous growth. “Early stage” trees were
defined by slightly yellowed needles, with decreased resin
secretion and grow rates. “Middle stage” trees were de-
fined by yellow-brown needles, wilt, and weak growth. Dry
trees with reddish-brown needles were defined as the
“Serious stage”.

Remote sensing data acquisition and preprocessing
Ground spectrum acquisition

From the ground (physically measuring trees in the field),
we measured the spectrum of sampled trees using ASD
Field Spec 4 Hi-Res NG (Analytical Spectral Devices,
Boulder, CO, USA). The spectral range is 350—2500 nm
and the spectral resolution is 3 nm in the 350-1000 nm
wavelength range and 6nm in the 1001-2500 nm

Mean Standard deviation Maximum Minimum Range
H (m) 12.66 112 14.50 9.60 4.90
DBH (cm) 2179 540 34.06 783 26.23
CD (m) 213 1.22 7.80 0.80 7.00
Cab (gm’z) 299.30 165.93 560.00 0.00 560.00
WC (%) 4213 1445 6832 1725 51.07

H Tree height, DBH Diameter at breast height, CD Crown diameter, Cab Leaf chlorophyll content, WC Water content
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Fig. 2 Images of needles, ground trees, and unmanned aerial vehicle (UAV) images of pine trees at different PWD infection stages

Middle stage Serious stage

wavelength range. We selected and measured branches
roughly representative of the average spectrum of each
tree. The selected branches were cut from the east, south,
west, and north directions from the upper, middle, and
lower layers (Zhang et al. 2018). We calculated the
spectrum of each sampled tree by averaging the spectrum
of the selected branches. The ground spectrums were
gathered from 10:00 to 14:00 every day, from August 12
to August 17. We obtained the ground spectrum for com-
parison with UAV-based data and auxiliary radiometric
correction.

UAV-based hyperspectral imagery
Hyperspectral Imagery (HI) data were obtained by using
a DJI Matrice 600 UAV (DJI, Shenzhen, China) equipped
a Pika L hyperspectral camera (Resonon, USA). The
main parameters of the Pika L are listed in Table 3.
GNSS (Global Navigation Satellite System) and IMU (In-
ertial Measurement Unit) modules are integrated into
UAYV, and its horizontal and vertical position errors are
approximately 2.0 and 5.0 m, respectively, with an orien-
tation precision of approximately 1 degree. The overall
UAV-based system is shown in Fig. 3.

UAV-based hyperspectral data acquisition was carried
out in the test areas of Cangshi Village from 12:00-12:

Table 2 Classification of infected stages

30, on 18 August 2019. The weather was sunny during
the flight. Standard white board and white tarp were
placed on the ground within the flying area. The flying
height was set at 120 m, the image forward and side
overlaps were set to 50%, and the flight speed is 2 m-s™ .
The imagery consisted of 281 spectral channels (spectral
resolution of 2.1 nm) from visible to near infrared (NIR)
regions (400—-1000 nm). Reflectance correction and
radiometric calibration were performed using 3 m? car-
pet reference (standard white board) and the Spectronon
software. Image geometric corrections were performed
using 4 ground control points (GCPs). The positions of
GCPs were recorded by a DGPS device with sub-meter
accuracy. The ground resolution of HI was produced to
be 0.4 m.

Tree crowns extraction from hyperspectral imagery

We conducted tree crown segmentations from HI by
combining the object-based segmentation method with
manually drawing ROIs (regions of interest). First, by
use of ENVI 5.3, we used the object-based segmentation
method on the HIs using combined spectral and texture
features to separate trees crowns from the grass back-
ground and shadows (e.g., Yuan et al. 2013). The object-
based segmentation method successfully separated tree

Age of Classification standard  Stages of infected trees
the stand Healthy Early stage Middle stage Serious stage
40-50years Color of needles; Growth Trees grow vigorously Needles begin to turn yellow; Most needles turn yellow Trees are dry, and

vigor; Resin secretion with dark green needles;

resin secretes normally

resin secretion decreases and  brown and wilt, and the
growth slows down

needles are all reddish
brown, but do not
fall off

growth is obviously weak
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Table 3 Main parameters of the Pika L imaging spectrometer
(provided by manufacturer)

