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Abstract

Background: A new variance estimator is derived and tested for big BAF (Basal Area Factor) sampling which is a forest
inventory system that utilizes Bitterlich sampling (point sampling) with two BAF sizes, a small BAF for tree counts and a
larger BAF on which tree measurements are made usually including DBHs and heights needed for volume estimation.

Methods: The new estimator is derived using the Delta method from an existing formulation of the big BAF
estimator as consisting of three sample means. The new formula is compared to existing big BAF estimators including
a popular estimator based on Bruce’s formula.

Results: Several computer simulation studies were conducted comparing the new variance estimator to all known
variance estimators for big BAF currently in the forest inventory literature. In simulations the new estimator performed
well and comparably to existing variance formulas.

Conclusions: A possible advantage of the new estimator is that it does not require the assumption of negligible
correlation between basal area counts on the small BAF factor and volume-basal area ratios based on the large BAF
factor selection trees, an assumption required by all previous big BAF variance estimation formulas. Although this
correlation was negligible on the simulation stands used in this study, it is conceivable that the correlation could be
significant in some forest types, such as those in which the DBH-height relationship can be affected substantially by
density perhaps through competition. We derived a formula that can be used to estimate the covariance between
estimates of mean basal area and the ratio of estimates of mean volume and mean basal area. We also mathematically
derived expressions for bias in the big BAF estimator that can be used to show the bias approaches zero in large
samples on the order of 1

n where n is the number of sample points.

Keywords: Bitterlich sampling, Delta method, Double sampling, Estimator bias, Forest inventory, Horizontal point
sampling, Variance of a product, Volume basal area ratio, Covariance estimation

Background
The big BAF (Basal Area Factor) estimator for forest
inventory is based on horizontal point sampling (HPS)
(also called Bitterlich sampling) using angle gauges having
two different BAFs at each sample point in the field—
the smaller BAF angle gauge BAFc is used to obtain a
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count of qualifying trees at each sample point and the
larger BAF angle gauge BAFv is used to select sample
trees on which careful measurements are made. Usually
these careful measurements includemeasurement of DBH
and height from which tree volume, weight or biomass
can be estimated (Bell et al. 1983; Bruce 1961; Oderwald
and Jones 1992). Although big BAF sampling is a form
of double sampling, as Marshall et al. (2004) indicated, it
differs from some common forms of double sampling in
forest inventory such as double sampling with regression
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estimators because both samples are taken at each point,
so that the small sample is not simply a subset of the large
sample point locations (discussions of double sampling
in forest inventory include Gregoire and Valentine (2008,
p. 262) and de Vries (1986, p. 164) among others).
As indicated by Iles (2012) the history of big BAF sam-

pling may go back to Grosenbaugh (1952, p. 53). An early
proposal for using two prism factors in big BAF sam-
pling was given by Bell et al. (1983, p. 702) and later a
detailed description of big BAF sampling was given by
Marshall et al. (2004). A detailed review of the history of
big BAF sampling was given a recent treatment by Gove
et al. (2020) who compared variance estimation methods
which have been proposed for the method. Recent texts of
forest sampling and mensuration which include descrip-
tions of big BAF sampling include Gregoire and Valentine
(2008, p. 268); Kershaw et al. (2016, p. 377).
Big BAF methods have been used operationally to

inventory forests in the USA and Canada in both western
and eastern forest types (Corrin 1998; Desmarais 2002).
Brooks (2006) compared combinations of 13 “big” BAFs
and 6 “small” BAFs to an inventory using fixed-radius
plots. Rice et al. (2014) compared a number of forest sam-
pling methods including big BAF, HPS with various BAFs,
horizontal line sampling and fixed-radius plot sampling.
These studies were conducted in partial harvests in mixed
species Acadian forests of northern Maine. A comparison
of the results of these forest inventories showed that only
the smallest BAF for HPS had a standard error smaller
than the big BAF inventory. Methods for determination
of optimal sampling plans for big BAF were described
by Yang et al. (2017). These methods allow for choice of
optimal combinations of BAFs and sample sizes for big
BAF according to economic criteria. Chen et al. (2019)
used these results to devise practical cost-efficient plans
for estimation of forest carbon content using big BAF
sampling for forest populations in the northeastern USA.
Yang and Burkhart (2019) compared big BAF sampling to
two other methods of subsampling count trees on point
samples using simulated loblolly pine (Pinus taeda L.)
plantations and found all three methods were satisfactory
for estimating stand volume.
Despite the successes and evident utility of big BAF

sampling variance estimation remains challenging. More-
over, the basic estimator associated with big BAF sampling
is not, itself, design-unbiased. Gove et al. (2020) showed
that one of the traditional methods for estimation of the
variance in big BAF sampling could be derived using the
Delta method if the covariance terms are assumed to be
negligible. As described by Gove et al. (2020) the history
of the Delta method, which is based on using a Taylor
series approximation for nonlinear functions of random
variables, has been traced by Ver Hoef (2012). Wolter
(2007, p. 231) states that utilization of the method with a

first-order approximation as done in this article has often
provided satisfactory variance estimates for large complex
surveys. The primary objective of this study is use of the
Delta method to derive a new variance estimation for-
mula for big BAF sampling that takes correlations among
important sampling variables into account. As indicated
below the traditional approaches to variance estimation
for big BAF sampling ignore possible covariances between
count basal area obtained by using BAFc and the vol-
ume per square unit of basal area on trees sampled with
BAFv. An additional objective of this study is to test
this newly derived estimator using Monte Carlo simula-
tions to compare it with the variance estimators that have
been previously proposed for big BAF sampling. We also
derive expressions for the bias associated with the big BAF
estimator.

Basic big BAF estimation formulas
Two BAF factors are needed for big BAF, a small BAF fac-
tor Fc used to select trees which are counted but not
measured and a larger BAF factor Fv used to select trees
on which measurements are made usually including dbh
and height for volume, weight or biomass estimation.
To obtain the big BAF estimator we first express the vol-

ume to basal area ratio (VBAR) for each tree i selected by
the larger BAF, Fv:

Vi = vi
bi

(1)

where vi is the volume of tree i and bi is the basal area of
tree i where there are i = 1, 2, ...,mvs trees on each of a
sample of s = 1, 2, ..., n points (Kershaw et al. 2016, p. 377).
The average VBAR is then (Gregoire and Valentine 2008,
p. 258):

V̄ = 1
mv

n∑

s=1

mvs∑

i=1
Vi (2)

wheremv = ∑n
s=1mvs is the total number of volume trees

sampled on all points. Note that it is theoretically possible
that the same tree may be sampled from more than one
point and thus could possibly be counted multiple times.
The average basal area per hectare for the entire sample is;

B̄c = Fc
n
mc = m̄cFc (3)

where mc = ∑n
s=1mcs and mcs is the number of count

sample trees counted at point s using the smaller angle
gauge BAFc. Total basal area on a tract of size A is then:

B̂c = A × B̄c (4)

The big BAF volume estimator can then be obtained by
multiplying the sample mean VBAR by the count-based
basal area as:

V̂B = V̄ × B̂c (5)
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Gove et al. (2020) and Iles (2012) have indicated that
the variance for the big BAF volume estimator cannot be
obtained by using the traditional formula for double sam-
pling from survey sampling theory and practice. This is
because the smaller sample in big BAF sampling is not a
smaller selection of the total number of sample points but
instead the smaller sample actually occurs at each sam-
ple point, thus the point-wise sample sizes utilized by the
sample survey double sampling formula are equal, which
is contrary to the requirements of that formula. However,
because the estimator above is a product of two random
variables one may employ standard methods for express-
ing the variance of a product. By applying the formula of
Goodman (1960) for the variance of a product as noted by
Gove et al. (2020) one obtains:

v̂arG
(
V̄B̂c

)
= V̄

2v̂ar
(
B̂c

)
+ B̂2

cv̂ar
(
V̄

) − v̂ar
(
V̄

)
v̂ar

(
B̂c

)

(6)

This formula assumes that the covariance between V̄ and
B̂c is zero or negligible for practical purposes. This may be
expected to be true if VBARs are not greatly affected by
density in the forest population being sampled. The vari-
ance estimators of V̄ and B̂c are given by Gregoire and
Valentine (2008, p. 256–257) as:

v̂ar
(
V̄

) = 1
mv(mv − 1)

n∑

s=1

mvs∑

i=1

(
Vi − V̄

)2 (7)

and

v̂ar
(
B̂c

)
= 1

n(n − 1)

n∑

s=1

(
B̂cs − B̂c

)2

=
v̂ar

(
B̂cs

)

n
(8)

where B̂cs = msFc is the basal area per hectare at point
s and ms is the number of count trees at point s with the
small basal area factor BAFc.
Equivalent variance expressions are found in Kershaw

et al. (2016, p. 380). Standard error estimates are:

ŝe
(
V̄

) =
√
v̂ar

(
V̄

)
(9)

and

ŝe
(
B̂c

)
=

√
v̂ar

(
B̂c

)
(10)

