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Abstract

Background: Vegetation phenology research has largely focused on temperate deciduous forests, thus limiting our
understanding of the response of evergreen vegetation to climate change in tropical and subtropical regions.

Results: Using satellite solar-induced chlorophyll fluorescence (SIF) and MODIS enhanced vegetation index (EVI)
data, we applied two methods to evaluate temporal and spatial patterns of the end of the growing season (EGS) in
subtropical vegetation in China, and analyze the dependence of EGS on preseason maximum and minimum
temperatures as well as cumulative precipitation. Our results indicated that the averaged EGS derived from the SIF
and EVI based on the two methods (dynamic threshold method and derivative method) was later than that derived
from gross primary productivity (GPP) based on the eddy covariance technique, and the time-lag for EGSsif and
EGSevi was approximately 2 weeks and 4 weeks, respectively. We found that EGS was positively correlated with
preseason minimum temperature and cumulative precipitation (accounting for more than 73% and 62% of the
study areas, respectively), but negatively correlated with preseason maximum temperature (accounting for more
than 59% of the study areas). In addition, EGS was more sensitive to the changes in the preseason minimum
temperature than to other climatic factors, and an increase in the preseason minimum temperature significantly
delayed the EGS in evergreen forests, shrub and grassland.

Conclusions: Our results indicated that the SIF outperformed traditional vegetation indices in capturing the autumn
photosynthetic phenology of evergreen forest in the subtropical region of China. We found that minimum temperature
plays a significant role in determining autumn photosynthetic phenology in the study region. These findings contribute to
improving our understanding of the response of the EGS to climate change in subtropical vegetation of China, and provide
a new perspective for accurately evaluating the role played by evergreen vegetation in the regional carbon budget.
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Introduction
Vegetation phenology refers to the rhythm of growth
and development in the life cycle of plants, which is
closely associated with seasonal changes in the environ-
ment (Suepa et al. 2016). The life cycle comprises bio-
logical events that occur throughout the year such as
budding, flowering, fruiting, defoliation and dormancy
during the growth of plants in a year (Helmut 1974;
Vrieling et al. 2018). Vegetation phenology is a key indi-
cator of climate change, and it can have a significant im-
pact on the cycles of carbon, water, and energy in
terrestrial ecosystems (Xiao et al. 2009; Richardson et al.
2013). Apart from gaining a better understanding of
plant responses to climate change, studies on vegetation
phenology can help us better understand the mecha-
nisms involved in the exchange of matter and energy be-
tween vegetation and the atmosphere, and more
accurately evaluate the contribution of vegetation to the
global carbon budget (Piao et al. 2008; Penuelas et al.
2009; Richardson et al. 2013).
A large number of studies based on ground observations

and satellite remote sensing monitoring have reported an
advance in the start of vegetation growing season (SOS)
during spring (Menzel et al. 2006; Fu et al. 2015) and a
delay in the end of growing season (EGS) in autumn (Liu
et al. 2016; Piao et al. 2019). Evidence from multiple stud-
ies indicated earlier SOS was significantly related to the in-
crease of preseason temperature (Ge et al. 2015; Xu et al.
2018). Compared with SOS, the EGS also determines the
length of the entire growing season and plays an important
role in maintaining the global carbon balance (Piao et al.
2008; Garonna et al. 2014). However, the mechanisms
underlying the response of EGS to climate change remain
unclear (Gallinat et al. 2015; Wu et al. 2018). Though mul-
tiple studies tried to investigate the relationships between
EGS and climate factors, there is still no consistent conclu-
sion (Yang et al. 2017; Wu et al. 2018). For example, recent
studies revealed that increase in daytime maximum
temperature and nighttime minimum temperature would
cause contrasting effects on drought stress, which result in
inconsistent relation between autumn vegetation phen-
ology with preseason maximum temperature and mini-
mum temperature (Wu et al. 2018).
Previous studies on vegetation phenology have focused

on the deciduous forest in the middle and high latitudes
(Fu et al. 2014; Flynn and Wolkovich 2018), while fewer
studies have been conducted in subtropical regions with
evergreen vegetation. Remote sensing based indicators
have been frequently applied in vegetation phenology
monitoring, such as Normalized Difference Vegetation
Index (NDVI) and Enhanced Vegetation Index (EVI)
(Wen et al. 2017; Yuan et al. 2018). However, these
vegetation indices based on “greenness” observations can
only reflect the greenness information of vegetation, and

