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Effects of stand features and soil enzyme

activity on spontaneous pedunculate oak
regeneration in Scots pine dominated

stands — implication for forest management
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Abstract

Background: A challenge in current forestry is adaptation of managed forests to climate change, which is likely to
alter the main processes of forest dynamics, i.e. natural regeneration. Scots pine will probably lose some parts of its
distribution area in Europe. However, two native oaks, pedunculate and sessile may maintain or expand the area of
their occurrence in central Europe. The utilization of spontaneous (not initialized by foresters) oak regeneration in
Scots pine stands for the creation of next generation stands is one of the adaptation methods to climate change.
Many factors influencing pedunculate oak regeneration are well known, but there is a lack of knowledge on the
relation between soil enzyme activity and the establishment and development of the species. The aim of the study
was to identify the relationships among stand characteristics, herb species composition, soil enzyme activity and
the establishment or recruitment of oak regeneration in Scots pine-dominated stands.

Results: The one of the most influential factors shaping the oak seedling count was dehydrogenase activity in the
humus horizon. We found that plots without litter and fern cover had higher seedling density. The raspberry
ground cover and birch crown projection area had a positive influence on oak seedling number. The factor
indicating good conditions for high density of oak saplings was phosphatase activity in the organic horizon. The
same enzyme activity but in humus horizon described conditions in which more numerous recruits were observed.

Conclusions: The activity of soil enzymes can be used as the predictor of the establishment and advancement of
oak regeneration but also could be seen as a new dimension of oak regeneration. The general density of
spontaneous oak regeneration was not sufficient for the creation of new generation forest stands dominated by
oak, but it is possible to use them as admixtures in new generation stands.
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Introduction

Adaptation of managed forests to climate change is a
challenge in current forestry (Lindner et al. 2014). Cli-
mate change is likely to alter the main processes of for-
est dynamics, i.e., tree growth, mortality, and
regeneration (Seidl et al. 2016). Tree species will respond
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differently to climate change (Huang et al. 2017). Scots
pine (Pinus sylvestris L.), which was promoted in previ-
ous centuries and covers large areas in the lowlands of
northwestern and central Europe (Goris et al. 2007), will
likely experience decreases in its distribution in Europe
(Sdenz-Romero et al. 2017; Dyderski et al. 2018). How-
ever, other tree species may expand their ranges. Eco-
nomically important tree species that may maintain or
expand the area of their occurrence in central Europe
include two native oaks, pedunculate (Quercus robur L.)
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and sessile (Q. petraea (Matt.) Liebl.) (Hanewinkel et al.
2013; Takolander et al. 2019). Both grow across the
European lowlands and occur in many forest types (Ea-
ton et al. 2016). Currently, Scots pine vitality has de-
creased in Poland (Report of Forest Status 2018) and in
other countries. It has been observed in Europe that cli-
mate warming has made Scots pine stands more vulner-
able to attack by bark beetles (Jaime et al. 2019) or
mistletoe (van Halder et al. 2019). The changes in spe-
cies distribution ranges could generate large-scale eco-
nomic problems that are difficult to solve with
predominant even-aged management because the bigger
compositional adjustment could be made only at the
end of production cycle and the cost of acceleration of
such activities could be prohibitive (Schelhaas et al.
2015). One of the possible methods to increase the speed
of response for problems connected to climate change is
the utilization of oak spontaneous regeneration pro-
cesses observed in current Scots pine stands for the cre-
ation of next generation stands or at least to enhance
the species enrichment of current pine-dominated forest
ecosystems of artificial origin (Galiano et al. 2010;
Rigling et al. 2013).

Spontaneous regeneration of both oaks, silver birch
(Betula pendula Roth), downy birch (Betula pubescens
Ehrh.) or common beech (Fagus sylvatica L.) has been
detected in many aging Scots pine forests (Zerbe 2002;
Dobrowolska 2006; Kint et al. 2006; Gniot 2007; Goris
et al. 2007). However, spontaneous natural regeneration
established under the Scots pine layer is not often used,
even though it can play a great role in the restoration
processes of forest stands and enhances their adaptabil-
ity to changing environmental conditions (Diaci et al.
2008; Vizoso-Arribe et al. 2014). The success of spon-
taneous oak regeneration depends heavily on animal ac-
tivity. Numerous mammals and bird species contribute
to oak dispersal by in European forests. Eurasian jays
(Garrulus glandarius) and wood mouse (Apodemus syl-
vaticus) are the most important dispersers and hoarders
of acorns in Europe. Most other species that forage on
acorns are mainly seed predators or only occasional dis-
persers (Den Ouden et al. 2005). In the case of Scots
pine dominated forest stands where older, seed produ-
cing oaks are sparse or absent (Mosandl and Kleinert
1998; Frost and Rydin 2000; Kurek and Dobrowolska
2016) jays seems to be a more important factor allowing
colonisation of those stands by oaks than mice. Dispersal
distances of acorns by jays are in the order of several
hundred metres (Bossema 1979; Kollmann and Schill
1996) and much greater than dispersal distances by
mice, which according to Den Ouden et al. (2005)
ranged between 2.7 to 9.2 m with exceptional situations
achieving 70 m. Eurasian jays prefer thick, deciduous for-
ests but are also found in coniferous or mixed forests as
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well as in parks, gardens, and yards with plenty of ma-
ture trees (Vander Wall 2001). These birds hide acorns
in hoards for winter time. The regeneration of oak estab-
lishes under a canopy of old pine and gradually grows
up as more light becomes available in the gaps (Kint
et al. 2004, 2006). The regeneration of pedunculate oak
has been intensively studied in Europe (Worrell and
Nixon 1991; Paluch and Bartkowicz 2004; Harmer et al.
2005; Ligot et al. 2013; Annighofer et al. 2015); however,
knowledge of spontaneous oak regeneration in Scots
pine-dominated stands is still limited. Moreover, most of
the investigations have concentrated on the natural pro-
cesses in aging pine stands (Kint et al. 2004). The results
of these studies suggested that mixtures with oaks in-
crease Scots pine growth and that those stands can be
more productive (higher volume) than pure stands (Bie-
lak et al. 2014; Steckel et al. 2019).

Many factors influencing pedunculate oak regener-
ation are well known (Kelly 2002; Annighofer et al
2015; Didenko and Polyakov 2018), but the knowledge
on the impact of the soil enzyme activity on the estab-
lishment and development of the species is insufficient.