A simplified estimator of var
(
V̂B

)
can be obatined by

using the formula of Bruce (1961). Written in percent
standard error form the equation of Bruce (1961) gives the
following estimator:

ŝe%
(
V̂B

)
=

√
ŝe%

(
V̄

)2 + ŝe%
(
B̂c

)2
(11)

As indicated by Gove et al. (2020); Marshall et al. (2004);
Gregoire and Valentine (2008, p. 259); Bell and Alexander
(1957) were the first to present the version of the prod-
uct variance for standard error computation presented
above. Gove et al. (2020) discussed the historical back-
ground of this formula and show how it can be derived
using the Deltamethod (Ver Hoef 2012) which is based on
a Taylor’s series approximation and has often been used
to approximate the variance of a function of one or more
random variables Kendall and Stuart (1977, p. 247). It has
been noted by Gove et al. (2020); Gregoire and Valentine
(2008, p. 259); Marshall et al. (2004); Iles (2012) that there
is close agreement between the variance derived from (11)
and the variance derived fromGoodman’s formula in Eq. 6
because the third term in the latter equation is typically
small and dominated by the other two terms.
Gregoire and Valentine (2008) (equation 8.33) have

noted that the big BAF volume per hectare estimator can
be formulated as follows:

V̂B = B̂c

(
V̂v

B̂v

)
(12)

This formulation of the Big BAF estimator is based on
three sample means. Gregoire and Valentine (2008) dis-
cuss alternative estimators for big BAF sampling including
estimators based on Bruce’s traditional formula (Bell and
Alexander 1957) and the Goodman (1962) formula for the
variance of products of random variables.
Eq. 7 (same as equation 6 of Gove et al. (2020)) computes

the variance of themean volume basal area ratio as a mean
of ratios. However the number of individual tree ratios
mv is a random variable. In the classic formulations of the
mean of ratios estimator in the context of design-based
sample survey sampling (Schreuder et al. 1993, p. 89) the
number of sample ratios is fixed rather than random. As
recognized by Gregoire and Valentine (2008, p. 258–259)
Eq. 12 provides the opportunity to formulate the average
volume basal area as the ratio of means because V̂v is the
mean volume per sample point and B̂v is the mean basal
area per sample point when the large basal area factor Fv
is used for tree selection

V̄ = R̂ = V̂v

B̂v
(13)

A classical estimate for the variance of this estimated ratio
according to equation 6.13 in Cochran (1977, p. 155) is:

v̂arR
(
V̄

) = 1
B̂2
v

(
v̂ar

(
V̂v

)
+ V̄

2v̂ar
(
B̂v

)

− 2V̄ĉov
(
B̂v, V̂v

))
(14)

As indicated by Sukhatme et al. (1984, p. 99) this vari-
ance estimator is algebraically equivalent to the estimator
suggested by Gregoire and Valentine (2008, p. 259). The
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equation above could then be used as alternative to esti-
mate the variance of the average VBAR in Goodman’s
variance formula (6) instead of the more traditional for-
mula (7) for the estimated variance of the average VBAR.
Thus this formula is equivalent to equation (12) in Gove
et al. (2020) and was included in the simulations pre-
sented there. Those simulations are replicated here in
order to compare them to the results from a new equation
described below and termed the point-wise Delta method.

Methods
Bias in the big BAF estimator
The big BAF estimator has been described above and in
Gregoire and Valentine (2008) as based on three sam-
ple means. Two of the sample means B̂c and B̂v provide
design-based estimates of basal area per acre while the
third V̂v provides a design-based estimate of volume per
hectare, albeit typically with a high variance. However
their combination forms the big BAF estimator with a
much lower variance but which is not design-unbiased.
Here we provide equations giving a simple approximation
for the bias as well as an exact upper bound to the bias
associated with big BAF sampling.

Approximate bias
In Appendix Eq. A.11 we use a bias approximation for-
mula from Seber (1982, p. 7) to derive the following
approximation for the bias of the estimator V̂B in big BAF
sampling:

Bias = V
n

⎛

⎝
var

(
B̂vs

)

B2 −
cov

(
B̂cs , B̂vs

)

B2

−
cov

(
V̂vs , B̂vs

)

VB
+

cov
(
V̂vs , B̂cs

)

VB

⎞

⎠ (15)

where B̂vs = msFv and V̂vs = Fv
∑mvs

i=1 Vi. Note that all
the quantities in the bias expression above are popula-
tion constants with respect to changing sample size except
the sample size n. Thus as n goes to infinity the above
expression for bias goes to zero. Bias approaching zero
with increasing samples size on the order of 1

n is similar
to the behavior of the standard ratio estimator accord-
ing to Cochran (1977, p. 160). Note that if the difference
between the large basal area factor BAFc and the small
basal area factor BAFv is small, the covariance between
B̂cs and B̂vs approaches the variance for B̂vs so that the
first two terms approach cancellation and similarly for the
last two terms, so that bias will be also be lessened as
the difference between basal area factors BAFc and BAFv
becomes smaller. For a given sample size the bias will also
be smaller for forests with high levels of basal area B than

for forests with low levels of basal area. This bias expres-
sion is very similar to the bias that would be obtained from
equation 11 of Palley and Horwitz (1961) for the Bell and
Alexander (1957) estimator which can also be expressed as
the ratio of twoHPS sample means divided by a third sam-
ple mean. An important difference is that there are two
point-wise sample sizes in the Bell and Alexander (1957)
estimator, one being a point-wise subsample. Therefore
some of the variances and covariances for the Palley and
Horwitz (1961) bias formula and variance estimator of the
Bell and Alexander (1957) volume estimator are based on
the smaller subsample size while others are based on the
total sample size.

Exact bias
In the Appendix an expression for the exact bias in the
big BAF sampling estimator V̂B , Eq. (A.15), is derived
based on methods used by Hartley and Ross (1954) to
find the exact bias of the standard ratio estimator (also see
Cochran (1977, p. 162))

Bias =
(
E
[
V̂B

]
− V

)
=

cov
(
B̂c, V̂v

)
− cov

(
V̂B , B̂v

)

B
(16)

This formula also seems to indicate that the bias will tend
to be smaller in stands having higher basal area. Again
Eq. A.21 was derived in the Appendix following the meth-
ods of Hartley and Ross (1954) resulting in the following
upper bound on the absolute relative bias in the big BAF
estimator (also see Cochran (1977, p. 162)):

|Bias|
√
var

(
V̂B

) ≤ 1√
n

√
B̂vs

B
(17)

This formula indicates that the bias relative to the stan-
dard error of the big BAF estimator approaches zero as
sample size n becomes large, on the order of 1√

n . This is
also the case for the standard ratio estimator according to
Cochran (1977, p. 160).

The Delta method for big BAF variance based on three
sample means
Previous approaches to variance estimation for big BAF
sampling view the estimator as the product of two ran-
dom variables, the count basal area per hectare and the
mean volume basal area ratio. As indicated above, these
approaches have assumed that the covariance between
count basal area per hectare and the mean volume basal
area ratio VBAR is negligible. However, if we do not
wish to make that assumption, an alternative is to use
the Delta method (Kendall and Stuart 1977, p. 247), to
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approximate the variance of the big BAF estimator (12)
in the form presented by Gregoire and Valentine (2008,
equation 8.33) indicated above as a function of three sam-
ple means. On the basis of a Taylor series, the Delta
method approximates the variance of a function of esti-
mators of parameters g(θ̂) which estimates g(θ) where
θ = (θ1, θ2, . . . , θn). Now, since the population parameters
are generally unknown, the unbiased estimators, θ̂ where
E
[
θ̂i

]
= θi are substituted here in the formula for the Delta

method presented by Kendall and Stuart (1977, p. 247)
viz.,

var
(
g(θ̂)

)
≈

n∑

i=1
var

(
θ̂i

)
g′
i

(
θ̂
)2

+ 2
∑∑

i<j
cov

(
θ̂i, θ̂j

)
g′
i

(
θ̂
)
g′
j

(
θ̂
)

(18)

or, assuming independence. . .