represent the “potential photosynthesis” of vegetation
(Liu et al. 2018). Subtropical regions mainly consist of
evergreen forests and do not show significant seasonal
changes with respect to canopy “greenness”. Therefore,
using vegetation index to understand vegetation phen-
ology and the response mechanism of vegetation phen-
ology to climate change in these forests can cause
significant bias (Karkauskaite et al. 2017).
The emergence of solar-induced chlorophyll fluores-

cence (SIF) in the recent decade provides a new oppor-
tunity to monitor vegetation phenology from regional to
global scales (Guanter et al. 2014; Yoshida et al. 2015;
Sun et al. 2017). SIF is measured as light released during
photosynthesis between the wavelengths of 650–800 nm,
which can directly reflect the dynamic changes of plant
photosynthesis (Frankenberg et al. 2014). Compared to
traditional vegetation indices that are significantly af-
fected by atmospheric aerosols, soil, snow, and clouds
(Zhang et al. 2003; Balzarolo et al. 2016; Liu et al. 2018),
SIF can more directly reflect the dynamic changes that
occur during photosynthesis and is less sensitive to the
influence of clouds or the atmosphere (Joiner et al.
2014). Therefore, SIF is considered to be a reliable re-
mote sensing-based indicator for monitoring the phen-
ology of tropical or subtropical evergreen vegetation,
especially in forests that are in the early stages of envir-
onmental stress (Köhler et al. 2018; Zuromski et al.
2018). In addition, SIF was also considered more effect-
ive in retrieving vegetation phenology in high productiv-
ity areas (Guanter et al. 2014; Yang et al. 2015).
A quarter of the land area in China is covered by subtrop-

ical forests, characterized by unique vegetation types, high
biodiversity, and remarkable ecological functions. These for-
ests play an important role in maintaining the ecological bal-
ance in the region. However, there were still few studies on
the phenology of subtropical vegetation, especially in EGS.
Therefore, understanding the response of subtropical vegeta-
tion to climate change is critical, especially in terms of au-
tumn phenology. In this study, we examined the autumn
photosynthetic phenology for five vegetation types in sub-
tropical China, including evergreen coniferous forest (ECF),
evergreen broadleaved forest (EBF), deciduous broadleaved
forest (DBF), shrub and grassland. The SIF, NIRv (near-infra-
red reflectance of vegetation) and MODIS EVI remote sens-
ing data from 2000 to 2018 were used to extract the autumn
phenology of subtropical vegetation in China. The main ob-
jectives of the study were as follows: (1) to examine the spa-
tiotemporal patterns of the EGS in the study region; (2) to
compare the results of vegetation photosynthetic phenology
based on SIF and vegetation index; (3) to analyze the re-
sponses of vegetation autumn phenology in subtropical
China to maximum temperature (Tmax), minimum
temperature (Tmin) and precipitation and then to explore the
underlying mechanisms.
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Materials and methods
Datasets
Remote sensing data
The satellite SIF data used in this study is provided by
Xiao (2019), which is a global high spatio-temporal reso-
lution (0.05°, 8-day) SIF dataset (namely, GOSIF) based
on the OCO-2 (Orbiting Carbon Observatory 2) satellite.
GOSIF was developed by a data-driven method which
established a predictive SIF model from discrete OCO-2
soundings, MODIS remote sensing data and meteoro-
logical reanalysis data (Li and Xiao 2019a). It has similar
and reasonable seasonal period as the original OCO-2
SIF, but it has higher spatial and temporal resolution,
global continuous coverage and longer data record (Li
and Xiao 2019a). This dataset plays an important role in
understanding the long-term trends in global photosyn-
thesis, and which has been widely used to evaluate the
inter-annual variation in ecosystem productivity (Li and
Xiao 2019b; Li and Xiao 2020; Qiu et al. 2020). In calcu-
lation, we changed the temporal resolution of SIF data
from 8 to 16 days by using the maximum synthesis
method. The EVI data used in this study were extracted
from NASA Earth Science Data (NASA 2015). For the
analysis, we used EVI data (2000–2018) extracted from
the MOD13C1 v006 dataset, with a spatial resolution of
0.05° and 16 days’ interval. The NIRv was calculated by
the product of normalized vegetation index (NDVI) and
near infrared reflectance, with a spatial resolution of
0.05 degree (Wang et al. 2021).