Parameters Values Parameters Values
Weight 0.6 kg Sampling interval 1.07 nm
Digitization 12 bits Spectral resolution 2.10nm
Wavelength range 400-1000 nm Spectral channels 281

crowns from the grass background and shadow compo-
nents. However, it was difficult to separate overlapping
crowns. Second, based on the result of object-based seg-
mentation, we drew the ROIs manually. We determined
the location of every individual sampled trees by use of
the DGPS information. The ROIs of each tree were
shaped by manually drawing the crown range on the
RGB image. Then, the ROIs were added to the prepro-
cessed Hls, and the spectrum of an individual tree was
calculated by averaging the reflectance of the corre-
sponding ROI extracted by ENVI 5.3. The average
spectrum information of each ROI was used in the sub-
sequent analysis (Fig. 4). Finally, the shadow components
and overlapped crowns were discarded. Overall, 121
trees (healthy: 39; early stage: 27; middle stage: 29; ser-
ious stage: 26) were segmented from HI hyperspectral

imagery.

Features extraction

In order to eliminate instrument errors and noises, while
maintaining the original spectral characteristics, a
Savitzky-Golay filter with 7 points (we tested 3-15
points and finally chose 7 points) was used to smooth
the original spectrums of ground and UAV-based hyper-
spectral data (Mullen 2016). Based on previous research,
we calculated 37 spectral variables including 12 VIs
(Table 4), 20 REPs showed in Table 5 (Horler et al.
1980; Curran et al. 1990; Yao et al. 2009; Liu et al. 2010),
and 5 MIs (Table 6) from spectral data.
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Feature selection and prediction model for cab and WC
According to previous study (De Klerk and Buchanan,
2017; Kim et al. 2018; Lin et al. 2019), trees health was
highly correlated with biochemical properties (e.g., Cab),
which also can be precisely estimated using fitting models
based on spectral indices (Inoue et al. 2012; Schlemmer
et al. 2013; Xie et al. 2014). In this study, we firstly calcu-
lated the Pearson’s correlation coefficient between a num-
ber of spectral indices (features in Tables 4, 5 and 6) and
Cab and WC, PWD infection stages of each tree, respect-
ively. In addition, before these variables were selected for
constructing regression and classification model to predict
Cab, WC, and PWD infection stages, we used a stepwise
regression method to test the multicollinearity between
features, eliminating redundant variables.

Finally, we selected 5 VIs (NDVI, NDVI [810, 680],
NDVI [560, 680], RVI, PRI), 5 REPs (Ao, Sg, Kg, GH, RD),
and 5 moisture indices (MSI, WI1, W12, NDWI, NSII)
based on ground spectrum (350-2500 nm). Based on
UAYV hyperspectral data (400-1000 nm), we selected 5 VIs
(PSI, RVSI1, NDVI, NDVI [810, 450], RVI), 5 REPs (d\b,
SDr, SDb, SDr-SDb, RD) and 2 MIs with (W11, WI12).

We estimated the Cab and WC using a RF (Breiman
2001) regression using a bagging method based on the
CART regression tree model. In the regression applica-
tion, each tree was built by choosing a random sample
and a random set of variables from the training dataset
by a deterministic algorithm (Mutanga et al. 2012). All
121 samples were used for model training, and we then
used a 10-fold cross-validation method (Waske et al.
2009) to assess model accuracy. The process of regres-
sion was conducted using the R package “randomFor-
est”. The coefficient of determination (R?), RMSE (Root
Mean Square Error), and RRMSE (Relative RMSE) be-
tween measured and estimated values were used to com-
pare different indices in predicting the accuracy of Cab
and WC. After selecting the variables which performed
best in predicting the Cab and WC, we used the Cab or

DIJI M600
with POS

J spectrometer

Fig. 3 The unmanned aerial vehicle (UAV)-based hyperspectral system with POS, Pika L imaging spectrometer

imaging

2 standard white board

*

DJIM600 with
Pika L in

working
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Fig. 4 (a) The original hyperspectral imaging (HI); (b) digital photo of the test area (upper) and hyperspectral image of one sampling plot of the
corresponding region (lower); (c) the result of crowns segmentation and (d) the ROIs formed by manual drawing
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WC estimated by the optimum variables to classify the
PWD infection stages directly.