≈
n∑

i=1
var

(
θ̂i

)
g′
i

(
θ̂
)2

(19)

In addition in typical applications it is necessary to esti-
mate the variance and covariance terms. In this section
we will assume without loss of generality that A = 1.
Let us define the function g in the formula for the Delta
method with θ̂1 = B̂c, θ̂2 = V̂v, and θ̂3 = B̂v as
follows:

g
(
B̂c, V̂v, B̂v

)
= B̂c

(
V̂v

B̂v

)
(20)

The Delta method requires the following three partial
derivatives:

∂g
∂B̂c

=
(
V̂v

B̂v

)
(21)

∂g
∂V̂v

=
(
B̂c

B̂v

)
(22)

∂g
∂B̂v

= −
(
V̂vB̂c

B̂2
v

)
(23)

Applying the Delta method and substituting estimates for
variances, covariances and means we then have:

v̂arδ1
(
V̂B

)
=

(
V̂v

B̂v

)2

v̂ar
(
B̂c

)

+
(
B̂c

B̂v

)2

v̂ar
(
V̂v

)

+
(
V̂vB̂c

B̂2
v

)2

v̂ar
(
B̂v

)

+ 2
(
V̂v

B̂v

) (
B̂c

B̂v

)
ĉov

(
B̂c, V̂v

)

− 2
(
V̂vB̂c

B̂2
v

) (
V̂v

B̂v

)
ĉov

(
B̂c, B̂v

)

− 2
(
V̂vB̂c

B̂2
v

) (
B̂c

B̂v

)
ĉov

(
V̂v, B̂v

)
(24)

The estimated variance of the volume per a unit area
based on the large BAF angle gauge alone is

v̂ar
(
V̂v

)
=

∑n
s=1(V̂vs − V̂v)2

n(n − 1)
=

v̂ar
(
V̂vs

)

n
(25)

where

V̂vs = Fv

mvs∑

i=1
Vi (26)

which is the total volume at sample point s and

V̂v =
∑n

s=1 V̂vs
n

(27)

The estimated variance for the basal area per hectare
based on the large angle gauge Fv is

v̂ar
(
B̂v

)
=

∑n
s=1(B̂vs − B̂v)2

n(n − 1)
=

v̂ar
(
B̂vs

)

n
(28)

where B̂vs = msFv is the basal area per hectare at point s
with the large basal area factor BAFv. The estimated vari-
ance v̂ar

(
B̂c

)
for the basal area per hectare based on the

small angle gauge Fc is given by Eq. 8.
Now since Eq. 24 utilizes covariance terms, we present

the computational formulas for these. Recall the relation-
ship between the sample covariance and the estimated
covariance between sample means based on n indepen-
dent samples is:

cov
(
X̄, Ȳ

) = cov(X,Y )

n
(29)
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Using this relationship the estimated covariance between
B̂c and V̂v is:

ĉov
(
B̂c, V̂v

)
=

∑n
s=1(B̂cs − B̂c)(V̂vs − V̂v)

n(n − 1)

=
ĉov

(
B̂cs , V̂vs

)

n
(30)

the estimated covariance between B̂v and V̂v is:

ĉov
(
B̂v, V̂v

)
=

∑n
s=1(B̂vs − B̂v)(V̂vs − V̂v)

n(n − 1)

=
ĉov

(
B̂vs , V̂vs

)

n
(31)

and the estimated covariance between B̂v and B̂c is:

ĉov
(
B̂v, B̂c

)
=

∑n
s=1(B̂vs − B̂v)(B̂cs − B̂c)

n(n − 1)

=
ĉov

(
B̂vs , B̂cs

)

n
(32)

As is shown in Supplementary Materials equations
S.3–S.7 variance estimator (24) can also be derived as a
special case of an estimator presented by Hansen et al.
(1953, p. 512–514) for the variance of a ratio between the
product of k random variables and the product of p − k
random variables (Wolter 2007, p. 233–234).
The variance equation can be simplified by noting that

the two basal area estimators B̂v and B̂c have the same
expected value B and the variance of B̂c is likely to be
smaller because it is based on the smaller BAFc which
selects more trees per point. In the original true variance
approximation the coefficients multiplied by variances
and covariances are functions of parameters which we
must estimate when obtaining the approximate variance
estimator. This justifies substitution of B̂c for B̂v in the
variance formula above because they have the same expec-
tation. Making this substitution and factoring out sample
size n, the variance formula can be simplified to:

v̂arδ2
(
V̂B

)
= V̂ 2

v
n

⎛

⎝
v̂ar

(
B̂cs

)

B̂2
c

+
v̂ar

(
V̂vs

)

V̂ 2
v

+
v̂ar

(
B̂vs

)

B̂2
c

+ 2
ĉov

(
B̂cs , V̂vs

)

V̂vB̂c

− 2
ĉov

(
B̂vs , B̂cs

)

B̂2
c

− 2
ĉov

(
V̂vs , B̂vs

)

V̂vB̂2
c

⎞

⎠ (33)

We have derived this variance estimation formula under
the assumption that A = 1 so the variance estimate for an
entire tract of area A can be obtained by multiplying by
A2 or alternatively expressing V̂v in total tract units rather

than as per hectare. Note that because we have factored
out a quantity of 1

n the estimator above is a function of
the sample variances and covariances among sample point
HPS estimates.
The variance estimator above is very similar to equation

(12) of Palley and Horwitz (1961) which they obtained for
the Bell and Alexander (1957) estimator which was essen-
tially double sampling with a ratio estimator. However an
important difference is that the Bell and Alexander (1957)
estimator consists of a large sample of points on which
basal area counts are made and a subsample of points on
which tree volumes are also determined. By contrast for
big BAF sampling the volume subsample is made on every
point so there is no smaller point-wise sample. There-
fore some of the variances and covariances for the Palley
and Horwitz (1961) variance estimator of the Bell and
Alexander (1957) volume estimator must be determined
on the subsample which is smaller than n, but for big BAF
sampling all the variances and covariances have the same
point-wise sample size of n. A consequence is that for the
big BAF variance estimator we cannot further simplify the
variance estimator above by utilizing the ratio of large-to-
small point-wise sample size as was done by Palley and
Horwitz (1961).

Simulation trials
We used two simulated forest populations that were pre-
viously employed by Gove et al. (2020) to compare tradi-
tional and previously proposed big BAF sampling variance
estimators. The sampling simulation program sampSurf
Gove (2012) which was written in R (R Core Team 2021)
was used to conduct the simulations. The concept of
“sampling surface” (Williams 2001a, 2001b) was used to
construct the sampSurf simulator in which a raster tract
of area A is tessellated into square grid cells. Trees are
located on the tract and inclusion zones are established
for each tree based on the sampling procedure (horizon-
tal point sampling for these simulations). A sample point
is considered to be located in the center of each grid cell.
Totals for each grid cell are based on the attributes of trees
whose inclusion zones contain the sample point at the grid
cell center. The sampling surface is developed based on
the total attributes values over all the grid cells. For our
simulations square tracts were used with grid cells 1 m2 in
size.
Nine sets of simulations were conducted using every

combination of BAF pairs (Fv and Fc) where Fc ∈
{3, 4, 5} and Fv ∈ {10, 20, 30} for both forest popu-
lations. For each sampling simulation sampling surfaces
were developed for total basal area and total volume using
every combination ofFc andFv resulting in 36 simulation
surfaces. A Monte Carlo experiment was conducted for
each of the 9 BAF factor combinations in which random
samples of n = 10, 25, 50 and 100 were drawn with 1,000
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replications. Summary statistics were computed for HPS
and big BAF sampling for each sample on each sampling
surface. The statistics available for each BAF combination
made it possible to compare the big BAF results to an HPS
sample usingFc in which every sample tree was measured
for volume (e.g., DBH and height measured).

Mixed northern hardwood population
Themixed northern hardwood population is the same one
used by Gove et al. (2020). The population is artificially
constructed but resembles what could typically be found
in a mixed northern hardwoods forest. It is established
on a tract having an area of A = 3.17 ha and contain-
ing 31,684 grid cells. The tract is bounded by an external
buffer 18mwide so that the portion of the tract containing
the tree population internal to the buffer has an area of 2
ha. A population ofm = 667 trees with a total basal area of
48.4 m2 was established within the tract boundaries. This
is approximately equivalent to 333 trees·ha−1 and a basal
area of 24.2 m2·ha−1 with a stand quadratic mean diam-
eter of D̄q = 30.3 cm. According to northern hardwoods
stocking guides by Leak et al. (2014) the stand would be
in fully stocked condition. A three-parameterWeibull dis-
tribution (Bailey and Dell 1973) was used to assign tree
DBHs, with location, scale and shape parameters respec-
tively being α=10 cm, γ = 2 and ζ = 30 cm. Total heights
for each tree in the simulated northern hardwoods stand
were assigned using the all-species DBH-height equation
by Fast and Ducey (2011) for northern hardwoods in New
Hampshire converted to metric units. A normal random
error term with mean zero and standard deviation 2.5
m was added to each height prediction. A spatial inhibi-
tion process (Venables and Ripley 2002, p. 434) with an
inhibition distance of 3 m was used to assign trees to spa-
tial locations within the simulated northern hardwoods
forest tract. The method of Masuyama (1953) for bound-
ary overlap correction was used in which tree inclusion
zones were allowed to overlap into the buffer region (Gre-
goire and Valentine 2008, p. 224). Because random sample
points can fall anywhere in the tract which includes the
buffer region, each tree has a complete inclusion zone.
The following taper function is used within the samp-

Surf simulation (Van Deusen 1990):

d(h) = Du + (Db − Du)

(
H − h
H

) 2
r

(34)

where Du is the top diameter at tree stem height h, Db is
the tree stem butt diameter and 0 ≤ h ≤ H is tree height.
The value of the taper parameter r was randomly selected
for each tree from the range r ∈[ 1.5, 3]. With the taper
function above a neiloidal form results if 0 < r < 2, a cone
if r = 2 and a paraboic form if r > 2. The taper function
for each tree was used to compute individual tree volume
according to the procedures of Gove (2011a, p. 8). There

was a correlation coefficient ρ(V, b) = 0.62 between indi-
vidual tree VBAR and basal area in the simulated northern
hardwoods population. Figure S.2 in the Supplementary
Material for Gove et al. (2020) displays histograms of the
DBH and height distributions for the simulated northern
hardwoods forests.