Meteorological data
Meteorological data were obtained from the National Ti-
betan Plateau Data Center (2019). The dataset is based
on the fusion of remote sensing product, reanalysis data
set and field station data and has a temporal resolution
of 3 h and a spatial resolution of 0.1° (Yang et al. 2010).
The dataset provides seven near-surface meteorological
elements, including air temperature, surface pressure,
specific humidity, wind speed, downward shortwave ra-
diation, downward long-wave radiation and precipitation
rate (He et al. 2020). In this study, we used daily precipi-
tation, Tmax and Tmin data to examine the response of
EGS to climate change.

Flux and vegetation data
In this study, carbon flux data of half hour scale in terres-
trial ecosystem were used to evaluate the performance of
different remote sensing data for monitoring vegetation
phenology. The flux data of the Dinghushan and
Qianyanzhou research stations from 2003 to 2010 were
obtained from the national flux network of China (China-
FLUX 2013). Coordinate axis rotation and WPL (Webb-
Pearman-Leuning) correction were used to eliminate the
effects of topography, air hydrothermal transmission, and

observation height on the observed data. Then, the CO2

flux data were partitioned into gross primary productivity
(GPP) and total ecosystem respiration. The vegetation
data (spatial resolution, 1 km) were obtained from the
Joint Research Center of European Commission under the
project of Global Land Cover 2000. The final regional
vegetation classification data for China were obtained by
preprocessing the corresponding data (Xu et al. 2005). We
excluded cultivated areas affected by anthropogenic activ-
ity. For the final analysis, we selected five vegetation types
in the subtropical region of China, including evergreen
coniferous forest (ECF), evergreen broadleaved forest
(EBF), deciduous broadleaved forest (DBF), shrub and
grassland. The distribution of the subtropical region and
vegetation type were shown in Fig. 1.

Estimation of EGS
In order to eliminate the background noise, the
Savitzky-Golay filter was applied to smooth the SIF, EVI,
NIRv and GPP flux time series data (Zhang et al. 2016).
We then used the dynamic threshold method and the
derivative method to determine EGS, which indicates
autumn vegetation phenology (Liu et al. 2016; Filippa
et al. 2016). Compared with the fixed threshold method,
the dynamic threshold method is advantageous since it
eliminates the influence of background noise by allowing
a threshold to be set based on the conditions in the
study area (White et al. 2009). The equation of the dy-
namic threshold method is as follows:

Xratio ¼ Xt−Xmin

Xmax−Xmin
ð1Þ

where Xt is the value of X at a given time t, and Xmax

and Xmin are the maximum and minimum values of X in

Fig. 1 The spatial distribution of vegetation types and flux stations
in study area
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the annual X time series, respectively. X indicates SIF,
EVI and NIRv remote sensing data. In this study, the
EGS date was defined as the first day of the year in the
descending period when the Xratio reduction value was
less than 0.5 as the EGS (Wu et al. 2018).
The derivative method assumes that the EGS is the

time point when the X time series decreases rapidly: this
corresponds to the points with the minimum slope of
the fitting curve (Forkel et al. 2015). Here the Xratio is
calculated as the change in X at time t, based on the fol-
lowing equation:

Xratio ¼
X tþΔtð Þ−Xt

Δt
ð2Þ

where Xt represents the value of X corresponding to the
time t. Δt is value of the time variation. X indicates SIF,
EVI and NIRv remote sensing data. In order to make the
retrieval phenology more accurate, EGS retrieved from
two methods was both used for the analysis.

Analysis
We first extracted the autumn photosynthetic phenology
(i.e., EGS) for each year at each pixel using both deriva-
tive and dynamic threshold methods from the GOSIF,
NIRv and MODIS EVI datasets for the period from 2000
to 2018. We then calculated the annual average of EGS
and analyzed its spatial distribution in the subtropical
region. Subsequently, we used flux data to retrieve the
annual EGS by the two methods in the study area, in
order to evaluate the EGS derived from different remote
sensing data. A simple linear regression was used to
analyze the spatial distribution and temporal trends of
EGS for each pixel from 2000 to 2018. In this analysis,
we also compared the trends of the EGS across different
vegetation types.
Previous studies showed that precipitation, minimum

temperature and maximum temperature all play an im-
portant role in regulating vegetation phenology (Piao
et al. 2019; Wang et al. 2019b). A partial correlation ana-
lysis was used to evaluate the response of the EGS to cli-
matic factors, including precipitation, Tmax, and Tmin,
during preseason 5 months (with 1 month step). We
used the absolute values of the maximum partial correl-
ation coefficients for each pixel to identify the preseason
period that was significantly associated with EGS, which
was designated as the optimal preseason periods in the
study area. Then, we analyzed the relationship between
climatic factors and the EGS during the most related
preseason periods and determined its significance of
each pixel. Using the correlation coefficients, we also
assessed the relationship between EGS and climatic fac-
tors across different vegetation types.