Enzyme activities are critical to ecosystem functioning,
affecting nutrient transformation, carbon sequestration,
and biogeochemical cycling of carbon, nitrogen, phos-
phorus and sulphur. Phosphatases catalyse the hydrolysis
of ester bonds between phosphate and carbon com-
pounds in organic substrates (Schneider et al. 2001).
Urease activity may reflect the decomposition rate of ni-
trogen compounds in soil. The presence of asparginase
in the substrate is responsible for the decomposition of
organic nitrogen compounds, that supply nitrogen to
plants. Dehydrogenases are responsible for oxidative re-
actions in soil (Wolinska and Stepniewska 2012). En-
zyme activity correlates with soil physicochemical
conditions, and nutrient availability (Tarafdar and Jungk
1987). Enzyme activities have been used as sensitive in-
dicators of soil quality changes under the influence of
management (Acosta-Martinez et al. 2014) and as an in-
dicator of heavy metal contamination (Bojarczuk and
Kieliszewska-Rokicka 2010; Yang et al. 2019).

Analysis of soil enzyme activity provides information
on soil microbial status (Yang et al. 2019). One of the
most important components of these organism are fungi
that form mycorrhizae. Burke et al. (2011) showed that
ectomycorrhizal fungal communities were positively cor-
related with most soil enzymes, including enzymes in-
volved in C, N, and P cycling. Some observations linked
the success of young tree regeneration to the presence
of mycorrhiza, which could also be responsible for soil
enzyme activity. Pedunculate oak seedling growth, bud-
burst, survival, biomass and foliar nitrogen and phos-
phorus content depend on root colonization by
ectomycorrhizal fungi (Newton and Pigott 1991;
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Egerton-Warburton and Allen 2001). Seedling growth is
correlated with the number of mycorrhizal types (New-
ton 1991; Garcia de Jalon et al. 2020). Moreover, oak re-
generation surrounded by phylogenetically distant
neighbours show increased abundance and enzymatic
activity of ectomycorrhizal fungi in the litter (Yguel et al.
2014). The dependence between soil enzyme activity and
various ecosystem characteristics described above sug-
gests that they may interact directly or indirectly with
oak regeneration establishment and advancement in our
study area.

The aim of our study was to expand our knowledge on
the spontaneous regeneration of pedunculate oak in
Scots pine-dominated stands of different ages. In par-
ticular, we addressed the following questions:

— Which stand characteristics influence the
establishment and recruitment of oak spontaneous
regeneration in Scots pine stands?

— Does the presence of an herb layer and its species
composition affect the density of oak regeneration?

— Does soil enzyme activity influence the
establishment and advancement of new oak
generation?

— Which factors influence the density of oak recruits
belonging to different quality classes?

Methods
Study area
The study was conducted in northeastern Poland in the
Masurian Lake District. Although it is the lowland part
of Poland, the landscape is very diverse with many hills
and lakes due to the influence of repeated glacial events,
especially by the Baltic glaciations. In this region, the
continental climate clashes with the Atlantic climate;
thus, typical temperate zone forests grow in the Masur-
ian Lake District. The average temperature in July is
18°C, the average temperature in January is — 4 °C, the
annual precipitation ranges from 500 to 634 mm, and
the growing season lasts 190-200 days (Lorenc 2005).
The study was carried out in 2013-2015 in managed
forests located in the Nowe Ramuki Forest District (138
ma.s.l; 20°30" E, 53°47" N). The Nowe Ramuki Forest
District is part of the great complex of the Napiwodzko-
Ramucka Forest. The forest cover of the study area is
high (67.9%), much higher than the average for the Ma-
surian Lake District (Plan of Forest Survey in Nowe
Ramuki Forest District). The main tree species is Scots
pine, which occupies 91% of the forest area. Other im-
portant trees are pedunculate oak (4%) and silver birch
(3%). The big share of Arenosols soils may suggest that
in the primeval forest in this region the share of broad-
leaved trees (Quercus, Betula, Carpinus) was substantial.
Most forests are old (average stand age is 83 years). Pine

Page 3 of 17

stands older than 100 years represent 41% of the area of
the forest district. Clear-cutting (areas less than 4 ha)
and planting are the usual methods used for Scots pine
forest stand regeneration. However, spontaneous oak re-
generation (originating from animal acorn dispersal) is
frequently observed 1-2 years after clear-cutting, even if
there were no oak trees in or nearby the former stand
(foresters observations from the Nowe Ramuki Forest
District).

The investigation was conducted in Scots pine stands,
and the total area of our study covered 90 ha. The age of
the Scots pine stands ranged from 26 to 140 years. All
investigated stands were regenerated by planting on two
site types: poorer (mixed coniferous forest site type,
where the plant community Querco roboris-Pinetum is
commonly observed) and richer (mixed deciduous forest
site type where patches of Tilio-Carpinetum calamagros-
tietosum are abundant). These site types refer to the fol-
lowing soils: Dystric Albic Brunic Arenosols and Dystric
Brunic Arenosols (WRB 2015).

Data collection

To investigate the influence of stand characteristics on
oak regeneration, we collected data from 13 pine-
dominated stands of different ages (Additional file 1:
Table A2). There are numerous pine stands in the study
region that grow under very similar conditions to our
studied stands, but have no or very sparse oak regener-
ation. The most likely factors responsible for this differ-
ence are limitations in oak dispersal related to the
availability of seed sources and the activity of seed dis-
persing animals. Investigation of these factors would re-
quire a different experimental design and should be
conducted at a larger spatial scale, and of course would
require identification of potential seed sources. Our
study focuses on other questions, namely the role of
local stand conditions and soil enzyme activity in oak re-
generation establishment. We chose a pine stand with
abundant oak regeneration under the assumption that
seed rain density there was not as limiting a factor as
other factors considered in our experiment. This as-
sumption might immediately raise the question of
whether seed rain density limitations were comparable
in all these stands and whether other factors not in-
cluded in our experiment acted in a comparable manner
in the selected stands. It is likely that these large-scale
factors act in a more or less unequal manner in each se-
lected stand, which could have some influence on oak
regeneration density. To address this issue, mixed effects
models were used in the statistical analysis to separate
the variability of the dependent variable attributable to
the factors studied (fixed effect, e.g. local stand basal
area) from the variability caused by factors not directly
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included in the model that are specific to the particular
forest stand (random effect).