Eastern white pine population
The eastern white pine (Pinus strobus L.) population used
by Gove et al. (2020) was also used in this study. Gove
et al. (2000) describes data collection for the eastern
white pine based on Barr & Stroud FP-12 dendrometry
over a 20-year period. These data were obtained from
pure even-aged white pine forest stands in southern New
Hampshire. Data processing utilized the R Dendrometry
package (Gove 2011a). The white pine population used for
simulations consists of m = 316 white pine trees with
multiple measurements on some during the period. Trees
were located within a 1 ha tract having an 18mwide buffer
and having a total area of A = 1.85 ha in size with 18,496
grid cells. The population has a basal area of 47.2 m2 and
a quadratic mean DBH of D̄q = 43.6 cm. According to
the Leak and Lamson (1999) white pine stocking guide,
the tract is solidly in the full stocking range. The trees
were originally measured in several different stands with-
out location information. To assign trees spatial locations
for the simulation stand, a spatial inhibition process hav-
ing an inhibition distance of 3 m was employed similarly
to the northern hardwoods stand discussed above. As with
the northern hardwoods stand, Mayasuma’s method was
used to correct for boundary overlap in point sampling,
so that randomly located sample points were permitted to
fall into the buffer strip surrounding the 1 ha white pine
tract. No taper function was required for the white pine
stand because dendrometry measurements were available
for upper-stem taper on each tree. As described by Gove
(2011b), a cubic spline was fitted to tree dendrometry
measurements. Smalian’s formula (Kershaw et al. (2016,
p. 241)) was used to calculate individual tree volumes.
Figure S.5 in the Supplementary Material of Gove et
al. (2020) displays histograms of DBH and total height
distributions for the white pine population.

Results
Big BAF estimator bias
We derived two expressions for the bias in big BAF sam-
pling, Eq. 15 which is an approximation to the bias and
(16) which is an exact expression of the bias. An indica-
tion of the bias in big BAF sampling is shown in Fig. 1
which was prepared using Eq. 15 with variance and covari-
ance values computed from all the lattice points on the
sampling surfaces for the northern hardwoods and white
pine populations. Use of all the lattice points in these com-
putations should provide a very close approximation to
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Fig. 1 Approximate bias in the big BAF estimator for the northern hardwoods and white pine populations with BAFv = 30 (dotted, •), BAFv = 20
(dash, �) and BAFv = 10 (solid, +)

true population values. Only sampling plans with Fc = 3
are presented because results from the other values of
BAFc used in this study are very similar and the bias with
Fc = 3 is larger than other values of BAFc used in this
study by a very small amount. Figure 1 shows that the
bias is quite small even for n = 10 which is 0.17% for the
white pine population. Bias percentages decline steeply
with increasing sample sizes and are essentially negligible
for all sample sizes equal to or greater than 10 for both
the white pine and northern hardwoods population. As
expected bias also declines as BAFv approaches the value
of Fc = 3.

Population sampling surfaces
The results concerning the sampling surfaces for the
Northern Hardwoods and the White Pine populations
were given by Gove et al. (2020) in Table 1 of that paper.
As expected the results for basal area and volume from the
sampling surfaces were quite close to the actual popula-
tion values. The white pine population had higher stock-
ing and volume per hectare than the northern hardwoods

population as would be typical for fully-stocked stands
in the New England, USA region. Gove et al. (2020)
noted that the northern hardwoods DBH distribution
was more positively skewed than the white pine DBH
distribution. Tree heights in the white pine populations
were generally taller than the northern hardwoods pop-
ulation which was likely the primary reason that the
volume per tree in the white pine was considerably
greater than that for the northern hardwoods population.
Figure S.1 in SupplementaryMaterial shows sampling sur-
faces for the northern hardwoods population for (a) total
BAFc with Fc = 3 basal area and (b) total BAFc volume
with Fv = 30. A realization of a Monte Carlo sample
consisting of n = 100 is also indicated with each point
denoted by a red “×”.
Figure S.2 in Supplementary Materials indicates the

population correlations ρ for the northern hardwoods
population between important variables such as the basal
area and volume on the count and volume points and
the volume for all 6 combinations of point sampling
BAFs used in the simulations. As might be expected the
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correlation between basal area and volume when using the
same BAF factor is close to 1 and fairly constant over vari-
ation in the range of BAFv for big BAF sampling. As also
might be expected the correlation between two variables
when one is sampled on BAFc and the other is sampled
on BAFv declines with increasing count BAFc and ranges
from 0.83 to 0.52. Covariances between these variables are
displayed on Figure S.3 in Supplementary Materials.
Figure S.4 in Supplementary Materials illustrates the

sampling surfaces for basal area and volume for Fc = 3
and Fv = 30 for the eastern white pine population. A
red “×” is indicated on the volume surface illustration for
each point in a realization of one Monte Carlo sample of
n = 100.
Population correlations between important variables for

the eastern white pine population are given in Figure S.5.
The patterns are similar to those for the northern hard-
woods population. However the correlations between
pairs of variables, in which one is from the large BAFv and
the other is from the small BAFc, are higher. Correlations
range from 0.91 to 0.67, declining with increasing values

of BAFv. Population covariances for this population are
given in Figure S.6.

Monte Carlo simulations
Standard error comparisons
Figure 2 displays the standard error results from Monte
Carlo simulations comparing Goodman’s Method (Eq. 6),
the “traditional” Delta method (Eq. 11), the new point-
based Delta method (Eq. 24) and simplified point-based
Delta method (Eq. 33) for the northern hardwoods pop-
ulation. For total sample size of n = 100, the standard
errors of the four methods are virtually indistinguishable
for all three count BAFs, Fc = 3, Fc = 4 and Fc = 5.
As expected standard errors decline for all four variance
approximation methods as the BAFv declines and more
closely approaches the value of BAFc. For reference pur-
poses the standard errors for HPS using all trees selected
on the count BAFc are displayed. In Supplementary Mate-
rial it is indicated in Figure S.7 that this HPS standard
error is extremely close to the standard error among big
BAF simulation estimates for all values of BAFc and BAFv

Fig. 2 The northern hardwood Monte Carlo standard error simulation results as the average over 1,000 replications for each BAF pair and sample
size with the Delta Method (dashed, �), Goodman’s (dot-dashed, +), the point-based Delta method (dotted,�) and the simplified point-based Delta
method (long-dash, ×). The reference line (solid, •) is the average Monte Carlo standard error for the BAFc HPS results
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utilized in this study. Because these were so extremely
close we present the HPS standard errors only for compar-
ison to the results for big BAF sampling in Figs. 2 and 3.
It is a remarkable fact that HPS with measurement of
all trees for volume determination provides no apprecia-
ble reduction in variance in volume estimation compared
with big BAF in which only a much reduced subsample of
trees are measured at each point.
As the total point-wise sample size n decrease from n =

100 to n = 10 separations between the standard errors
given by the four approximations become more evident
with Goodman’s method being slightly below the Delta
method and the point-based Delta method standard error
being lower than either of the other three approximations,
particularly for n = 10 and the largest value of BAFv.
The simplified point-based Delta method is consistently
lower than the other three methods. This makes it closer
to the reference line indicated for HPS except for n =
10 where simplified point-based Delta method underesti-
mates compared to the reference line for the two smaller
values of BAFv. However it should be noted that even

in the latter case the difference between the point-based
Delta method and simplified point-based Delta method
compared to the traditional Delta method is only in the
range of 5% even for n = 10 and the largest value of
BAFv. In this latter case both point-based Delta method
and simplified point-based Delta method are within 2% of
the reference line for HPS with point-based Delta method
overestimating and simplified point-based Delta method
underestimating for the two largest values of BAFv. For
samples sizes equal to or larger than n = 25 which are
more likely to be representative of typical big BAF sam-
pling plans all four variance estimators are consistently
within 2% of each other becoming closer as samples size n
becomes larger.
Figure 3 contains the white pine population Monte

Carlo simulation standard error results. As was the case
for the northern hardwoods population, the traditional
Delta method (Eq. 11), Goodman’s method (Eq. (6)), the
point-based Delta method (Eq. 24) and the simplified
point-based Delta method (Eq. (33)) are displayed in the
figure. However, the maximum difference between the

Fig. 3 The white pine Monte Carlo standard error simulation results as the average over 1,000 replications for each BAF pair and sample size with
the Delta Method (dashed, �), Goodman’s (dot-dashed, +), the point-based Delta method (dotted,�) and the simplified point-based Delta method
(long-dash, ×). The reference line (solid, •) is the average Monte Carlo standard error for the BAFc HPS results
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standard errors of the three methods was about 8% for
n = 10 with differences at n = 100 being only about 0.5%.
In the case of n = 10, both point-based Delta method and
simplified point-based Delta method were within approxi-
mately 2% of the HPS reference line but point-based Delta
method was an overestimate while simplified point-based
Deltamethodwas an underestimate. Consistently the low-
est estimate of standard error was provided by simplified
point-based Delta method which made it closer to the
HPS reference line than the other methods except in the
case of n = 10 where it was somewhat lower than the
HPS reference line. As expected, standard errors for each
given level of n and BAFc mostly decline with decreasing
levels of BAFv though there are some slight exceptions in
the case of point-based Delta method for n = 10 These
trends are similar to those for the northern hardwoods
population. However, the standard errors from the north-
ern hardwoods population ranged from about 32% for
n = 100 to 100% for n = 10 (Fig. 2) while the standard
errors associated with the white pine population were

substantially greater ranging from approximately 50% for
n = 100 to 160% for n = 10 (Fig. 3).