Finally, to further investigate the response of EGS to
climate factors, we conducted multiple regressions to
evaluate the sensitivity of EGS to the preseason Tmax,
Tmin and cumulative precipitation. The coefficients of
each factor in the regression model indicate the sensitiv-
ity of EGS to corresponding climatic factors. In this
study, we aggregated all data to a 0.1° × 0.1° grid to
match the coarsest resolution among all datasets. In all
the calculation and analysis, we excluded the area with
low vegetation coverage (EVI < 0.08) and retained those
areas covering the five types of vegetation in the study.

Results
Spatial and temporal patterns of EGS in subtropical China
There was a distinct latitudinal variation of EGS derived
from SIF and EVI data (Fig. 2): an advance of the EGS at
higher latitudes and a delay of the EGS at lower lati-
tudes. Furthermore, EGS extracted from SIF data (EGS-
sif) was earlier than that derived from the EVI data
(EGSevi). For the two datasets, the spatial distributions of
EGS were similar between two methods. In the study
area, EGSsif extracted by the derivative and dynamic
threshold methods were 280.1 and 276 days, respectively,
with an average of 278 days (Fig. 2b and d). In contrast,
EGSevi of the two methods were 294 and 289.6 days, re-
spectively, with an average of 291.8 days (Fig. 2a and c).
In addition, some interesting information was found by
comparing EGS estimated by the two types of remote
sensing data and flux data from 2003 to 2010 in Fig. 3.
At the Qianyanzhou station, the EGS of EVI, SIF and
GPP flux data (average of 8 years) by the derivative
method were on day 303.9, 291.6 and 278.9, respectively
(Fig. 3a). EGSevi, EGSsif and EGSGPP estimated by the dy-
namic threshold method were on day 304.1, 289.6 and
279.5, respectively (Fig. 3b). The average values of EGS
retrieved from two kinds of remote sensing data were
later than EGSGPP, and the time-lags were 25 days
(EGSevi) and 11 days (EGSsif), respectively. At the Din-
ghushan station, EGSevi, EGSsif and EGSGPP by the de-
rivative method were on day 300.4, 288 and 273.9,
respectively (Fig. 3c). For the dynamic threshold method,
EGSevi, EGSsif and EGSGPP were on day 299.9, 287.1 and
272.7, respectively (Fig. 3d). The average of EGSGPP was
27 days (EGSevi) and 14 days (EGSsif) ahead of the two
remote sensing data. Compared with SIF and EVI, EGS
retrieved by the NIRv was later for the two methods
(Supplementary Material: Figs. S1 and S2).
Across the study area, the trends in the EGS extracted

from the SIF and EVI by the two methods were similar
(Fig. 4). In terms of spatial distribution, the delays in
EGSevi and EGSsif were restricted to the central part of
the study area (Fig. 4). For the derivative method, the
delay of EGSevi and EGSsif was observed in more than
60% of the total study area, of which ~ 20% showed
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significant delays (P < 0.05) (Fig. 4a and b). A delay of
EGSevi and EGSsif extracted by the dynamic threshold
method was observed in more than 55% of the total
study area, and the pixels with significant delay (P <
0.05) for EGSevi and EGSsif accounted for 13.23%, and
17.77% of all the pixels in the study region, respectively
(Fig. 4c, d). Both EGSevi and EGSsif extracted by the two
methods exhibited similar trends across different vegeta-
tion types. A delayed EGS was observed across most
vegetation types (e.g., evergreen forest, shrub, and grass-
land), except for the deciduous broadleaved forest (Fig.
S3). In contrast, the averaged EGS of DBF retrieved from
the two methods showed an advancing trend by 0.09
day·yr− 1 (EGSevi) or 0.37 day·yr

− 1 (EGSsif). In addition, in
the study area and different vegetation types, the trend
in the EGS extracted from the NIRv was different from
that of the SIF and EVI (Figs. S4, S5).