Classification based on Vls, REPs, and Mls

We then used the selected VIs, REPs, and MlIs correlated
with Cab and WC to classify trees based on PWD infec-
tion. We used a RF classification model to assess the infec-
tion stage of sampled trees. In a RF algorithm, the variable
importance is a metric of how much the “out-of-bag”
(OOB) error of estimate increases due to the removal of a
single variable from the data (Prasad et al. 2006; Verikas
et al. 2011). The mean decrease accuracy (MDA) index of
each variable is obtained when calculating the OOB error:

Table 4 Vegetation indices extracted from spectral data

the higher the MDA value of a variable is, the more im-
portant it is (e.g., Liu et al. 2017; Shi et al. 2018).

The selected VIs, REPs, MIs and combining all vari-
ables were separately input into RF classification model,
and the MDA of all selected variables were determined.
All 121 samples were used for model training. We then
used a 10-fold cross-validation method to estimate
model accuracy. The process of classification was carried
out using the R package “randomForest”. The overall ac-
curacy (OA), producer’s accuracy (PA), user’s accuracy
(UA), and Kappa coefficient resulting from confusion
matrices (Congalton 1991) were used to evaluate classifi-
cation accuracy. Kappa coefficient is a popular statistic

Variables Description Formula Reference
NDVI Normalized difference vegetation index SUM R(760:900)/141 - SUM R(630:900)/271 Richardson and Wiegand (1977)
SUM R(760:900)+ SUM R(630:900)/271
NDVI (810,450) Normalized difference vegetation index NDVI (810,450) = Egswo+g45o§ Richardson and Wiegand (1977)
810 450
NDVI (810,680) Normalized difference vegetation index NDVI (810, 680) = (2m+gm) Richardson and Wiegand (1977)
810 680

NDVI (560,680) Normalized difference vegetation index

NDVI (560, 680) =

( )
(RSGU RGBO)
(Rsco+Reso)

Richardson and Wiegand (1977)
Rss0+Reso

RVI Ratio vegetation index SUM R(760:900) /141 Wu and Niu (2008)
SUM R(630:900) /271
DVI Deferent vegetable index DVI = SUM R(760:900)/141 — SUM R(630:900)/271 Chen (1996)
PRI Photochemical reflectance Index PR| = Bz - Rea1. Carter and Miller (1994)
Rs70+Rs31
MSR Modified simple ratio Blackburn (1998)
MSR = —&¢
sqrt(%ﬂ)
PSI Plant stress index PS| = R«% Hunt and Rock (1989)
RVSI Ratio vegetation stress index PVSIT = géoo Hunt and Rock (1989)
760
RVSI2 Ratio vegetation stress index PVSI2 = gm Hunt and Rock (1989)
760
PSSR Pigment specific simple ratio PSSR = @ Penuelas et al. (1997)
635
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Table 5 Red Edge parameters extracted from hyperspectral data
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Type Parameters Description Type Parameters Description
Based on original Rg The maximum reflectance in the Based on first  dAb The first order differential value
spectrum wavelength range of 510-560 nm derivative corresponding to A\b
Ro The minimum reflectance in the dhr The first order differential value
wavelength range of 640-680 nm corresponding to Ar
Ag Wavelength position of Rg SDb The area surrounded by the first-order
differential spectrum in the range of
490-530 nm
Ao Wavelength position of Ro SDr The area surrounded by the first-order
differential spectrum in the range of
680-760 nm
Sg Skewness of reflectance in the SDr-SDb SDr-SDb
wavelength range of 510-560 nm
Kg Kurtosis of reflectance in the Others Lwidth Width at half depth of red band
wavelength range of 510-560 nm absorption
Sr Skewness of reflectance in the Depth672 Absorption depth at 672 nm
range of 680-760 nm
Kr Kurtosis of reflectance in the Depth560 Absorption depth at 560 nm
wavelength range of 680-760 nm
Based on first derivative Ab Wavelength position of the maximum GH Height of green peak
first derivative of reflectance between
490 and 530 nm
Ar Wavelength position of the maximum RD Depth of red band absorption

first derivative of reflectance between

680 and 760 nm

for measuring agreement (Meddens et al. 2011). A
Kappa value from <0.4 indicates a “poor” agreement,
Kappa 0.4-0.8 is defined as having moderate agreement,
and Kappa > 0.80 indicates a “strong” agreement.

Using the overall and individual accuracies for all four
PWD infection stages, we examined the paired accur-
acies of Healthy, Early stage, Middle stage, and Serious
stage pine trees to examine the feasibility of discriminat-
ing between different stages.