Confidence interval captures
Figure 4 depicts the confidence interval capture rates on
the northern hardwoods population for the 1,000 repli-
cations of Monte Carlo simulation for big BAF stan-
dard error estimates obtained using the traditional Delta
method (11), Goodman’s method (6), the point-based
Delta method (24) and the simplified point-based Delta
method (33). The results in this figure are based on the
percentage of simulation trials in which a 95% confi-
dence interval for total volume from the big BAF trial
contains the true mean total volume of the simulated pop-
ulation. Thus a capture rate of 95% would be ideal. For
n = 100 and n = 50 the capture rates for the traditional
Delta method , Goodman’s method, the point-based Delta
method and the simplified point-based Delta method are
very close for all values of BAFc and BAFv, all ranging
between 94.1% and 95.4%. In some cases such as n = 100

Fig. 4 The northern hardwoods Monte Carlo simulation results for confidence interval capture rates as the average over 1,000 replications for each
BAF pair and sample size with the Delta Method (dashed, �), Goodman’s (dot-dashed, +), the point-based Delta method (dotted,�) and the
simplified point-based Delta method (long-dash, ×). The reference line (solid, •) is the average Monte Carlo standard error for the BAFc HPS results
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with Fc = 3 and Fc = 4, the big BAF capture rates are
even closer to 95% than the capture rate for HPS with the
given value of BAFc. For n = 25, Fc = 3 and Fv = 10 the
point-based Delta method and the simplified point-based
Delta method have a capture rate slightly lower than the
other two big BAF standard error estimators but all cap-
ture rates are between 93.5% and 95%. All capture rates
were between 93.5% and 95.3% for n = 10, with the point-
based Delta method and the simplified point-based Delta
method being lower than the other two big BAF methods
for Fv = 30 and the simplified point-based Delta method
being somewhat lower for all values of BAFv , otherwise
the three methods were extremely close. In summary the
four big BAF standard error estimates produced confi-
dence interval capture rates that were very similar as
might be expected from the fact that they produced very
similar variance estimates as indicated by Fig. 2.
Figure 5 displays the confidence interval capture rates

for the white pine population using confidence intervals
constructed with standard errors based on the traditional

Delta method (Eq. 11) Goodman’s method (Eq. (6)) the
point-based Delta method (Eq. 24) and the simplified
point-based Delta method (Eq. (24)). Similarly to the
northern hardwoods population, simulations with the
white pine population produced confidence interval cap-
ture rates between 91.6% and 96% for all combinations of
Fc = 3, 4 and 5,Fv = 10, 20 and 30, and sample sizes n =
10, 25, 50, and 100. As well, the capture rates for a con-
ventional HPS with BAFc are very similar to the capture
rates with the big BAF approaches. For n = 100 the three
big BAF capture rates were all very close to each other
and between 93.7% and 94.8%. It is perhaps surprising that
for n = 100 the largest deviation from the ideal capture
rate of 95% were the results for the conventional HPS with
BAFc which was lowest among all 5 methods ranging from
93.2% to 94.5% for the case of BAFc = 5. For n = 100, the
capture rates for the point-based Delta method and the
simplified point-based Delta method were very slightly
lower than those for the other two big BAF methods. For
the n = 50 samples size, the capture rates for the big BAF

Fig. 5 The white pine Monte Carlo simulation results for confidence interval capture rates as the average over 1,000 replications for each BAF pair
and sample size with the Delta Method (dashed, �), Goodman’s (dot-dashed, +), the point-based Delta method (dotted,�) and the simplified
point-based Delta method (long-dash, ×). The reference line (solid, •) is the average Monte Carlo standard error for the BAFc HPS results
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methods as well as the conventional HPS with BAFc were
all between 94.7% and 96%. Again the capture rates for the
point-based Delta method and the simplified point-based
Delta method were slightly lower than for the other two
big BAF methods which in this case made them slightly
closer to 95%. Capture rates for the conventional HPSwith
BAFc were extremely close to 95% and sightly lower than
the big BAF methods for Fc = 3 and Fc = 4 but for
Fc = 5, the HPS capture rates were slightly higher than
those for the point-based Delta method and the simpli-
fied point-based Delta method and slightly lower than
those associated with the other two big BAF methods.
Similar results were obtained for n = 25 with the point-
based Delta method and the simplified point-based Delta
method having nearly equal or slightly lower capture rates
than the other two big BAF methods, and all capture rates
being between 94.7% and 96%. Capture rates for conven-
tional HPS with BAFc were slightly lower or nearly equal
to the three big BAF methods for n = 25. In the case of
n = 10, all capture rates ranged between 91.6% and 94.6%
with the point-based Delta method and the simplified
point-based Delta method once again trending somewhat
lower than the other two big BAF methods.

Correlations
Point-wise estimated correlations between estimates of
basal area and volume for BAFv ρ̂

(
Vvs ,Bvs

)
, basal area

from BAFc and volume from BAFv ρ̂
(
Bcs ,Vvs

)
and

basal area from BAFc and BAFv ρ̂
(
Bcs ,Bvs

)
are given

for the northern hardwoods Monte Carlo simulations in
Figure S.8 and the white pine Monte Carlo simulations in
Figure S.10 for each combination of n, BAFc and BAFv.
Estimated correlations between volume and basal area
estimates ρ̂

(
Vvs ,Bvs

)
for both the northern hardwoods in

Figure S.8 and white pine in Figure S.10 were extremely
close to one for all sample sizes and combinations of BAFc
and BAFv.
Estimated correlations between basal area obtained

from BAFc and BAFv ρ̂
(
Bcs ,Bvs

)
and correlations between

BAFc and volume estimates ρ̂
(
Bcs ,Vvs

)
were very close

and, within each sample size, declined with increasing
values of BAFv. These estimated correlations are gener-
ally somewhat higher for the white pine populations for a
given value of n, BAFc and BAFv. For the northern hard-
woods population, estimated correlations range between
0.83 and 0.52 and decline with increasing BAFv. As indi-
cated, estimated correlations in the white pine simulations
tended to be higher than for the northern hardwoods
population and ranged between 0.91 to 0.67.

Discussion
Results from inspection of Fig. 1 indicated that the bias
in the big BAF estimator is quite low for both the north-
ern hardwoods and the white pine populations used in

this study. For larger values of n the bias approaches zero
and is especially low for the northern hardwoods popula-
tion. The great majority of big BAF forest sampling plans
in practice would be expected to have 10 or more sample
points. Perhaps an exception might be a small stratum in
a stratified sample design. While it would be possible to
estimate bias from sample statistics using Eq. 15, it should
not be necessary given the very low values of bias obtained
in this example, especially for the larger values of n that
are commonly used in practical applications of big BAF
sampling. Furthermore, we are not aware of any instances
reported in the literature of big BAF sampling in which
bias has presented problems for practical applications.
It should be noted that compared to the traditional Delta

method (11), Goodman’s method (6) contains a negative
term which causes it to be smaller than the traditional
Delta method , although the difference is quite modest
according to Figs. 2 and 3. Both the traditional Delta
method and Goodman’s method omit covariance terms
between variables used in the estimation process while the
point-based Delta method (24) and the simplified point-
based Delta method (33) do account for covariances. This
may be the reason that the point-based Delta method and
the simplified point-based Delta method standard error
estimates are somewhat smaller for the smaller sample
sizes (especially n = 10) in Figs. 2 and 3.
Gove et al. (2020) have previously compared the tra-

ditional Delta method Eq. (11) to Goodman’s Eq. 6 with
the same results presented here for these two variance
estimation methods. However they did not include the
point-based Delta method Eq. 24 or the simplified point-
based Delta method (33) in their simulations, simulations
of the traditional Delta method and Goodman’s equation
were included in the present study so that the perfor-
mance of the point-based Delta method and the simplified
point-based Delta method could be compared to those
previously-developed variance estimators.
The impact of the correlations discussed above which is