Response of EGS to climate drivers
Based on the above analysis, the SIF showed a better
performance than EVI and NIRv in capturing the EGS,
and thus we chose EGSsif to explore the relationship be-
tween autumn phenology and climate factors in the
study area. At the regional scale, for both two methods,
EGSsif in subtropical China was correlated with Tmin

during the period of 2–4months prior to EGSsif, the me-
dian and mean of the period related to Tmin were in the

3 months prior to EGSsif. The mean of the period related
to Tmax was in the 2 months to EGSsif. For the cumula-
tive precipitation, the EGSsif was most correlated with
the period about 3 months prior to EGSsif (Fig. S6).
Based on the partial correlation analysis, we found that

a large proportion of the pixels showed positive correla-
tions between EGSsif extracted by the two methods and
Tmin as well as cumulative precipitation (Fig. 5). For the
derivative and dynamic threshold methods, about 77.1%
and 73.58% of the pixels covering the study area showed
a positive partial correlation with Tmin, of which 17.61%
and 16.63% showed statistically significant relationships
(P < 0.05), respectively. Similarly, on average, 62.91% of
the pixels covering the study area of the two methods
showed a positive partial correlation with preseason cu-
mulative precipitation, and this correlation was signifi-
cant over 9.5% of pixels (P < 0.05). Compared with the
preseason Tmin and cumulative precipitation, there were
more pixels with negative correlation between the pre-
season Tmax and EGSsif, accounting for 59.96% and
59.36% of the study area for the two methods, respect-
ively (Fig. 5).
The responses of EGS of different vegetation types to

climate factors were different (Fig. 6). For two methods,
there was a positive partial correlation between EGSsif
and Tmin across different vegetation types (RP > 0.51, P <
0.05; Fig. 6), with the exception of deciduous

Fig. 2 The spatial patterns of the end of growing season (EGS) in subtropical vegetation in China from 2000 to 2018: MODIS EVI dataset and SIF
dataset. a-b, derivative method and c-d, dynamic threshold method. Inset plots (the bottom-left of each figure) display the frequency distribution
of EGS
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broadleaved forest (RP < − 0.32, P > 0.05). Preseason cu-
mulative precipitation was positively correlated with
EGSsif for all vegetation types, and the strongest relation-
ship was observed in the shrub (RP > 0.56, P < 0.05). In
contrast, Tmax was negatively correlated with EGSsif
across all vegetation types, except for DBF. Overall,
EGSsif was more strongly correlated with preseason Tmin

and cumulative precipitation than with preseason Tmax

(Fig. 6). To further test the results of the partial correl-
ation analysis, we also analyzed the sensitivity of EGSsif
to climate factors. Both methods showed similar results.
The sensitivity of EGS to the preseason Tmin was the
strongest across all vegetation types (> 1.93 day·sd− 1), ex-
cept for DBF (Fig. S7). Conversely, the sensitivity of EGS
to the preseason Tmax was the weakest across different
vegetation types (Fig. S7).

Discussion
Comparison of satellite-retrieved EGS based on SIF and
EVI data
By comparing SIF with GPP estimated across two flux
tower sites in the study area, the SIF dataset used in this
study exhibited strong seasonal and interannual dynam-
ics that were consistent with those of daily GPP (Fig.
S8), and thus the reconstructed SIF product has a great

potential for monitoring the photosynthetic phonology
in the study area. We also found that the SIF clearly had
an advanced EGS than did EVI, and it was closer to
GPP-derived EGS at the two evergreen forest sites. The
differences in the seasonal cycle of EVI and SIF could be
explained by the differences in the information con-
tained in the two kinds of data resource. On the one
hand, the SIF is deemed to be directly linked to photo-
synthetic activity, which contains major information on
photosynthetically active radiation (Walther et al. 2016).
While the EVI is more of an approximation for fraction
of photosynthetically active radiation, which indicates
the photosynthetic potential of the terrestrial vegetation
cover (Jiang et al. 2008). Because of the intrinsic limita-
tions of the photosynthetic machinery and external
stress factors, the absorbed photosynthetically active ra-
diation by vegetation cannot be completely used for car-
bon fixation (Baker 2008). In contrast, SIF contains
information on not only absorbed photosynthetically ac-
tive radiation but also environmental stresses that deter-
mine photosynthetic light use efficiency (Yoshida et al.
2015; Li and Xiao 2020). Therefore, SIF can be used to
track changes in physiological changes induced by envir-
onmental stresses in the absence of changes in greenness
or structure. This may explain why EGS based on SIF
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occurred earlier than that based on the “greenness”
phenology reflected in EVI data.
On the other hand, SIF is an energy flux emitted from