Starting from a random point, we established sample
plots in a rectangular grid fitted to the area of each
stand. The total number of sample plots in all stands
was 240 (on average 18.5 per stand). The measurements
were carried out on three concentric circular plots of
different radii. Seedlings of oak and other tree species
(7 <0.5m) were counted only in the smallest area of 10
m? (radius 1.78 m). On the second circle (area of 100
m?, radius 5.64m) saplings (#>0.5 and diameter at
breast height (DBH) <2 cm) and recruits (DBH: 2—-7 cm)
were counted. Trees (specimens with DBH > 7 cm) were
measured in the largest circle (area of 250 m? radius
8.92m). We measured the DBH of all trees, the height
of trees, and the radii of the tree crown in four direc-
tions using tape then, the crown projection area was cal-
culated using formula for ellipse area. In the case of
regeneration, we measured the height of all seedlings
and saplings and the DBH of saplings taller than 1.3 m.
The quality of the recruit stem was categorized into the
following classes: 1 — straight, 2 — curved (one or more
curves), and 3 — deformed (bushy shape). In further ana-
lysis we divided recruits into two quality classes: first
quality (straight) and combined low quality (curved and
deformed). The cover (%) of litter, moss, and herbs was
described for each circular plot (in the area of 250 m?).

Soil enzyme activity data were collected in 10 sample
plots (the same plots established for stand measure-
ments) in each stand studied. After removing the litter
layer (Ol layer), soil samples were taken and collected
from the top 15cm of soil (this is the depth where the
main microbial activity occurs) using a 200 cm® probe.
The soil samples were divided into two soil horizons: or-
ganic (Oh holorganic layer) and humus (Ah organomin-
eral horizon). The soils were then sieved (<2 mm),
removing all debris, stones, roots and plant remnants.
Samples taken from one stand were pooled and further
processed to obtain an estimate representing the entire
stand.

Samples taken from one stand were pulled together
and processed further to receive one estimate represent-
ing the whole stand. Four enzymatic activities were ana-
lysed  (dehydrogenase, wurease, phosphatase and
asparginase). Dehydrogenase activity was determined by
the reduction of 2,3,5-triphenyltetrazolium chloride
(TTC) to triphenyl formazan (TPF) using Lenhard’s
method according to the Casida procedure (Alef and
Nannipieri 1995). Briefly, 1 g of soil was incubated with
1mL of 3% TTC for 24 h at 37°C. TPF was extracted
with ethyl alcohol and measured spectrophotometrically.
Urease activity was determined according to Tabatabai
and Bremner (1972) using a water-urea solution as a
substrate. This activity was determined by the NH,"
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released after a 48 h incubation at 37 °C. The concentra-
tion of NH," was measured at 410 nm by the colorimet-
ric method (Alef and Nannipieri 1995). The asparginase
activity was determined with the use of the colorimetric
technique and expressed as NH," mg in 10 g of soil per
48 h. The acid phosphatase activity was determined by
the calorimetric method and expressed in mg of p-nitro
phenol (pNP) per 10g of soil (Tabatabai and Bremner
1969; Olszowska 2018).

Statistical analyses

Generalized linear mixed models with a log-link function
were developed for five separate response variables (oak
seedling counts, oak sapling counts, oak recruit counts
first grade oak recruits counts and summarised medium
and lower grade recruits counts) to assess factors influ-
encing oak numbers belonging to particular regeneration
stages observed on the sampling plot. Although sample
plots were placed on systematic grids, plots placed in
one forest stand could be more related to each other
(dependent) than to other plots. Additionally, some of
the independent variables (e.g., describing soil enzymatic
activity or the age of Scots pine trees on sample plots)
were estimated at the stand level. To disentangle poten-
tial interactions between many factors and address auto-
correlation, generalized linear mixed effect models
(GLMMs) were used (Zuur et al. 2009; Bolker et al.
2009). The influence of the common location of a group
of sampling plots from one forest stand was modelled as
a random effect, and other potential factors were mod-
elled as fixed effects. In the mixed models, the intercept
for the random effect was allowed to vary between forest
stands, but the slope was fixed.

Count data are discrete and nonnegative; thus, the
Poisson distribution is often used for modelling such
data. An important limitation of the Poisson distribution
is the assumption that the mean and variance of the ob-
served data are equal. The situation that the observed
variance is greater than the mean is quite common in
ecological data sets and is referred as over-dispersion
(Zuur et al. 2009). To account for the possibility of such
a situation in oak regeneration modelling, a negative bi-
nomial distribution of the Poison distribution (GLMM
Poisson) was also used. The negative binomial distribu-
tion can be parameterized differently regarding the de-
pendence of the variance on the mean (Crotteau et al.
2014). In the present study, two variants of dependence
were implemented: one when the variance increases
linearly with the mean (GLMM nbinom1) and the sec-
ond when the variance increases quadratically with the
mean (GLMM nbinom?2).

Some histograms from Fig. 1 suggest that the propor-
tion of zeroes is so large that it could not be possible to
readily fit these data to standard (Poisson or binomial)



Dorota et al. Forest Ecosystems (2021) 8:43

Page 5 of 17

seedlings
number o observed specimens = 488
average density = 2043 pcs./ha

zeroes proportion = 39.58 %

Frequency
100 150
1 1
Frequency
100 150
1 1

50
1
50
1

o

saplings
number o observed specimens = 1921
average density = 801 pcs./ha

zeroes proportion = 12.50 %

I]]]ﬂ]I[EDIdluﬂn_Lu_.,— c,_-|-|'|'l-ﬂ'l---n

recruits
number o observed specimens = 388
average density = 162 pcs./ha

zeroes proportion = 67.92 %

Frequency
100 150
1 1

50
1

T T T T 1 T T
10

o

0 10 20 30 40 50
Number of specimens on sampling plot

first quality recruits

number o observed specimens = 167
average density = 70 pcs./ha

zeroes proportion = 76.67 %

Frequency
Frequency

100
1

[ty [T

20
Number of specimens on sampling plot

low-grade recruits

number o observed specimens = 221
average density = 93 pcs./ha

zeroes proportion = 72.50 %

T T 1 T T T T T 1
30 40 50 0 10 20 30 40 50
Number of specimens on sampling plot

r T T T T 1 r T
0 10 20 30 40 50 0 10
Number of specimens on sampling plot

Fig. 1 Specimens counts on sampling plots

20
Number of specimens on sampling plot

T T 1
30 40 50

distributions. The non-consideration of this excess of
zeroes might reduce the ability to detect relevant rela-
tionships and make inaccurate inferences. Three add-
itional types of zero-inflated mixture models were built:
one based on a Poisson distribution (GLMM ZI Poisson)
and two based on a negative binomial distribution with
linear (GLMM ZI nbinoml) and quadratic (GLMM ZI
nbinom?2) relations between mean and variance. Finally
for each regeneration stage, six additional mixed models
for each oak regeneration stage were built (GLMM Pois-
son, GLMM nbinoml, GLMM nbinom2, GLMM ZI
Poisson, GLMM ZI nbinom1, and GLMM ZI nbinom?2).
All the possible explanatory variables collected during
field work are shown in Additional file 1: Table Al. In
the first stage of modelling simple generalized linear
Poisson models containing only one explanatory variable
were build. About twenty variables which gave the best
models were selected to the next modelling stage in
which all of them were included in a model belonging to
one of the previously mentioned model types (e.g.
GLMM nbinoml). In the case of collinearity, the vari-
able with less explanatory power were removed from ini-
tial models based on their inflation factors (VIFs) (Zuur
et al. 2009). In the refined set of explanatory variables
no variable had VIFs value above 3. During building of