included in the point-based Delta method and the simpli-
fied point-based Delta method but neglected in the two
traditional variance estimation methods was apparently
small for the simulated populations tested here. However,
it is conceivable that these correlations could have a larger
effect in some natural populations. Because of the way the
artificial tree populations were constructed for this arti-
cle, the possible effects of local variations in stand density
on tree dimensions and the tree DBH-height relationship
were minimized. For some species, density variations may
affect the DBH-height relationship thus inducing some
degree of correlation between volume per tree and basal
area per hectare. For example, suppose an even-aged nat-
ural pine stand has extreme density variations so that
DBHs tend to be smaller in relation to height in locally
dense areas but larger in relation to height in areas where
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density is substantially less. This could induce a nega-
tive correlation between basal area and volume per tree
because higher basal area regions would have less volume
per tree than lower basal area regions. From this point
of view the point-based Delta method and the simplified
point-based Delta method may be a more conservative
approaches because they do account for covariances of the
kind just discussed. As well, the correlation terms present
in the point-based Delta method (24) and the simplified
point-based Delta method (33) may provide additional
opportunities to investigate the effects of forest stand
structure on big BAF variance.
By looking at the estimation problem as point-wise

selection of random sample points an estimator of the
covariance between the basal area estimate and ratio of
mean volume to mean basal area estimates was derived in
the Appendix (Eq. A.34):

ĉov
(
B̂c,

V̂v

B̂v

)
= 1

nB̂v

(
ĉov

(
B̂cs , V̂vs

)

− V̂v

B̂v
ĉov

(
B̂cs , B̂vs

))
(35)

The derivation uses an equation derived by Taylor’s series
methods as was the case for the Delta method (Kendall
and Stuart 1977, p. 247). This equation could be used to
estimate a correlation coefficient between the basal area
estimate and the ratio of sample mean volume to sample
mean basal area when expressed as a ratio of means after
the manner of the form of the big BAF estimator (12) pro-
posed by Gregoire and Valentine (2008, equation 8.33).
Equation 14 would be used to estimate the standard error
of the volume basal area ratio in the denominator of the
correlation formula. In addition the formula above might
be used to incorporate covariance information into past
approaches to big BAF variance estimator that were based
on the variance of a product when Eq. 14 is also used to
estimate the variance of the ratio of mean volume to mean
basal area.
The point-based Delta method and the simplified point-

based Delta method result in a computational Eqs. 24 and
(33) which are longer and more complex than Goodman’s
equation (6) or the traditional Delta method (11). How-
ever the formulas for the point-based Delta method or the
simplified point-based Delta method can easily be coded
in programming languages such as R (R Core Team 2021)
as was done for the simulations reported here or in a
spreadsheet. It is perhaps becoming rare to rely on “hand”
calculations with data entered in calculators to perform
the computations required for a forest inventory. Once the
point-based Delta method or the simplified point-based
Delta method has been coded in a programming language
or a spreadsheet template, computations required for the
method should not be a barrier to its use.

Instances in which the variances of the point-based
Delta method and the simplified point-based Delta
method were associated with lower confidence interval
capture rates than Goodman’s or the traditional Delta
method are associated with simulation parameters for
which the estimated standard error for the point-wise
Delta method were lower than standard errors from the
other two methods. As indicated above, this may possibly
be due to negative terms associated with covariances in
the point-based Delta method Eq. (24) and the simplified
point-based Delta method (33) which are not present in
Goodman’s formula Eq. 6 or the traditional Delta method
Eq. (11) as they have traditionally been applied to the big
BAF variance estimation problem. Inspection of Eq. 24
for the point-based Delta method and (33) for the simpli-
fied point-based Delta method indicate that the last two
terms in the equations will likely be negative because they
contain covariances expected to be positive but which are
multiplied by negative coefficients. These negative coeffi-
cients result from taking the partial derivative of a ratio
with respect to the denominator in the ratio (Eq. (23))
as required by the Delta method. Intuitively, when the
denominator in a ratio is positively correlated to a term in
the numerator of the ratio, this tends to stabilize the vari-
ability in the ratio because large values in the numerator
then tend to be matched by large values in the denom-
inator. This intuition accords with negative terms in the
variance formula associated with covariances between
terms in the numerator and the denominator of the ratio
for the big BAF estimator.
Acceptable results from confidence interval captures

tends to confirm that the Delta method based on a
first-order Taylor series approximation can provide good
variance estimates for big BAF sampling. As indicated pre-
viously, Wolter (2007, p. 231) states that the first order
approximation has frequently been found to be acceptable
in practice. The point-based Delta method, the simpli-
fied point-based Delta method and the traditional Delta
method tested here are based on first-order Taylor series
expansions, but the traditional Delta method assumes that
covariance terms are negligible.
Another technical advantage of the point-based Delta

method and the simplified point-based Delta method
is that these equations do not depend on the variation
among trees within points. Thus there is no dependence
on variance terms that implicitly assume that trees sam-
pled within the same point are independent as Eq. 7 does.
Actually the only independent random samples in big
BAF sampling are the sample points themselves. Similarly
Palley and Horwitz (1961, p. 60) noted when consider-
ing a traditional variance estimator based on Bell and
Alexander (1957) for two-stage sampling in which a sub-
set of the count basal area points are selected for volume
measurements, “There is some confusion here, since in
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point sampling the measurement we are concerned with
attaches to points...rather than to trees.” Technically, trees
sampled at the same point are correlated, although appar-
ently this fact did not prevent accurate evaluations of
variance with (7) in simulations. However, use of the tra-
ditional big BAF variance estimation methods with the
ratio variance estimate Eq. 14 instead of Eq. 7 also avoids
the problem of estimating variance using possibly non-
independent sample trees within the same points.
In comparing the point-based Delta method to the sim-

plified point-based Delta method we recommend the
use of the simplified point-based Delta method (33) for
applications. Inspection of Figs. 2 and 3 show that the sim-
plified point-based Delta method was slightly closer to the
HPS reference line than the other three variance estima-
tion methods for sample sizes of n = 25 or greater. In the
case of n = 10, the simplified point-based Delta method
was generally about equally distant from the HPS refer-
ence line as point-based Delta method but tended to be a
slight underestimate instead of an overestimate. In prac-
tical applications the majority of big BAF sampling plans
will likely have samples sizes of n > 10.
From a theoretical point of view the point-based Delta

method should be preferred to Bruce’s method because
Bruce’s method does not take into account possible cor-
relations between the basal area estimate obtained from
BAFc and the estimate of mean volume to basal area
ratio. The point-based Delta method implicitly does this
by accounting for the correlations between all basic basal
area and volume estimates. In a very similar way Palley
and Horwitz (1961, p. 60) used the Delta method to derive
a “conceptually sounder” variance estimator that they rec-
ommend as an alternative to the Bell and Alexander (1957,
p. 17) variance estimator for double sampling with a ratio
estimate in the context of point sampling. The simpli-
fied point-based Delta method should be preferred to the
point-based Delta method because the estimate of total
basal area using BAFc is more precise than the estimate of
basal area using BAFv and therefore a better estimate of
the total basal area B for use in the variance approximation
formula for the simplified point-based Delta method.
A final thought concerning the efficacy of the point-

based Delta method and the simplified point-based Delta
method relates to the current practice of estimating
covariances and correlations to assess the independence
assumption for big BAF sampling. As noted in Gove
et al. (2020), past attempts at calculating these quanti-
ties have all been ad hoc due to the nature of differing
‘sample support’ between the VBAR estimates, which
are tree-based, and the basal area estimates, which are
point-based. The point-based Delta method and the sim-
plified point-based Delta method solve this dilemma by
determining covariances and correlations completely on
a point-wise basis, yielding true estimates in each case

rather than aggregating tree-wise attributes for compar-
ison on a point-wise manner as in the traditional Delta
method application.

Conclusions
New variance formulas for big BAF sampling have been
derived and tested. They have been termed the point-
based Delta method and the simplified point-based Delta
method because they have been derived using the Delta
method based on sources of variation among sample
points. This approach takes the covariances among the
variables in the big BAF sampling estimator into account.
More traditional methods of estimating the big BAF sam-
pling variance are based on the variances of variables
comprising the big BAF estimator but do not take the
covariances between these variables into account. Monte
Carlo simulation experiments conducted on a northern
hardwoods forest population and a white pine population
indicated that the point-based Delta method and the sim-
plified point-based Delta method performed comparably
to two existing big BAF estimators. Estimates from the
point-based Delta method and the simplified point-based
Delta method were sometimes slightly lower than esti-
mates from the other two methods in smaller sample sizes
(numbers of sample points). This might be partially due
to negative terms of modest magnitude associated covari-
ances among variables which are not considered with the
more traditional estimators. We have also shown math-
ematically that the bias in big BAF sampling approaches
zero as sample size becomes large on the order of 1

n ,
behavior that is similar to the standard ratio of means
estimator commonly used in survey sampling.