plant chlorophyll molecules a few nanoseconds after light
absorption by vegetation (Baker 2008), whereas the EVI
was calculated based on vegetation canopy reflectance.
Multiple studies have reported that physiological vegeta-
tion indices (e.g., chlorophyll) performance better than
structural vegetation indices for detecting the autumn
photosynthetic phenology for evergreen forests (Wong
et al. 2019; Yin et al. 2020). The structural recession of
evergreen forest in autumn is gradual, and the photosyn-
thetic rate is mainly controlled by physiology (Gallinat
et al. 2015). Our result indicated that autumn photosyn-
thesis in subtropical China forests is mainly stressed by
minimum temperature variability, which causes photosyn-
thesis to end before structural recession (Jeong et al.
2017). Therefore, SIF outperformed EVI in detecting the
photosynthetic phenology. In addition, although EVI is an
advanced vegetation index, it is still affected by clouds and
other atmospheric noise (Miura et al. 2001; Huete et al.
2002). In contrast, the SIF is not sensitive to the influence
of cloud and atmosphere (Joiner et al. 2014). This may
also contribute to the difference in phenology monitoring
for SIF and EVI in our study.

Response of vegetation phenology to climate drivers
Different from the earlier spring phenology which was
mainly caused by global warming, there is no consistent
conclusion on the change trend of EGS and its influen-
cing factors. Therefore, it is difficult to explain the re-
sponse mechanism of EGS to climate change. Especially
for the photosynthesis phenology in the subtropical
China, the climate response mechanism of autumn
photosynthesis is largely unknown due to the limitation
of monitoring methods. Our results indicated that the
EGS in subtropical China was slightly delayed, and the
change trend of EGS was biome dependent. In temperate
regions, multiple studies have also confirmed that the
EGS has reported a small delay in recent years; however,
there were no widespread delaying trends in autumn
phenology (Wang et al. 2019a). Our findings indicated
that global climate change can extend the growing season
in subtropical vegetation, which can in turn enhance the
carbon sink capacity of subtropical vegetation.
Previous studies have shown that temperature plays a

key role in regulating vegetation autumn phenology
(Cleland et al. 2007; Chuine et al. 2010). For example,
the increase of Tmax can advance or delay autumn phen-
ology, while the increase of Tmin had the opposite effect
(Wu et al. 2018). Our results indicated that the increase

Fig. 4 The spatial patterns of the linear trend of the end of growing season (EGS) of subtropical vegetation in China from 2000 to 2018: MODIS
EVI dataset and SIF dataset. a-b, derivative method and c-d, dynamic threshold method. A negative value indicates an advance, and a positive
value indicates a delay. Inset plots (the bottom-left of each figure) display the frequency distribution of change trend. The proportions of positive
(P) and negative (N) (proportions of significant in parentheses) trends are provided
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of preseason Tmin significantly delayed autumn photo-
synthetic phenology, extending the growing season in
subtropical vegetation in China. The increase of the pre-
season Tmin may delay the coloring of leaves in autumn
and reduce the chilling injury caused by low nighttime
temperature (Yang et al. 2017). Additionally, the increase
of Tmin can result in warmer autumn weather, fewer
frost days and a delay in the first frost (Liu et al. 2016).
In our study, the sensitivity of each vegetation type to
the preseason Tmin was stronger. This could be due to
the fact that subtropical regions are warm and humid,
and the nighttime temperature is a limiting factor for
vegetation growth, thereby leading to a greater impact
on vegetation growth and development than daytime
temperature and precipitation. On the other hand, the

increase of the preseason Tmax led to an earlier EGS and
shortened the growing season in our study. The higher
subtropical daytime temperature can decrease photosyn-
thetic enzyme activity (Rossi et al. 2017), which can in
turn inhibit photosynthesis and shorten the growing sea-
son. In addition, the increase of daytime temperature
can also lead to higher evapotranspiration and lower soil
water use efficiency, resulting in earlier senescence of
vegetation (Estiarte and Penuelas 2015; Wu et al. 2018).
Our results also indicated that preseason cumulative

precipitation had a positive impact on the EGS, resulting
in a longer growing season. Water is one of the import-
ant components of protoplasm, and the amount of water
in vegetation affects its metabolic intensity and photo-
synthetic rate (Quetin and Swann 2017). The sensitivity