Results

Estimation of cab and WC

Leaf Cab and WC decreased with the severity of PWD
infection (Fig. 5). We estimated the Cab and WC of all
121 sampled trees using the RF regression model with the
three input parameters (VIs, REPs, and MIs) separately

Table 6 Moisture indices extracted from spectral data

input. We examined the performance of Cab and WC es-
timation of the input parameters using both ground
spectrum data and UAV-based spectral data (Figs. 6 and
7). Cab estimation accuracy was slightly greater when
using REPs than using VIs for both ground data (REPs:
R*=0.78, RMSE =82.34gm %, RRMSE =27.44%; VIs:
R*=0.74, RMSE =89.80gm % RRMSE =29.92%) and
UAV-based data (REPs: R*=0.75, RMSE =87.34 gm™?,
RRMSE =29.11%; VIs: R*=0.72, RMSE=94.11gm 2,
RRMSE = 31.36%). For WC predictions in which MIs were
used as input parameters, the predictions from ground
data were considerably more accurate than UAV-based
data. The results summarized in Table 7.

It showed that the model tended to overestimate Cab
below 200gm > and underestimate Cab above 300
g-m™? (Fig. 6a and b; Fig. 7a and b), the RF regression

Variables Description Formula Reference

MSI Moisture stress index MSI = % Gao (1996)
820

WI1 Water index WIT = % Hardisky et al. (1983)
900

WI2 Water index W2 = % Hardisky et al. (1983)
900

NDWI Normalized difference water index NDWI = (a0 - Rizao) Prasad et al. (2006)

(Reso+Ri600)
NDII Normalized difference infrared index NDI| = Beco - Freo) Verikas et al. (2011)

(Reso+Rie00)
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Fig. 5 The difference of chlorophyll content (Cab) and water content (WC) of all samples at different infected stages

model provided unsatisfactory predictions for Cab and
WC in pine trees when VIs, REPs, and MIs were taken
as input parameters.

In addition, Cab estimated by REPs derived from
ground data (the optimum variables) were chosen to as-
sess the PWD infection stages directly. Finally, the re-
sults showed that using Cab estimated by RF based on
the optimum variables did not perform well in classify-
ing the PWD infection stages (OA =47.11%, Kappa =
0.29; Table 8). It means that estimated Cab cannot be
directly used to accurately the PWD infection stages.

Feature analysis

The spectral reflectance of trees declined as a function
of PWD stage severity (Fig. 8). The difference of spectral
reflectance was obvious near the green peak (500-600
nm), red edge (680-760nm), and NIR (750-950 nm;
Fig. 9). VIs, REPs, and MIs exhibited differing responses
to the severity of infection. While some variables such as
NDVI (810, 680), Kg, and NDWTI decreased with the in-
creasing infection stage, others (e.g. MSI, PRI and Sg)
significantly increased with the increasing of the infec-
tion stage (Fig. 10). Therefore, almost all the selected
variables exhibited statistically significant responses to
PWD severity, indicating their potential for detecting the

stage of PWD. Generally, the spectral variables were sen-
sitive to changes in biochemical characteristic.

Comparisons of classifications using different variables
from ground and UAV-based data

The MDA index for the ground data and UAV-based
data strongly differed among variables. Importance rank-
ings indicated REPs to be more important than most VIs
and MlIs (Fig. 11). The most important variables were
REPs, and VIs were generally more important than MIs.
GH was the most important variable for ground data
and SDR was the most important variable for UAV-
based data.

OA (overall accuracy) assessment using the 10-fold
cross-validation method indicated that REPs performed
best. For ground data REPs yielded an OA of 79.34%,
VIs 75.21%, and MIs 74.38%. Combined all variables, it
yielded an accuracy of 80.17% (Tables 9 and 10). UAV-
based data provided less accurate results for all variables:
72.73% for REPs, 70.25% for VIs, 63.64% for Mls, and
74.38% for combined all variables (Tables 9 and 10).
Kappa values yielded similar qualitative results for both
ground data and UAV-based data. For ground data,
Kappa was calculated to be 0.67 for REPs, 0.66 for VIs,
and 0.65 for MIs. For combining all variables, Kappa im-
proved to 0.73. For UAV-based data, the values of Kappa
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Fig. 6 Measured vs. estimated chlorophyll content (Cab) and water content (WC) based on ground spectrum using different input parameters: (a)
Vegetation Indices; (b) Red edge parameters, and (c) Moisture Indices
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Fig. 7 Measured vs. estimated chlorophyll content (Cab) and water content (WC) using UAV-based spectrum with different input parameters: (a)
Vegetation Indices; (b) Red edge parameters, and (c) Moisture Indices