statistical models interaction terms were added to assess
potential influence of stand characteristics on the reac-
tions of young oaks on the change of soil enzyme activ-
ity level. For building models concerning recruit counts,
variables concerning vegetation soil coverage were not
included because it is rather unlikely that the number of
trees with a DBH greater than 2 cm is governed by low
vegetation.

At the end of the model fitting process for each oak
regeneration stage, six competing models were built that
address the problems of autocorrelation, overdispersion
and zero inflation. The final model describing the influ-
ence of important variables on the particular oak regen-
eration stage was chosen based on the lowest AIC value
from 6 models (Zuur et al. 2009, 2012; Crotteau et al.
2014; Peters and Visscher 2019). After the identification
of the best model, its residuals were inspected to con-
firm that errors were homogeneous.

All analyses were performed with R language (R ver-
sion 3.5.0, R Core Team 2018), and models were fitted
using a template model builder (TMB) via maximum
likelihood estimation using the R package “glmmTMB”
(Brooks et al. 2017). For the final models containing ran-
dom effects, it was possible to characterize their explana-
tory power by the calculation of the marginal R-squared
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value considering only the variance of the fixed effects
and conditional R-squared, taking both the fixed and the
random effects into account according to the formulas
proposed by (Nakagawa et al. 2017).The R* values for
the selected models were calculated with the function
from the “performance” package (Liidecke et al. 2019).

Results

The general information of specimen counts belonging
to different species and developmental stages are given
in the Additional file 1 in Tables A3—A5. The frequen-
cies of different classes of oak regeneration on sampling
plots and information on the overall density of oak
spontaneous regeneration are presented in Fig. 1. We
found that the density of oak regeneration decreased
from the seedling class to larger classes. The total dens-
ity of oak seedlings was almost two times higher than
the sapling density (2043 vs. 801 individuals per ha). The
number of recruits was lower than 200 individuals per
ha. We compared the density of first quality (straight
stems) and lower quality (curved stems and bushy shape)
recruits and found that the density of lower quality re-
cruits was greater than that of better quality recruits.

In this section, we refer only to the final models. Com-
peting model details and comparisons can be found in
the Additional file 1 (Tables A6—A10). The assumption
that spatial autocorrelation connected with plot co-
occurrence in the same stand was important was sup-
ported by lower AIC values of models containing stand
random effects for almost all final models but not for
the best model describing seedling counts. The second
best competing model for seedlings was the GLMM with
a comparable log likelihood value, but its AIC value was
higher by 2 due to a larger degrees of freedom value,
which means that including random effects in this case
did not improve the model. In no final models inter-
action term between soil enzyme activity and other inde-
pendent variables was proven to be statistically
important.

The usefulness of the Poisson distribution for model-
ling oak regeneration was very low. In none of the ana-
lysed regeneration stages were competing models based
on the Poisson distribution found among the three high-
est rated models (Additional file 1: Tables A6—A10). In
the majority of cases, Poisson models occupied the end
of the ranking table. The over-dispersion value for the
best models ranged from 1.29 (in the recruit model) to
3.29 (in the sapling model). Three of the five best
models were built on the assumption that the depend-
ence between the mean and variance of the specimen
count had a nonlinear form (nbinom2), but the examin-
ation of competing model ranking tables (Additional file
1: Tables A6-A10) suggested that there was no
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unequivocal dominance of this distribution form among
the highest ranked models.

Only for seedling model the assumption concerning
zero inflation was proven by the AIC comparison of
competing models. The best mixed model build for
seedlings counts namely GLMM ZI nbinom2 turned out
to have variance of random component equal zero. This
problem was solved in the way described by Pasch et al.
(2013) by the reduction of random component of the
model. The parameters of the final model were recalcu-
lated back from logit form and provided in Table 1. The
only explanatory variable proven to be useful for predict-
ing zero excess was bilberry (Vaccinium myrtillus L.)
ground cover. The ground cover of raspberry (Rubus
idaeus L.) growing on the sample plot and the birch
crown projection area had a positive influence on the
observed number of oak seedlings. A negative effect was
cast by the ground cover with litter and ferns (Pteridium
aquilinum (L.) Kuhn).

From analysed soil enzymes only activity of dehydro-
genase correlated positively and in statistically important
manner with numbers of seedlings on sampling plots
(Fig. 2b). If the dehydrogenase activity increased to 0.4,
the predicted average count of oak seedlings was greater
than 3. The increase in the raspberry cover to 25% and
birch crown projection area to 105 m? (the highest ob-
served levels of those factors) strongly positively influ-
enced oak seedling counts (Fig. 2a, c). The negative
impact of fern and litter was presented on Fig. 2e, d.
Plots without litter and fern cover had markedly higher
seedling counts.

Four predictors had a negative influence on the num-
ber of oak saplings (Table 2). There were: ground cover
by litter, basal area of pedunculate oak, European horn-
beam and Norway spruce. A positive relationship was
observed for phosphatase activity in the organic soil
horizon. As shown in Figs. 3a—d the negative influencing
factors have a very strong diminishing influence on the
saplings counts. The highest oak sapling density was
predicted if the basal area of oak, spruce and hornbeam
was zero. The higher crown projection area of these spe-
cies decreased the oak sapling count. Compering the ef-
fect of these species, the strongest impact was observed
for hornbeam. We found that if the litter cover was
100% the count of oak saplings was 0.6. As shown in
Fig. 3e if the phosphatase activity is greater than 4.5 the
expected count of oak was 7.