Fig. 5 Spatial pattern and frequency distribution of partial correlation coefficient between the end of growing season (EGSsif) and climatic factors: a, d
precipitation (Pre), b, emaximum temperature (Tmax) and c, fminimum temperature (Tmin). The methods of the left panel and the right panel are derivative
and dynamic threshold methods respectively. The percentages of positive (P) and negative (N) correlations (P<0.05, percentage of significant correlations in
parentheses) are provided
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of vegetation to water varied with stage of growth (Que-
tin and Swann 2017). In the subtropical region, the in-
crease of cumulative precipitation will strengthen the
absorption of nutrients by vegetation and promote the
effective photosynthesis (Bertani et al. 2017), delaying
the EGS. Additionally, the impact of precipitation on
vegetation phenology in the subtropical region has re-
gional and biological specificity (Zhou et al. 2018).
Although there is abundant precipitation in the subtrop-
ical region of China, the evergreen forests are more suit-
able in wet areas. Therefore, the increase of preseason
precipitation can enhance the physiological activity of
vegetation and photosynthesis, thus delaying the vegeta-
tion autumn phenology.
It should be noted that the preseason Tmax and Tmin had

opposite effects on EGS in deciduous broadleaved forests in
the study area. Wu et al. (2018) also reported that the Tmax

and Tmin may have the opposite effects on vegetation au-
tumn phenology in different regions. The elevated Tmin can
increase nighttime respiration and consumption of organic
compounds, leading to a shorter growing season; in con-
trast, higher Tmax promotes photosynthesis and delays the
EGS (Wu et al. 2018). We speculated that the increase of
the maximum temperature delayed the EGS, which may be
related to the higher latitude position of deciduous broad-
leaved forest. In this region, the temperature is relatively
low, and the increase of the maximum temperature is bene-
ficial for photosynthesis. Our results also indicated that the
effect of minimum temperature on EGS was stronger than
that of maximum temperature, which may provide an ex-
planation for the advancing trend of EGS in deciduous
broadleaved forest. Another possible explanation is that
there had been a slight decrease in rainfall across the

deciduous broadleaved forest region over the past two de-
cades (Table S1), which may inhibit the extension of the
vegetation growing season. Therefore, the comprehensive
effect of climate factors on EGS could partly explain the ad-
vancing trend in EGS for deciduous broadleaved forest.

Implications
Using remote sensing data to retrieve the phenological
information of deciduous forest has been well reported
(Yang et al. 2015; Liu et al. 2016), while the research on
phenological monitoring of evergreen forest was still
scarce. Our findings indicated that the remote sensing
phenological monitoring based on SIF was closer to the
photosynthetic phenology in subtropical vegetation. Our
results confirmed a lag between the autumn decrease of
photosynthesis and the change in greenness in evergreen
forests (Walther et al. 2016). This implies that estimates
of the EGS purely based on greenness indices will be
biased in evergreen forest in subtropical regions, which
translates into errors in the autumn carbon budget.
Therefore, compared with traditional vegetation indices,
SIF can better capture the autumn decrease stage of
photosynthesis of subtropical vegetation and effectively
improve the dynamic monitoring of photosynthetic ac-
tivity in evergreen ecosystems of subtropical regions.
Our results provide a new reference for the study of sub-
tropical vegetation phenology, and demonstrate the po-
tential of SIF for simulating carbon budget in evergreen
ecosystems of subtropical regions.
In the context of global climate change, it needs to be

explained, that how vegetation phenology responds to
climate change. However, the response mechanisms of
autumn phenology of subtropical vegetation to climate
change remain unclear. Our results indicated that the ef-
fects of precipitation, maximum and minimum
temperature on autumn phenology of subtropical vege-
tation were discrepant, and elucidating this inconsist-
ency is beneficial to the establishment of subtropical
vegetation phenology models. Furthermore, our results
suggested the most significant effect of the minimum
temperature on autumn phenology of subtropical vege-
tation, which can improve the understanding of the con-
trol factors of subtropical vegetation phenology. Based
on our study, we proposed to further explore the effects
of climate change on autumn phenology of evergreen
forests in other regions of the world. This is an import-
ant implication for the improvement of phenological
parameterization of terrestrial ecosystem models.