J

for REPs, VIs, and MIs were 0.63, 0.60, and 0.51, re-
spectively. For combining all variables, Kappa again im-
proved (0.66). Therefore, for each data type (ground
data and UAV-based data), REPs yielded the most accur-
ate results, followed by VIs and MIs respectively. Add-
itionally, ground data provided more accurate results
than UAV-based data in all cases.

PA (producer’s accuracy) values were high for the
middle and serious stage of infection regardless of the
data source and the parameters used. UA (user’s accur-
acy) was relatively high for middle and serious stage of
infection, while healthy and early stages had lower UAs
(Table 11).

Pairwise comparisons of healthy, early stage, middle
stage, and serious stage indicated the OAs of all stage
pairs to be considerably greater than 80% in most cases
(Figs. 12 and 13). Lower accuracies resulted when
healthy pine trees and early stage of infected pine trees
were compared based on the VIs (75.41%), REPs
(80.33%), MIs (70.97%), and combined all variables
(79.03%) from ground data, as well as VIs (68.33%), REPs
(71.67%), Mls (66.67%), and combined all variables
(71.67%) from UAV-based data. High values of Kappa
were obtained by most pairwise comparisons (Figs. 12
and 13), but not for comparisons between healthy pine
trees and pine trees in the early stage of infection for
both ground data (VIs: 0.55, REPs: 0.58, MIs: 0.39, com-
bined all variables: 055) and UAV-based data (VIs: 0.35,
REPs: 0.40, MIs: 0.31, combined all variables: 0.40). REPs

(OA: 80.33%, Kappa: 0.58) based on ground data per-
formed best when healthy pine trees and early stage of
infected pine trees were compared. REPs and combining
all variables performed equally well in terms of OA
(71.67%) and Kappa (0.40) for UAV-based data.

Discussion

In this paper, we employed VIs, REPs, MIs, and combin-
ing all variables, to examine the capacity of ground and
UAV-based hyperspectral data in PWD infection stages
estimation at individual tree level. The results reveal that
combining all variables performed best and yielded a
considerably accurate classification with OA of 80.17%
for ground data and 74.38% for UAV-based data (Tables
9 and 10).

When we look at the capacity of identifying pine trees
in the early infected stage of PWD, the REPs exhibited
the best performance with OA of 80.33% and 71.67%
from ground data and UAV-based data, respectively
(Figs. 12 and 13).

Overall, it is understandable that: (1) the REPs are
more responsive to stage changes of PWD infection than
VIs and MlIs, indicating that REPs may be more sensitive
to the biochemical conditions; (2) UAV-based data per-
formed considerable accuracy in monitoring the PWD
stage at individual tree level, especially REPs, showing its
good accuracy, which were slightly lower than ground
data and can be applied in a large-scale forest area.

Table 7 The results of Cab and WC estimation using RF regression based on VIs, REPs, and Mls from ground and UAV hyperspectral

data
Variable type Cab and WC estimation
Ground UAV
R RMSE RRMSE (%) R RMSE (%) RRMSE (%)
Vls (estimating Cab) 0.74 89.80 29.92 0.72 94.11 31.36
REPs (estimating Cab) 0.78 8234 2744 0.75 87.34 29.11
Mils (estimating WC) 0.74 0.07 15.78 045 0.1 23.69
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Table 8 Estimation of PWD infection stages using Cab
estimated by RF based on the REPs derived from ground data