Three statistical models describing counts of different
types of oak recruit were built. The first (Table 3) de-
scribed general counts of recruits. This model contained
only two statistically important variables (the activity of
phosphatase in the humus soil horizon and total crown
projection area of all trees growing on sample plots) that
negatively reacted with the predicted recruit counts. The
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Predictors

Seedlings count

Incidence rate ratios std. Error cl z Statistic p-value

(Intercept) 146 0.18 1.04-2.06 218 0.029
Raspberry 1.06 0.03 1.01-1.12 240 0.016
Fern 0.95 0.02 0.91-0.99 =221 0.027
Litter 0.98 0.01 0.97-0.99 -3.14 0.002
Birch.crown.m 1.01 0.00 1.00-1.02 2.04 0.041
Dehydrogenase.A 9.18 0.68 240-35.13 324 0.001
Zero-Inflated Model

(Intercept) 0.08 0.89 0.01-046 -2.84 0.005

Bilberry 1.03 0.01 1.01-1.05 297 0.003

Observations 240

predicted count of all recruits were presented in Fig. 4a
and b. If the total crown area was 400 m” the count of
oaks was close to zero. As shown in Fig. 4b, only when
the phosphatase activity in the soil was close to the low-
est observed levels (0.23 mg per 10 g of soil) all recruit

counts was 2.5. A similar pattern could be observed
when only the first quality (in terms of their potential
silvicultural use) recruits were analysed (Table 4, Fig. 4c
and d). The same factors influenced recruit counts in a
similar manner, but the average count of this class of
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Table 2 Model of saplings count
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Predictors Saplings count
Incidence rate ratios std. Error Cl Z Statistic p-value
(Intercept) 0.27 1.32 0.02-3.63 -0.99 0325
Litter 0.98 0.01 0.96-0.99 —3.26 0.001
Oak.basal.m 0.01 1.13 0.00-0.08 -4.16 <0.001
Hornbeam.basal.m 0.00 393 0.00-0.02 -291 0.004
Spruce.basalm 0.08 0.70 0.02-0.31 —364 <0.001
Phosphatase.O 230 0.31 1.25-4.23 268 0.007
Random Effects
Residual variance 0.52
Random intercept variance 0.17
Intraclass correlation coefficient 0.25
Number of forest stands 13
Observations 240
Marginal R> / Conditional R 0494 /0619
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Table 3 Model of recruits count
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Predictors Seedlings count
Incidence rate ratios std. Error Cl Z Statistic p-value

(Intercept) 353.85 234 3.61-34,679.99 251 0.012
All.crown.m 1.00 0.00 0.99-1.00 -2.63 0.008
Phosphatase.A 0.00 6.07 0.00-0.00 -3.09 0.002
Random Effects

Residual variance 252

Random intercept variance 448

Intraclass correlation coefficient 0.64

Number of forest stands 13

Observations 240

Marginal R* / Conditional R? 0448 / 0.801

recruits was two times lower than that of all recruits. In
the case of the lower quality recruit counts (Table 5,
Figs. 4e—g), a statistically important negative impact of
three predictors was detected: the activity of phosphatase
in the humus soil horizon, spruce basal area and oak
volume in the sample plot.

Discussion

Today’s challenge in forestry goes further than to
achieve timber production with social requirements and
to ensure maintenance of forests as part of our heritage
(Schiitz 1999; O’Hara 2016). Expected climate change
will influence vast forest areas simultaneously and in a
relatively short time in comparison to the longevity of
the classical forest production cycle. The gradual adjust-
ment of species composition during the process of util-
isation of mature forest stands and establishment of new
better adapted generation could be too slow to react on
fast occurring climate changes (Schelhaas et al. 2015).
Near-natural silviculture approaches emphasizing the
utilization of natural spontaneous processes may have
the potential to develop complex and sustainable forests
that are adapted to our changing world (Brang et al.
2014). The idea that biological processes rather than
silvicultural efforts might be relied upon are especially
promising given the size of the challenges ahead. Bio-
logical automation might accommodate reduced re-
source inputs/effort into forest management operations
(Pretzsch and Zenner 2017). Our investigation referred
to the idea of creating mixed stands that are well
adapted to changing environments. Moreover, most
studies have focused on the most popular 2-species
combinations (e.g., spruce-beech, oak-beech), while
other important combinations, such as pine-oak, have
received scant attention (Pretzsch et al. 2017). Because
climate change may negatively impact growing condi-
tions for Scots pine monocultures situated on dry, sandy
soils in central Europe (Slodicak et al. 2011),

spontaneous oak regeneration can play an important
role in their transformation to future stands that are
more stable and species reach.

Density of oak regeneration

We observed oak regeneration of all development phases
(from seedlings to recruits) in Scots pine-dominated
stands (Additional file 1: Tables A3—AS5). Half of all oaks
were included in the smallest height group (up to 0.5m
height). We would like to stress that in the selection of
important variables in the model building process, we
did not show that the age of Scots pine stands is an im-
portant variable.

The average density of oak recruits was not high, but
the importance of their presence was potentially great,
especially if they were present in the relatively young
Scots pine-dominated stands (Additional file 1: Table
A5; Fig. 1). Although their direct economic meaning is
rather constrained (they could be utilized at most for
fuel wood during final cuttings), their impact on the bio-
logical stabilization of Scots pine stands is well docu-
mented (Steckel et al. 2019). The conversion of pure
Scots pine into mixed stands with understory oaks
soundly increased the number and species composition
of parasitoid wasps, which could mitigate the outbreaks
of folivore insects (Jakel and Roth 2004). This goal could
be achieved in artificial way by underplanting oaks in
40-50year old Scots pine stands which is costly, or in
natural way by jays activity which we demonstrated in
our results.