Conclusions
In this study, we used SIF and EVI data to examine the
spatial and temporal variation of autumn vegetation
phenology and to analyze its response to climatic factors
in subtropical vegetation in China. We found that the
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Fig. 6 Correlation between the end of growing season (EGSsif) of
different vegetation and climatic factors. Five main vegetation types in
this study area were listed, such as evergreen coniferous forest (ECF),
evergreen broadleaved forest (EBF), deciduous broadleaved forest
(DBF), shrub, and grassland. a derivative method and b dynamic
threshold method. * indicates statistically significant trends at the 95%
(P < 0.05) level
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delay of EGS occurred in evergreen forests, shrub and
grassland, but not in the deciduous broadleaved forest.
We found that the preseason Tmin and cumulative pre-
cipitation were positively associated with the delay of
EGS (with positive correlation for more than 73% and
62% of the study areas for the two methods, respect-
ively). Conversely, the preseason Tmax was negatively as-
sociated with the EGS (with negative correlation for
more than 59% of the study areas for both methods). In
all vegetation types except deciduous broadleaved forest,
the increase of Tmin also caused the delay of EGS (>
1.93 day·sd− 1), while the increase of preseason Tmax ad-
vanced it. For precipitation, the increase of cumulative
precipitation could delay the EGS across all vegetation
types. Our study indicated that the preseason Tmin had a
significant effect on the photosynthetic phenology of
subtropical evergreen vegetation, providing new insights
into how climate change affects the EGS. These results
also provide a scientific basis for the development of
phenology models for evergreen vegetation.
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Additional file 1: Figure S1. The spatial patterns of the end of growing
season (EGS) in subtropical vegetation in China from 2000 to 2018: NIRv
dataset. a) derivative method and b) dynamic threshold method. Inset
plots (the bottom-left of each figure) display the frequency distribution of
EGS. Figure S2. Comparison of the end of growing season (EGS) re-
trieved from NIRv and flux data. Two ecological monitoring stations were
listed, including Qianyanzhou station (QYZ) and Dinghushan station
(DHS). Both methods were listed, including derivative and dynamic
threshold methods. Figure S3. Linear trends of the end of growing sea-
son (EGS) across China’s Subtropical biomes from 2000 to 2018. Five main
vegetation types in study area were listed, including evergreen coniferous
forest (ECF), evergreen broadleaved forest (EBF), deciduous broadleaved
forest (DBF), shrub, and grassland. a) derivative and b) dynamic threshold
method. A negative value indicates an advance, and a positive value indi-
cates a delay. * indicates statistically significant trends at the 90% (P < 0.1)
level, ** indicates statistically significant trends at the 95% (P < 0.05) level.
Figure S4. The spatial patterns of the linear trend of the end of growing
season (EGS) of subtropical vegetation in China from 2000 to 2018: NIRv
dataset. a) derivative method and b) dynamic threshold method. Inset
plots (the bottom-left of each figure) display the frequency distribution of
change trend. The proportions of positive (P) and negative (N) (propor-
tions of significant in parentheses) trends are provided. Figure S5. Linear
trends of the end of growing season (EGS) across China’s Subtropical bi-
omes from 2000 to 2018: NIRv dataset. Five main vegetation types in
study area were listed, including evergreen coniferous forest (ECF), ever-
green broadleaved forest (EBF), deciduous broadleaved forest (DBF),
shrub, and grassland. a) derivative and b) dynamic threshold method. A
negative value indicates an advance, and a positive value indicates a
delay. * indicates statistically significant trends at the 90% (P < 0.1) level,

** indicates statistically significant trends at the 95% (P < 0.05) level. Fig-
ure S6. Optimal preseason periods depicting correlations between the
end of growing season (EGS) derived from SIF data and climatic factors:
Precipitation (Pre), maximum temperature (Tmax) and minimum
temperature (Tmin). Two methods (derivative and dynamic threshold
methods) were listed. Figure S7. Sensitivity of end of growing season
(EGS) to climatic factors in different vegetation types. Five main vegeta-
tion types in study area were listed, including evergreen coniferous forest
(ECF), evergreen broadleaved forest (EBF), deciduous broadleaved forest
(DBF), shrub, and grassland. a) derivative and b) dynamic threshold
method.1 day·sd− 1 denoted that an increase of 1 standard deviation (sd)
in the climatic factors delayed or advanced the EGS by 1 day. Figure S8.
The seasonal cycles of SIF and flux tower GPP from 2003 to 2010. Table
S1. The change rate and significance of three climate factors in different
vegetation areas from 2000 to 2018, including precipitation (Pre), max-
imum temperature (Tmax) and minimum temperature (Tmin). Five main bi-
omes in this study area were listed, such as evergreen coniferous forest
(ECF), evergreen broadleaved forest (EBF), deciduous broadleaved forest
(DBF), shrub, and grassland.
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