Stage H E M S Total

H 25 Il 0 0 36

E 12 4 6 0 22

M 1 12 14 12 39

S 1 0 9 14 24

Total 39 27 29 26 121
OA (%) 47.11
Kappa 0.29

Error analysis

Previous studies show hyperspectral data to be effective
in examining forest health (e.g., Pontius et al. 2008; Nasi
et al, 2015). However, we encountered several difficul-
ties, obstacles, and sources of error in precisely estimat-
ing leaf Cab, WC, and the stage of PWD in pine trees.
(1) The stage of PWD of each sampled pine tree was
judged by visual observation. These measurements were
fairly subjective and possibly inaccurate. (2) The acquisi-
tion of ground and UAV-based hyperspectral data are
both easily affected by the weather, especially light. Be-
cause data were collected during light hours, this may
have biased results. (3) The results of individual tree
crown segmentation using UAV-based hyperspectral
data were somewhat inaccurate. This increased the un-
certainly of extracting tree hyperspectral features and,
consequently, it was difficult to distinguish pine trees
from understory trees and separate overlapping crowns
from HIs using the image classification algorithm.
Manually drawing and visual interpretation can reduce
the interference of mixed pixels, but there was a prob-
lem that it cannot be efficiently applied when the sample
size was large. Nevertheless, in the actual situation, we
can hardly meet two requirements at the same time:
obtaining pure pixels and those that completely cover
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the whole crown. (4) We collected Cab and WC data on
12-18 August 2019, while we acquired the UAV-based
data on 18 August 2019. During the interval, the bio-
chemical conditions may have changed. Because it only
took 30—60 min for the drone to complete the data col-
lection, but the artificial ground survey took at least 1
week. In this study, we cut each tree branch and then
measured the spectrum, Cab, and WC of each tree.
Therefore, the workload is relatively heavy, the ground
survey cannot be synchronized with the drone data col-
lection, and we can only keep the time as close as pos-
sible. (5) The results of our study may be affected by
small sample size.

Possible application of UAV-based hyperspectral data in
detecting PWD
Overall, the PWD infection stage classification of ground
data was more accurate than that of UAV-based air-
borne hyperspectral data (Tables 9 and 10). There are
several possible sources of this discrepancy. Firstly,
ground data consisted of samples from the entire tree
while the airborne data only measured canopy spectral
data. Therefore, ground data samples may more accur-
ately reflect the tree condition. Additionally, airborne
data acquisition is easily affected by weather — this may
have induced measurement errors. PA and UA of the
four PWD infection classes using RF based on VIs, REPs,
MlIs, and combining all variables also suggest ground data
performed better than airborne data (Table 11). However,
when the RERs and combining all variables were used
from UAV-based data, predictions were comparably ac-
curate to those of ground data (Tables 9 and 10).
Importantly, the acquisition of airborne data is simple,
convenient, and much faster than ground data acquisi-
tion. Therefore, there is a trade-off between the accuracy
and efficiency of data acquisition: ground data acquisi-
tion is accurate but time consuming to obtain while
UAV-based airborne data is less accurate but much
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easier to obtain. Because PWD potentially affects trees
in many large forest areas, ground data acquisition is not
a feasible management strategy. UAV-based data pro-
vides only slightly less accurate classifications than
ground-based data and is thus a more practical candi-
date for future large-scale forest management.

The potential of identifying trees in the early stage of
PWD

Our results show that it is relatively simple to distin-
guish healthy trees and trees in early stage of PWD in-
fection from trees in the middle and serious stage of
PWD infection. This is because the biochemical

characteristics (e.g. leaf Cab) of healthy trees and trees at
early stage of PWD are very different from those of trees
in middle and serious stage (Fig. 5). In contrast, it is dif-
ficult to distinguish healthy trees from trees in early
stage of PWD because the difference in their spectral re-
sponses cannot be detected easily. REPs performed rela-
tively well in distinguishing trees in early stage of PWD
infection from healthy trees (ground data OA: 80.33%,
Kappa: 0.58; and airborne data OA: 71.67%, Kappa:
0.40); however, overall, UAV-based data yielded moder-
ately low accuracy (Fig. 13). Therefore, in practical appli-
cation, especially in a large-scale forest area, it is still a
challenge to use UAV-based hyperspectral data to
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Table 9 Classification confusion matrix of random forest (RF) classifier using vegetation indices, red edge parameters, moisture