Some modelling results suggested that even recruits
that were not abundant could potentially have economic
importance because they are not randomly but rather
contagiously distributed in the stand. In the beginning
stage of final model selection, initial statistical models
assuming different types of individual distributions (e.g.,
Poisson, negative binomial and their zero inflated coun-
terparts) were compared for each regeneration stage
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(Additional file 1: Tables A6—A10). As in many other in-
vestigations (Fyllas et al. 2008; Li et al. 2011; Zhang et al.
2012; Crotteau et al. 2014; Vickers et al. 2017), models
that did not assume Poisson distributions of young re-
generating individual counts proved to be better. Al-
though the better performance of models based on a
negative binomial count distribution is not a general pat-
tern in analysing spontaneous regeneration (Vickers and
Palmer 2000; Fyllas et al. 2008; Peters and Visscher
2019), this was an important finding from the manage-
ment (silviculture) point of view. The Poisson

distribution of counts on randomly chosen sampling
quadrats could be seen as evidence that the spatial point
pattern formed by specimens is completely random
(Diggle 2003; Wiegand and Moloney 2014). The even-
tual superiority of Poisson-based models describing oak
regeneration counts on sampling plots would suggest
that factors influencing oak regeneration spatial place-
ment were acting in a random manner on the area of in-
vestigated stands. The superiority of models based on
different forms of negative binomial distributions sug-
gested that regenerating oaks were not placed
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Table 4 Model of first quality recruits count
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Predictors First quality recruits count
Incidence rate ratios std. Error Cl Z Statistic p-value

(Intercept) 220.56 257 143-34,031.33 210 0.036
Phosphatase.A 0.00 6.99 0.00-0.00 -2.75 0.006
All.crown.m 0.99 0.00 0.99-1.00 -2.59 0.010
Random Effects

Residual variance 364

Random intercept variance 4.68

Intraclass correlation coefficient 0.56

Number of forest stands 13

Observations 240

Marginal R* / Conditional R? 0420 / 0.746

completely randomly. Based only on this information, it
was not possible to note the name of a particular spatial
point process “responsible” for creating oak spatial dis-
tribution (Diggle and Milne 1983; Coly et al. 2016), but
it was safe to assume that the spatial distributions of oak
were heterogeneous (Veldzquez et al. 2015) or even
grouped (Krebs 1999) in the space of investigated stands.
Grouped distribution of different stages of bird-
dispersed oak regeneration was also found in other stud-
ies (Mosandl and Kleinert 1998; Frost and Rydin 2000).
From a practical point of view, this result means that lo-
cally (in some fragments of a forest stand), the density of
oak saplings or recruits could be large enough to be use-
ful for silvicultural goals, e.g., in some forest districts in
Poland, clumps of well-shaped oak recruits are used to
create the oak admixture in the next generation of Scots
pine stands (Gniot 2007; Skrzyszewski and Pach 2015).
The possibility of successfully incorporating understory
oaks as a good quality admixture into the next gener-
ation is limited by the amount of time young oaks spend
in the understory. The longer the time, the greater the

Table 5 Model of lower quality recruits count

chance that their stems will become crooked. When
planning the conversion of Scots pine to oak, full over-
story light should be provided as early as possible, but
no later than 20years after the regeneration is estab-
lished (Skrzyszewski and Pach 2015).

Soil factors influencing oak spontaneous regeneration

We found that enzymatic activity is one of the most im-
portant factors correlating with oak spontaneous regen-
eration in Scots pine stands. Our statistical models
suggest that the correlation with soil enzyme activity de-
pends on the stage of oak regeneration. The number of
oak seedlings was positively related to the soil dehydro-
genase activity. This is often interpreted as an indicator
of increased microbial activity in the soil, particularly
mycorrhizal fungal activity (Buée et al. 2005). Yguel
et al. (2014) found that oaks surrounded by phylogenet-
ically distant neighbours had increased abundance and
enzymatic activity of ectomycorrhizal fungi in the litter.
This suggests that reduced nutrient availability in a
phylogenetically distant litter was partially compensated

Predictors

Lower quality recruits count

Incidence rate ratios std. Error Cl Z Statistic p-value

(Intercept) 108.90 206 1.91-6221.84 227 0.023
Phosphatase.A 0.00 5.85 0.00-0.01 -2.79 0.005
Spruce.basalm 0.00 407 0.00-0.98 -1.96 0.049
Oak.volumem 0.56 0.27 0.33-0.95 —2.14 0.032
Random Effects

Residual variance 329

Random intercept variance 265

Intraclass correlation coefficient 045

Number of forest stands 13

Observations 240

Marginal R* / Conditional R? 0.500 / 0.723
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for by increased litter decomposition by ectomycorrhizal
fungal activity. The research conducted by Showalter
et al. (2010) directly shows that dehydrogenase activity is
positively correlated with tree growth, which, according
to the cited author, indicates that a well-established
mycorrhiza is increasing nutrient availability for host
tree.

The density of oak saplings and recruits was related to
the phosphatase activity in soils. The increase in phos-
phatase activity in organic soil horizon corresponded to
increased oak sapling density but the density of oak re-
cruits was negatively correlated with phosphatase activity
in the humus soil horizon.

Soil phosphatase plays critical roles in phosphorus cy-
cles and the metabolic state of soil microorganisms
(Watts et al. 2010) and its activity is positively correlated
with soil-extractable phosphorus and with high produc-
tion capacity, stand biomass and/or plant cover (Carreira
et al. 2000). Phosphorus availability is essential for plant
growth and may be a limiting factor in some forest eco-
systems (Attiwill and Adams 1993). This constraint
could be especially important for young oaks (Collet
et al. 1997), with small and relatively shallow root system
growing in relative poor site condition in our experi-
ment. The higher activity of the enzyme increases the
nutrient uptakes from organic soil horizon by oak regen-
eration and could promote their survival and increase
the density of oak saplings.

We hypothesise that young oaks depend positively on
soil enzyme activity, but for the older ones the cause-
effect relationship is reversed, so that soil enzyme activ-
ity depends negatively on the presence of recruits. The
size of the recruits is much larger than that of the other
oak regeneration classes studied. These relatively large
organisms could have a more significant effect on soil
microbial activity than smaller ones. There are at least
two ways in which oak recruits may reduce phosphatase
activity in Scots pine-dominated stands:

1) Oak trees took up phosphorus mainly from 15cm
soil depth, where the greater amount of roots and exter-
nal mycorrhizal mycelia were found (Goransson et al.
2006). The phosphatase activity is correlated with the
availability of phosphorus in the soil. The increase in
phosphorus in soil typically leads to a decrease in the ac-
tivity of this enzyme (Olander and Vitousek 2000). The
additional amount of available phosphorus in soil com-
ing from the decomposition of litter composed not only
with pine needles but also oak leaves could decreases
the activity of phosphatase. Soils under Quercus typically
showed low enzyme activity (Snajdr et al. 2013). Al-
though the amount of phosphorus is similar in pine and
oak litter and soil (Snajdr et al. 2013), the rate of their
litter decomposition is different. Oak litter is rapidly
decomposed compared to other litter (Snajdr et al.
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2013). Moreover, the mineralization rate is higher in
soils under broadleaved trees than under Norway spruce
and Scots pine Smolander and Kitunen (2002). For oak
younger regeneration growing in soil covered by almost
pure Scots pine litter the higher activity of phosphatase
is needed to improve the supply of phosphorus. Oak re-
cruits add substantial quantity of leaves to the litter so
availability of phosphorus could be improved by the
higher ratio of litter decomposition and the increased
activity of phosphatase is not needed.