Appendix

On the bias in the big BAF estimator and the
covariance between the basal area and volume
basal area ratio estimates

Approximate bias
According to Seber (1982, p. 7) a second-order approxi-
mation to the bias in a function g of the means of random
variables xi based on Talyor series is:

Bias = 1
2

n∑

i=1

n∑

j=1
cov

(
xi, xj

) ∂2g
∂xi∂xj

(A.1)

Begining with the equations for the first partial deriva-
tives (21), (22), and (23) we obtain the following required
second partial and cross-partial derivatives. Note that the
second partials of g with respect to B̂c and V̂c are zero so
they are not given below. We assume without loss of gen-
erality in this section that tract area A = 1 so the results
are on a per-unit area basis.
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∂2g
∂B̂2

v
=

(
2V̂vB̂c

B̂3
v

)
(A.2)

∂2g
∂B̂c∂B̂v

= −
(
V̂v

B̂2
v

)
(A.3)

∂2g
∂B̂c∂V̂v

=
(

1
B̂v

)
(A.4)

∂2g
∂B̂c∂V̂v

= −
(
B̂c

B̂2
v

)
(A.5)

The true population bias is a function of expected values
and population variances. Noting the expected values for
the HPS sample means E

[
B̂c

]
= E

[
B̂v

]
= B and E

[
V̂v

]
=

V the relevant second partial and cross partial derivatives
evaluated at the mean vector θ = (B,B,V ) are:

∂2g(θ)

∂B̂2
v

=
(
2V
B2

)
(A.6)

∂2g(θ)

∂B̂c∂B̂v
= −

(
V
B2

)
(A.7)

∂2g(θ)

∂B̂c∂V̂v
=

(
1
B

)
(A.8)

∂2g(θ)

∂B̂c∂V̂v
= −

(
1
B

)
(A.9)

Substituting into (A.1) with algebraic rearrangement we
obtain:

Bias = V

⎛

⎝
var

(
B̂v

)

B2 −
cov

(
B̂c, B̂c

)

B2

−
cov

(
V̂v, B̂v

)

VB
+

cov
(
V̂v, B̂c

)

VB

⎞

⎠ (A.10)

The expression above is essentially the same as bias
derived from Equation 11 in Palley and Horwitz (1961)
for the Bell and Alexander (1957) estimate which is essen-
tially the same as double sampling with a ratio estimator.
However, in their case two different point-wise sample
sizes were involved, the total sample size and a subsample
size, which is not the case for the big BAF estimator. That
means some of the formulas for the variances and covari-
ances within Equation 11 of Palley and Horwitz (1961)
would not be the same as for big BAF sampling because
they would depend on the sub-sample size rather than
the total sample size. Note that B̂c, B̂v and V̂v are means
of independent identical HPS samples so that var

(
B̂v

)

=
var

(
B̂vs

)

n , cov
(
B̂c, B̂v

)
= cov

(
B̂cs ,B̂vs

)

n , cov
(
B̂c, V̂v

)
=

cov
(
B̂cs ,V̂vs

)

n and cov
(
B̂v, V̂v

)
= cov

(
B̂vs V̂vs

)

n leading to:

Bias = V
n

⎛

⎝
var

(
B̂vs

)

B2 −
cov

(
B̂cs , B̂vs

)

B2

−
cov

(
V̂vs , B̂vs

)

VB
+

cov
(
V̂vs , B̂cs

)

VB

⎞

⎠ (A.11)

We note that this expression approaches zero as n
becomes large on the order of 1

n which is similar to
the behavior of the standard ratio estimator according to
Cochran (1977, p. 160).

Exact bias
We can mathematically investigate the bias in the big BAF
estimator by a method similar to that give by Cochran
(1977, p. 162) and originally developed by Hartley and
Ross (1954). In the derivations to simplify notation we
assume without loss of generality area A = 1 because the
final results are ratios that do not involve area. Consider
the covariance between the big BAF estimator V̂B and the
basal area estimate from the small BAF factor angle gauge
B̂v

cov
(
V̂B , B̂v

)
= E

[
V̂BB̂v

]
− E

[
V̂B

]
E
[
B̂v

]
(A.12)

Now because B̂v is known to be a design-unbiased HPS
estimator of the true basal area B and by (12) we have
V̂BB̂v = V̂vB̂c the following results:

cov
(
V̂B , B̂v

)
= E

[
V̂vB̂c

]
− BE

[
V̂B

]
(A.13)

Then by the definition of the covariance and the fact that
V̂v and B̂c are design-unbiased HPS estimators (Palley and
Horwitz 1961) of total volume V and basal area B respec-
tively we have E

[
V̂vB̂c

]
= cov

(
V̂v, B̂c

)
+ BV resulting in:

cov
(
V̂B , B̂v

)
= cov

(
V̂v, B̂c

)
+ BV − BE

[
V̂B

]
(A.14)

Now we may quantify the exact bias as:

Bias =
(
E
[
V̂B

]
− V

)
=

cov
(
B̂c, V̂v

)
− cov

(
V̂B , B̂v

)

B
(A.15)

Using the definition of the correlation coefficient ρ the
absolute value of the bias is then

|Bias| = 1
B

∣∣∣∣∣

(
ρB̂c,V̂v

) √
var

(
B̂c

)
var

(
V̂v

)

−
(
ρB̂v,V̂B

) √
var

(
B̂v

)
var

(
V̂B

)∣∣∣∣∣ (A.16)

For forest populations we generally expect that estimates
of basal area and volume from common samples on the



Lynch et al. Forest Ecosystems            (2021) 8:33 Page 17 of 19

same populations would be positively correlated so that
0 ≤ ρ

(
B̂c, V̂v

)
≤ 1 and 0 ≤ ρ

(
B̂v, V̂B

)
≤ 1 so that the

maximum value of the correlations is one. If the correla-
tions are positive the maximum possible difference in the
absolute value on right hand side of the equation above
occurs when one of the terms is zero and the other is
greater than zero we have:

|Bias| ≤ 1
B
max

(√
var

(
B̂c

)
var

(
V̂v

)
,

√
var

(
B̂v

)
var

(
V̂B

))
(A.17)

In the case where
(
var

(
B̂c

)
var

(
V̂v

))
≥

(
var

(
B̂v

)
var

(
V̂B

))
we have

|Bias|
√
var

(
V̂B

) ≤

√
var

(
B̂c

)
var

(
V̂v

)

B
√
var

(
V̂B

) (A.18)

Because var
(
V̂B

)
approaches var

(
V̂v

)
as a maximum as

the small BAF factor approaches the large BAF factor we
have var

(
V̂B

)
≥ var

(
V̂v

)
leading to

|Bias|
σV̂B

= |Bias|
√
var

(
V̂B

) ≤

√
var

(
B̂c

)

B
= CB̂c (A.19)

where σV̂B
=

√
var

(
V̂B

)
is the standard error of the big

BAF estimator and CB̂c is the coefficient of variation for
the basal area estimate with the smaller BAF factor BAFc.
Because B̂c is the mean of independent identically dis-
tributed HPS point samples we have var

(
B̂c

)
= var(Bc)

n
where var(Bc) is the variance among point-wise basal area
estimates. This leads to:

|Bias|
σV̂B

≤ 1√
n

√
var(Bc)

B
(A.20)

Because B and var(Bc) are constant population val-
ues, as n approaches infinity the right-hand side of the
equation above goes to zero, with the result that the rela-
tive bias for the big BAF estimator approaches zero on the
order of 1√

n (using “big O” notation O( 1√
n )).

If
(
var

(
B̂c

)
var

(
V̂v

))
≤

(
var

(
B̂v

)
var

(
V̂B

))
in a simi-

lar way we have

|Bias|
σV̂B

≤ 1√
n

√
var(Bv)

B
(A.21)

Once again because B and var(Bv) are population
constants the relative bias in the big BAF estimator
approaches zero as n approaches infinity.
In the unusual case were one of the correlations between

basal area and volume estimates may be negative, we can
posit

|Bias|
σV̂B

≤ 1√
n

(√
var(Bv)

B
+

√
var(Bc)

B

)
(A.22)

In this case as well the relative bias in the big BAF esti-
mator approaches zero as n approaches infinity. Thus for
all three possible cases the relative bias in the big BAF
estimator approaches zero as the sample size approaches
infinity on the order of 1√

n . According to Cochran (1977,
p. 160) this is similar to the behavior of the standard ratio
estimator often used in sample surveys.