indices, and combined all variables based on ground spectral data

Stage Vegetation Indices Red Edge Parameters
H E M S Total UA (%) H E M S Total UA (%)
H 29 7 0 0 36 80.56 32 7 0 0 39 8205
E 8 17 3 0 28 60.71 5 17 1 0 23 7391
M 1 2 22 3 28 7857 1 2 24 3 30 80.00
S 1 1 4 23 29 79.31 1 1 4 23 29 79.31
Total 39 27 29 26 121 39 27 29 26 121
PA (%) 74.36 62.96 75.86 8846 OA (%) 75.21 82.05 62.96 82.76 8846 OA (%) 79.34
Kappa 0.66 Kappa 067
Stage Moisture Indices Combined
H E M S Total UA (%) H E M S Total UA (%)
H 29 9 1 0 39 74.36 32 8 0 0 40 80.00
E 9 15 1 1 26 57.69 5 17 2 0 24 70.83
M 0 3 24 3 30 80.00 2 2 24 2 30 80.00
S 1 0 3 22 26 84.62 0 0 3 24 27 88.839
Total 39 27 29 26 121 39 27 29 26 121
PA (%) 74.36 55.56 82.76 84.62 OA (%) 74.38 82.05 62.96 82.76 92.31 OA (%) 80.17
Kappa 0.65 Kappa 0.73

precisely identify trees at early infected stage of PWD. In
conclusion, the main focus of our next study is to im-
prove the accuracy by some effective approaches (e.g.,
using multi-temporal UAV hyperspectral data).

Classification algorithms

Machine learning algorithms, such as Random forest
(RF), support vector machine (SVM), Classification and
Regression Tree (CART), have been widely conducted in
classifying damaged trees by forest pest in previous stud-
ies (Abdel-Rahman et al. 2014; Iordache et al. 2020; Syifa
et al. 2020; Zhan et al. 2020). In our study, RF algorithm
was used.

In RF algorithm, the mean decrease accuracy (MDA)
index of each variable is determined when calculating
the out-of-bag (OOB) error, which measures the import-
ance of the variables by comparing how much OOB
error of estimate value increases when excluding one vari-
able and keeping others unchanged (Archer and Kimes,
2008; Verikas et al. 2011; Abdel-Rahman et al. 2013).
Thus, the higher the MDA values of a variable, the greater
its importance (Immitzer et al. 2012; Liu et al. 2017), we
can thereby determine the most important variable. Add-
itionally, compared with other algorithms, RF is more in-
sensitive to multicollinearity, and its results are relatively
robust to missing and unbalanced data, and it can well
predict the effect of thousands of explanatory variables
(Breiman 2001). Therefore, RF have been widely used in
monitoring forest disturbance, especially for detecting

wood borer in pine forest (Abdel-Rahman et al. 2014; Lin
et al. 2019; Iordache et al. 2020).

Currently, deep learning algorithms, such as convolu-
tional neural network (CNN), have been showing its
great potential in plant health monitoring (Yuan et al.
2017; Nagasubramanian et al. 2019; Wu et al. 2021).
However, it still has some dependencies. Firstly, when
the data is small, deep learning algorithms do not per-
form well. Furthermore, deep learning is like a black
box, it does not reveal why it given the result, so it is
lack of interpretability (Ling et al. 2018; Silaparasetty
2020). On the other side, with its rigorous calculations
and great flexibility (Schmidhuber 2015; Hao et al
2016), it could improve our classification accuracy. In
our next study, deep learning algorithms will be
employed on PWD diagnose using multi-temporal
UAV-based hyperspectral data.

The possible application of Lidar

In this study, the classification model, predictions for
Cab and WC, and the results of individual tree crown
segmentation were obtained based on hyperspectral data
alone. However, the results were not satisfactory, espe-
cially the tree crown segmentation (only delineated 121
from 218). Another potential method of data collection
is Lidar (light detection and ranging). Lidar can directly,
quickly, and accurately obtain three-dimensional geo-
graphic coordinates of objects (Vierling et al. 2008).
Much progress has been made in the application of
Lidar technology in the fields of geology, forestry and
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Table 10 Classification confusion matrix of random forest (RF) classifier using vegetation indices, red edge parameters, moisture
indices, and combined all variables based on UAV hyperspectral data