2) The second mechanism in which the presence of
oak recruits could negatively influence the activity of
phosphatase could be connected with their influence on
soil moisture. Oaks have different strategy than Scots
pine in terms of soil water usage. In the case of drought
Scots pines strongly reduce their transpiration but oaks
in Central Europe tend to keep high rate of transpiration
as long as possible (Toigo et al. 2015). This difference in
water usage strategy was observed in Europe-wide exper-
iments (Steckel et al. 2020) and could lead to faster
water depletion under oaks than pines. Augusto et al.
(2003) observed that vascular plants growing under oaks
in mixed stands have lower moisture requirements than
under Scots pine. The presence of oak recruits in inves-
tigated stands could locally diminish soil moisture and
diminish activity of phosphatase, which depends strongly
on this soil property (Baldrian 2014).

Impact of stand features on the density of oak
regeneration

Oak seedlings establishment

We found that the cover of bilberry negatively influ-
enced the establishment of oak seedlings. However,
Drossler et al. (2017) observed more oaks in blueberry
patches and suggested that the Eurasian jay (Garrulus
glandarius) prefers to hide acorns under dwarf shrub
vegetation. A negative impact on oak seedlings was ob-
served from fern cover. Jensen et al. (2011) also sug-
gested a negative effect of dense herbaceous ground
vegetation on oak regeneration. Bilberry and fern,
especially common bracken, created dense ground cover
that was not preferred by oak seedlings in pine stands.
Humphrey and Swaine (1997) showed that competition
from bracken (Pteridium aquilinum (L.) Kuhn) restricted
the growth of oak seedlings. Competition for nutrients
and moisture may also be important, especially in nutri-
ent poor or drier areas (Lof 2000; Brudvig and Asbjorn-
sen 2007). However, we also found that litter cover
created inappropriate conditions for oak regeneration. In
previous studies (Kurek and Dobrowolska 2016; Kurek
et al. 2018), it was observed that jays deposited the
acorns in small patches of the litter. Moreover, litter af-
fected soil humidity and the amplitude of diurnal
temperature fluctuations. The forest floor can act as a
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physical barrier and can possibly release toxic metab-
olites (Sayer 2006). This process depends on the
amount of litter present and the environmental condi-
tions (Donath and Eckstein 2008). The positive im-
pact of raspberry cover on oak seedling density was
observed in our study. Raspberry does not create as
dense of ground cover as bilberry, and it protects
oaks against damage caused by biotic (herbivory) and
abiotic (drought, insolation, lack of humidity) factors
(Donoso and Nyland 2006). Cuttings that remove
more than 40% of the forest canopy create environ-
mental conditions that promote the establishment of
raspberry. In such places, oak finds good conditions
for regeneration (Donoso and Nyland 2006).

Overstory species composition affected oak seedling
density. We recognized the positive impact of birch
(birch crown projection area) on oak density. Light
transmission was found to be higher in dense birch-
dominated stands than in dense pine-dominated
stands because of the higher total foliage area and the
higher location of foliage in the pine canopy (Lintu-
nen et al. 2013). Because pedunculate oak is a light-
demanding species (Savill 2019), it requires at least
20% full sunlight to avoid severe growth depression
(Ligot et al. 2013). Light is not a requirement for ger-
mination (Ligot et al. 2013), as seedlings largely rely
on energy from the acorn during the first season.
Paluch and Bartkowicz (2004) also found that oaks
occurred more frequently in the vicinity of birches. It
is possible that the neighbourhood of birch trees
could facilitate the establishment of oak by reducing
the competition of vegetation.

Oak saplings

We recognized that hornbeam, Norway spruce and ped-
unculate oak basal area negatively influenced the num-
ber of oak saplings. All of these species have dense
crowns that transmit less light. We think that light con-
ditions were the key factor, as the light requirement of
oak increases with increasing tree age and size (von
Lipke and Hauskeller-Bullerjahn 1999; Vizoso-Arribe
et al. 2014). Annighofer et al. (2015) also showed that
the occurrence of oak saplings was related to light con-
ditions and that abundance increased with increasing
light availability. Moreover, the negative impact of litter
cover on sapling density suggested more demands of ad-
vanced oak regeneration for light. Our results were op-
posite to those of Lithuanian investigators, who observed
that the abundance of oak undergrowth was largest
where spruces and beeches were predominant in the
overstory (Jurksiené and Baliuckas 2018). However, their
results confirmed our results regarding the negative in-
fluence of hornbeam on oak regeneration (Jurksiené and
Baliuckas 2018). Although pedunculate oak can grow as
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a pioneer tree (Gotmark and Kiffer 2014), it survives as a
seedling/sapling in relatively dark understories (our
results).

Oak recruits

The count of oak recruits showed a clear relation to
crown projection of all trees. The density of oak recruits
increased with decreasing crown projection of all trees.
Crown size is an indicator of space occupancy because it
is correlated with the photosynthetic capacity (Kamler
et al. 2016). Similar results were achieved by Annighofer
et al. (2015), who found that sapling quantity decreased
with increasing basal area of other species. The situation
when the number of recruits is low and the crown pro-
jection of old tree is high suggests water limitations at
small scales. On the Fig. 4, it could be seen that at the
same level of local crown projection, the density of high
quality recruits was lower than the total density of re-
cruits. Recruits is the category of young oaks that have
the greatest age and longer growth history under canopy
pressure. Observation from other studies (Skrzyszewski
and Pach 2015) indicate that prolonged period of growth
under the canopy (more than 20 years) reduces the qual-
ity of young oaks. This explanation is suitable also for
the first-quality recruits. In the case of low-quality re-
cruits, more factors had a negative impact on their dens-
ity. These factors included spruce basal area and oak
volume. Norway spruce and oak utilise more water than
Scots pine and may locally diminish water reserves in
soil and also transmit less light through their canopy.
With the lack of light, oaks create a shrubby crown. Tall
and slender oaks reflect a priority for shoot growth,
which is a common strategy employed by plants in re-
sponse to shading (Jensen et al. 2011).