Covariance between basal area and volume basal area
ratios
The covariance between two possibly nonlinear functions
f (θ̂) and h(θ̂) can be approximated using Taylor’s series
methods in a way similar to the derivation of the Delta
method. The following approximation formula is based on
Kendall and Stuart (1977, p. 247)

cov
(
f (θ̂), h(θ̂)

)
≈

n∑

i=1
var

(
θ̂i

) ∂f (θ̂)

∂θ̂i

∂h(θ̂)

∂θ̂i

+
∑∑

i
=j
cov

(
θ̂i, θ̂j

) ∂f (θ̂)

∂θ̂i

∂h(θ̂)

∂θ̂j

(A.23)

To find the approximate covariance between estimated
basal area and the ratio of the estimates of mean volume
to mean basal area we define:

f (θ̂) = B̂c (A.24)

and the ratio of the estimates of mean volume and mean
basal area:

h(θ̂) = V̂v

B̂v
(A.25)

We then obtain the following partial derivatives needed
for the approximation formula:
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∂f
∂B̂c

= 1 (A.26)

∂f
∂V̂v

= 0 (A.27)

∂f
∂B̂v

= 0 (A.28)

∂h
∂B̂c

= 0 (A.29)

∂h
∂V̂v

= 1
B̂v

(A.30)

∂h
∂V̂v

= −V̂v

B̂2
v

(A.31)

(A.32)

Finally inserting the function definitions and partial
derivatives in to the approximation formula we find
the following approximate estimator for the covariance
between the basal area estimate and the volume basal area
estimate:

ĉov
(
B̂c,

V̂v

B̂v

)
= 1

B̂v

(
ĉov

(
B̂c, V̂v

)

− V̂v

B̂v
ĉov

(
B̂c, B̂v

))
(A.33)

We may factor a quantity of 1
n from the parentheses:

ĉov
(
B̂c,

V̂v

B̂v

)
= 1

nB̂v

(
ĉov

(
B̂cs , V̂vs

)

− V̂v

B̂v
ĉov

(
B̂cs , B̂vs

))
(A.34)

Abbreviations
BAF: Basal area factor; BAFc: Count sample basal area factor; BAFv: Volume
sample basal area factor; HPS: Horizontal point sampling; VBAR: Volume to
basal area ratio

Supplementary Information
The online version contains supplementary material available at
https://doi.org/10.1186/s40663-021-00304-0.

Additional file 1: Supplementary Material: An Approximate Point-Based
Alternative for the Estimation of Variance under Big BAF Sampling

Acknowledgements
This is the second in a series of two papers dedicated to a pioneer of research
and education in point sampling. In recognition of his many contributions and
insights in areas relating to forest inventory, and his influential teaching and
mentoring of many students, professionals and inventory scientists, we
dedicate this paper in memory of our esteemed colleague Dr. John F. Bell.

Authors’ contributions
TBL initial concept, writing main manuscript, deriving bias and variance
equations; JHG conducting computer simulations, deriving equations, assisted
in writingmanuscript, writing Supplemental Materials; TGG andMJD assisted in

study design and contributed ideas, text and comments to the manuscript. All
authors read and approved the final manuscript. The findings and conclusions
in this publication are those of the authors and should not be construed to
represent any official USDA or U.S. Government determination or policy.

Funding
MJD: Support was provided by Research Joint Venture Agreement
17-JV-11242306045, “Old Growth Forest Dynamics and Structure,” between
the USDA Forest Service and the University of New Hampshire. Additional
support to MJD was provided by the USDA National Institute of Food and
Agriculture McIntire-Stennis Project Accession Number 1020142, “Forest
Structure, Volume, and Biomass in the Northeastern United States.” TBL: This
work was supported by the USDA National Institute of Food and Agriculture,
McIntire-Stennis project OKL0 2834 and the Division of Agricultural Sciences
and Natural Resources at Oklahoma State University.

Availability of data andmaterials
The datasets used and/or analysed during the current study are available from
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Professor Emeritus, Department of Natural Resource Ecology and
Management, Oklahoma State University, Ag Hall Room 008C, Stillwater
74078, OK, USA. 2USDA Forest Service, Northern Research Station, 271 Mast
Road, Durham 03824, NH, USA. 3Yale School of Environment, Yale University,
360 Prospect St, New Haven 06511, CT, USA. 4Department of Natural
Resources and the Environment, University of New Hampshire, 114 James Hall,
Durham 03824, NH, USA.

Received: 17 December 2020 Accepted: 13 April 2021

References
Bailey RL, Dell TR (1973) Quantifying diameter distributions with the Weibull

function. For Sci 19:97–104
Bell JF, Alexander LB (1957) Application of the variable plot method of

sampling forest stands. Research Note 30, Oregon State Board of Forestry
Bell JF, Iles K, Marshall DD (1983) Balancing the ratio of tree count-only sample

points and VBAR measurements in variable plot sampling. In: Bell JF,
Atterbury T (eds). Renewable Resouce Inventories for Monitoring Changes
and Trends. College of Forestry, OSU, Corvallis, Oregon. pp 699–702

Brooks JR (2006) An evaluation of big basal area factor sampling in
Appalachian hardwoods. North J Appl For 23(1):52–65

Bruce D (1961) Prism Cruising in the western United States with volume tables
for use therewith. Tech. rep. Mason, Bruce & Girard Consulting Foresters,
Portland, Oregon

Chen Y, Yang TR, Hsu YH, Kershaw JA, Prest D (2019) Application of big BAF
sampling for estimating carbon on small woodlots. Forest Ecosyst
6(13):1–11

Cochran W (1977) Sampling techniques. John Wiley, New York
Corrin D (1998) A very Efficient sampling method for cruising timber. Tech. rep.

John Bell Associates. http://www.john-bell-associates.com/guest/
guest43a.htm. Accessed 17 Oct 2020

de Vries PG (1986) Sampling Theory for Forest Inventory. A Teach Yourself
Course. Springer-Verlag

Desmarais KM (2002) Using BigBAF Sampling in a New England Mixedwood
Forest. Tech. rep. John Bell Associates. http://www.john-bell-associates.
com/guest/guest58b.htm. Accessed 17 Oct 2020

https://doi.org/10.1186/s40663-021-00304-0
http://www.john-bell-associates.com/guest/guest43a.htm
http://www.john-bell-associates.com/guest/guest43a.htm
http://www.john-bell-associates.com/guest/guest58b.htm
http://www.john-bell-associates.com/guest/guest58b.htm


Lynch et al. Forest Ecosystems            (2021) 8:33 Page 19 of 19

Fast AJ, Ducey MJ (2011) Height-diameter equations for select New Hampshire
tree species. North J Appl For 28(3):157–160

Goodman LA (1960) On the exact variance of products. J Am Stat Assoc
55(292):708–713

Goodman, LA (1962) The Variance of the Product of K Random Variables. J Am
Stat Assoc 57(297):54–60

Gove JH (2011a) The Dendrometry Package. https://r-forge.r-project.org/
projects/dendrometry/. Accessed 17 Oct 2020

Gove JH (2011b) The “Stem” Class. sampSurf package vignette. http://CRAN.R-
project.org/package=sampSurf. Accessed 17 Oct 2020

Gove JH (2012) sampSurf: Sampling surface simulation. https://r-forge.r-
project.org/projects/sampsurf/. Accessed 17 Oct 2020

Gove JH, Gregoire TG, Ducey MJ, Lynch TB (2020) A note on the estimation of
variance for big BAF sampling. Forest Ecosyst 7(62):1–14

Gove JH, Valentine HT, Holmes MJ (2000) A field test of cut-off importance
sampling for bole volume. In: Hansen M, Burk T (eds). Integrated tools for
natural resources inventories in the 21st century. pp 372–376. U.S. Dept. of
Agriculture, Forest Service, North Central Forest Experiment Station, St.
Paul, MN, General Technical Report NC-212

Gregoire TG, Valentine HT (2008) Sampling strategies for natural resources and
the environment. Applied environmental statistics. Chapman & Hall/CRC,
N.Y.

Grosenbaugh LR (1952) Plotless timber estimates, new, fast, easy. J For 50:32–37
Hansen M, Hurwitz W, Madow W (1953) Sample survey methods and theory

vol 1. John Wiley
Hartley HO, Ross A (1954) Unbiased ratio estimates. Nature 174:220–271
Iles K (2012) Some current subsampling techniques in forestry. Math Comput

For Nat-Resour Sci 4(2):77–80
Kendall M, Stuart A (1977) The advanced theory of statistics. 4th edn, Vol. 1.

Macmillan
Kershaw JA, Ducey MJ, Beers T, Husch B (2016) Forest Mensuration. 5th edn.

Wiley-Blackwell
Leak WB, Lamson NI (1999) Revised white pine stocking guide for managed

stands. Tech. Rep. NA-TP-01-99, USDA Forest Service, Northeastern Area
State and Private Forestry

Leak WB, Yamasaki M, Holleran R (2014) Silvicultural Guide for Northern
Hardwoods in the Northeast. General Technical Report NRS-132, USDA
Forest Service, Northern Research Station

Marshall DD, Iles K, Bell JF (2004) Using a large-angle gauge to select trees for
measurement in variable plot sampling. Can J Forest Res 34:840–845

Masuyama M (1953) A rapid method for estimating basal area in a timber
survey—an application of integral geometry to areal sampling problems.
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