Stage Vegetation Indices Red Edge Parameters
H E M S Total UA (%) H E M S Total UA (%)
H 25 9 1 0 35 7143 28 8 1 0 37 7568
E 10 16 2 0 28 57.14 9 15 3 0 27 55.56
M 3 1 22 4 30 7333 1 2 22 3 28 78.57
S 1 1 4 22 28 7857 1 2 3 23 29 79.31
Total 39 27 29 26 121 39 27 29 26 121
PA (%) 64.10 59.26 75.86 84.62 OA (%) 70.25 71.79 55.56 75.86 8846 OA (%) 72.73
Kappa 0.60 Kappa 0.63
Stage Moisture Indices Combined
H E M S Total UA (%) H E M S Total UA (%)
H 24 9 2 1 36 66.67 28 8 0 0 36 77.78
E 10 14 3 2 29 48.28 9 15 2 0 26 57.69
M 3 2 20 4 29 68.97 1 2 24 3 30 80.00
S 2 2 4 19 27 70.37 1 2 3 23 29 79.31
Total 39 27 29 26 121 39 27 29 26 121
PA (%) 61.54 51.85 68.97 73.08 OA (%) 63.64 71.79 55.56 82.76 88.46 OA (%) 74.38
kappa 0.51 Kappa 0.66

ecology, such as the establishment of digital elevation
model (DEM), the extraction of forest structure parame-
ters, and the inversion of forest ecosystem function pa-
rameters (e.g., Watt et al. 2014; Huang and Lian 2015;
Saarela et al. 2020; Xie et al. 2020).

This makes Lidar a possible candidate to improve
measurement accuracy. Although Lidar data failed to ac-
curately reflect the biochemical condition of tree crowns
(e.g., Liu et al. 2017; Shi et al. 2018), it can be used as
measure auxiliary data that produces three-dimensional
tree canopy structures (e.g., Shendryk et al. 2016). Thus,
combining Lidar with hyperspectral data for individual

tree segmentation could improve accuracy (e.g., Junttila
et al. 2019; Lin et al. 2019). Furthermore, crown struc-
ture and other tree structural information are likely to
change throughout PWD infection. Therefore, variables
based on the return intensity information from Lidar
data might be useful in estimating the stage of PWD in
pine trees, and it will be our next study.

Conclusion

In this paper, we compared the relatively accuracies of
using ground-based data and UAV-based hyperspectral
data in predicting the stage of PWD infection in pine

Table 11 Producer’s accuracy (%) and user's accuracy (%) of the four stages using RF based on vegetation indices, red edge
parameters, moisture indices, and combined all variables from ground and UAV-based data

Stage Vegetation Indices Red Edge Parameters Moisture Indices Combined
Producer’s User's Producer’s User's Producer’s User's Producer’s User’s
accuracy accuracy accuracy accuracy accuracy accuracy accuracy accuracy
Based on ground spectrum data
H 74.36 80.56 82.05 82.05 74.36 74.36 82.05 80.00
E 62.96 60.71 62.96 7391 55.56 57.69 62.96 70.83
M 75.86 7857 82.76 80.00 82.76 80.00 82.76 80.00
S 88.46 79.31 88.46 79.31 84.62 84.62 92.31 88.89
UAV-based hyperspectral data
H 64.10 7143 71.79 75.68 61.54 66.67 71.79 77.78
E 59.26 57.14 5556 55.56 51.85 48.28 5556 57.69
M 75.86 7333 75.86 7857 6897 6897 82.76 80.00
S 84.62 7857 88.46 79.31 73.08 70.37 88.46 79.31
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trees. To do this, we selected VIs, REPs, Mls, and com-
bining all variables as input parameters in a RF classifi-
cation model. We found that combining all variables
generally perform the best for estimating the stage of
PWD infection of pine trees, and that REPs exhibit the

highest accuracy in distinguishing between the healthy
trees and trees in early stage of PWD infection. The clas-
sification accuracy of REPs based on UAV (airborne)
data had slightly poorer performance in distinguishing
trees at early stage of PWD and healthy trees (OA:
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Fig. 13 Producer’s and user’s accuracies for healthy (H), early (E), middle stage (M), and serious stage (S) of disease of pine trees pairs comparison
achieved by random forest when the vegetation indices (a), red edge parameters (b), moisture indices (c), and combined all variables (d) when
the UAV-based hyperspectral data were employed
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71.67%, Kappa: 0.40), but is still a feasible method.
Therefore, UAV-based hyperspectral imaging is a prom-
ising candidate for measuring forest health. Relative to
methods that use ground data, UAV-based hyperspectral
imaging has the potential to substantially reduce labor
and time costs. Future studies should aim to improve
the accuracy of UAV-based data. One possible direction
is the use of supplemental data acquisition practices
such as UAV-based Lidar data to improve classification
accuracy.
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