New dimension of oak regeneration niche

In our study, we explored the oak regeneration niche,
i.e., the set of environmental requirements potentially
important for germination and establishment of its re-
generation. Much research is devoted to exploring vari-
ables that constrain oak regeneration, and indeed they
explore various dimensions of the oak regeneration
niche, but rarely do authors directly state that they are
studying this phenomenon (Collins and Good 1987).
The concept of the regeneration niche (Grubb 1977) is
based on the idea of the ecological niche, which was de-
fined by Hutchinson (1957) as a region in a multidimen-
sional space of environmental factors that influence the
well-being of a species. The results of our study reveal
new, potentially important dimensions of the oak regen-
eration niche. The relatively high coefficients of deter-
mination of models describing the number of young
oaks in the stands studied suggest that soil conditions,
represented by soil enzyme activity, play an important
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role in the establishment and growth of oak spontaneous
regeneration under the canopy of Scots pine stands. This
factor, relatively rarely studied in the context of oak re-
generation, may be important in explaining the failure of
oak regeneration in some central European forests. It is
well known that the importance of a particular dimen-
sion of ecological niche may change in different parts of
a species’ distribution range, e.g. in a colder region the
availability of direct sunlight might be more important
than in a warmer one (Peterson et al. 2011). It is likely
that the importance of soil enzyme activity for oak re-
generation establishment could change with changes in
other environmental variables, especially beyond the
boundaries examined in our study. It is difficult to give
simple instructions on how to regulate the level of en-
zyme activity on an economic scale. However, we believe
that the results of our study can be used to some extent
to diagnose the proper site conditions for oak
regeneration.

Conclusions

Successful regeneration of pedunculate oak under Scots
pine-dominated stands of different ages is possible, as
shown by the presence of all stages of oak regeneration
from seedling to recruit. We found that oak regeneration
density depended on a combination of several variables,
but the activity of two soil enzymes played a major role
in oak establishment and advancement. Soil enzyme ac-
tivity can be considered not only a predictor of site con-
ditions, but also a predictor of establishment and
advancement of oak regeneration. The results of our
study reveal new, potentially important dimensions of
the oak regeneration niche.

The spatial distribution of oak saplings and recruits
was heterogeneous or even grouped in some fragments
of a studied forest stand; therefore, it can be used in fu-
ture conversion of pine-dominated stands into mixed
stands. Even if oak cannot be considered an important
tree species in the upper stand layer now, it will play an
important role in the future forest ecosystem because
existing groups of good quality oaks (especially saplings)
could be used as admixture when creating the next gen-
eration of forest stands. It could be particularly useful if
possible climate change forces us to convert large areas
of Scots pine monocultures in Central Europe into
mixed forest stands. Even if it will not be necessary, the
spontaneous spread of oaks in Scots pines monocultures
could increase the biological stability and resilience of
these forests (resistance to outbreaks of folivorous
insects).
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DBH: Diameter at breast height; TTC: 2,3,5-triphenyltetrazolium chloride;
TPF: Triphenyl formazan; pNP: p-nitro phenol; GLMMs: Generalized linear
mixed effect models; GLMM Poisson: Negative binomial distribution of the
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Poison distribution; GLMM ZI Poisson: Zero-inflated mixture model based on
a Poisson distribution; GLMM nbinom1: Mixture model based on a negative
binomial distribution with linear relations between mean and variance;
GLMM ZI nbinom1: Zero-inflated mixture model based on a negative
binomial distribution with linear relations between mean and variance;
GLMM nbinom?2: Mixture model based on a negative binomial distribution
with quadratic relations between mean and variance; GLMM ZI

nbinom2: Zero-inflated mixture model based on a negative binomial
distribution with quadratic relations between mean and variance
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Additional file 1: Table A1. Expalanatory variables collected during
field work. Table A2. Species composition of the investigated stands.
Table A3. Density of seedlings (H < 0.5m) in the investigated pine
dominated stands. Table A4. Density of saplings (H>0.5m and DBH <2
cm) in the investigated pine dominated stands. Table A5. Density of
recruits (DBH < 7 cm) in the investigated pine dominated stands. Table
A6. Comparison of competing models for seedlings on Akaike
Information Criterion (AIC). GLM = generalized linear model; GLMM =
generalized linear mixed model; ZI = zero inflated; Family = family of error
distribution; negbin1 = negative binomial (variance that increases linearly
with the mean); negbin2 = negative binomial (variance that increases
quadratically with the mean); Df = degrees of freedom; The optimal
model is placed on the top of table. dLoglik and dAIC are the difference
between subsequent models and the best one in term of AIC and log
likelihood (logLik). Table A7. Comparison of competing models for
saplings on Akaike Information Criterion (AIC). GLM = generalized linear
model; GLMM = generalized linear mixed model; ZI = zero inflated;
Family = family of error distribution; negbin1 = negative binomial
(variance that increases linearly with the mean); negbin2 = negative
binomial (variance that increases quadratically with the mean); Df =
degrees of freedom; The optimal model is placed on the top of table.
dLogLik and dAIC are the difference between subsequent models and
the best one in term of AIC and log likelihood (logLik). Table A8.
Comparison of competing models for recruits on Akaike Information
Criterion (AIC). GLM = generalized linear model; GLMM = generalized
linear mixed model; ZI = zero inflated; Family = family of error distribution;
negbin1 = negative binomial (variance that increases linearly with the
mean); negbin2 = negative binomial (variance that increases quadratically
with the mean); Df = degrees of freedom; NA = not applicable to
computational/convergence issues. The optimal model is placed on the
top of table. dLogLik and dAIC are the difference between subsequent
models and the best one in term of AIC and log likelihood (logLik).
Table A9. Comparison of competing models for first quality recruits on
Akaike Information Criterion (AIC). GLM = generalized linear model;
GLMM = generalized linear mixed model; ZI = zero inflated; Family =
family of error distribution; negbin1 = negative binomial (variance that
increases linearly with the mean); negbin2 = negative binomial (variance
that increases quadratically with the mean); Df = degrees of freedom;

NA = not applicable to computational/convergence issues. The optimal
model is placed on the top of table. dLoglik and dAIC are the difference
between subsequent models and the best one in term of AIC and log
likelihood (logLik). Table A10. Comparison of competing models for
lower quality recruits on Akaike Information Criterion (AIC). GLM =
generalized linear model; GLMM = generalized linear mixed model; ZI =
zero inflated; Family = family of error distribution; negbin1 = negative
binomial (variance that increases linearly with the mean); negbin2 =
negative binomial (variance that increases quadratically with the mean);
Df = degrees of freedom; NA = not applicable to computational/
convergence issues. The optimal model is placed on the top of table.
dLogLik and dAIC are the difference between subsequent models and
the best one in term of AIC and log likelihood (logLik).
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