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Tree growth is more limited by drought in
rear-edge forests most of the times
J. Julio Camarero1* , Antonio Gazol1, Gabriel Sangüesa-Barreda2, Marta Vergarechea3, Raquel Alfaro-Sánchez4,
Nicolás Cattaneo3 and Sergio M. Vicente-Serrano1

Abstract

Background: Equatorward, rear-edge tree populations are natural monitors to estimate species vulnerability to
climate change. According to biogeographical theory, exposition to drought events increases with increasing aridity
towards the equator and the growth of southern tree populations will be more vulnerable to drought than in
central populations. However, the ecological and biogeographical margins can mismatch due to the impact of
ecological factors (topography, soils) or tree-species acclimation that can blur large-scale geographical imprints in
trees responses to drought making northern populations more drought limited.

Methods: We tested these ideas in six tree species, three angiosperms (Fagus sylvatica, Quercus robur, Quercus
petraea) and three gymnosperms (Abies alba, Pinus sylvestris and Pinus uncinata) by comparing rear-edge tree
populations subjected to different degrees of aridity. We used dendrochronology to compare the radial-growth
patterns of these species in northern, intermediate, and southern tree populations at the continental rear edge.

Results and conclusions: We found marked variations in growth variability between species with coherent
patterns of stronger drought signals in the tree-ring series of the southern populations of F. sylvatica, P. sylvestris,
and A. alba. This was also observed in species from cool-wet sites (P. uncinata and Q. robur), despite their limited
responsiveness to drought. However, in the case of Q. petraea the intermediate population showed the strongest
relationship to drought. For drought-sensitive species as F. sylvatica and P. sylvestris, southern populations presented
more variable growth which was enhanced by cool-wet conditions from late spring to summer. We found a trend
of enhanced vulnerability to drought in these two species. The response of tree growth to drought has a marked
biogeographical component characterized by increased drought sensitivity in southern populations even within the
species distribution rear edge. Nevertheless, the relationship between tree growth and drought varied between
species suggesting that biogeographical and ecological limits do not always overlap as in the case of Q. petraea. In
widespread species showing enhanced vulnerability to drought, as F. sylvatica and P. sylvestris, increased
vulnerability to climate warming in their rear edges is forecasted. Therefore, we encourage the monitoring and
conservation of such marginal tree populations.

Keywords: Climate change, Dendroecology, Latitudinal gradient, Mediterranean forests, Standardized
evapotranspiration precipitation index (SPEI)

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: jjcamarero@ipe.csic.es
1Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192
Zaragoza, Spain
Full list of author information is available at the end of the article

Camarero et al. Forest Ecosystems            (2021) 8:25 
https://doi.org/10.1186/s40663-021-00303-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s40663-021-00303-1&domain=pdf
http://orcid.org/0000-0003-2436-2922
http://creativecommons.org/licenses/by/4.0/
mailto:jjcamarero@ipe.csic.es


Background
Climate warming impacts the productivity and function-
ing of forest ecosystems worldwide with consequences
on the services they provide for human wellbeing
(Anderegg et al. 2013; Hartmann et al. 2018). Recent
warming trends have accelerated tree growth in
temperature-limited forests (Serreze and Barry 2011),
while they have caused widespread drought-related
mortality in most biomes (Allen et al. 2010; Choat et al.
2018). Drought is becoming a major driver of tree
growth globally (Babst et al. 2019) revealing a temporal
instability in its impacts on forests over the last decades
(Peltier and Ogle 2020; Wilmking et al. 2020). Along
with this, the role of drought in determining tree growth
is also spatially variable (Anderegg et al. 2015), with tree
populations located near the equatorward distribution
limit being more vulnerable to drought (e.g., Sánchez-
Salguero et al. 2017; but see Cavin and Jump 2017).
Therefore, when trees are not adapted to harshening
environmental conditions, widespread dieback and
mortality occur leading to the range contraction of the
species distribution limit (Anderegg and HilleRisLambers
2016; Anderegg et al. 2019). However, recent studies have
demonstrated that populations on the equatorward limit
display adaptations to drought (Dorado-Liñán et al. 2019;
Muffler et al. 2020) and that ecological factors can blur or
override geographical patterns of greater vulnerability to
drought as latitude decreases (Vilà-Cabrera and Jump
2019). In other words, marginality has different compo-
nents (i.e., geographical, ecological, and genetic) and geo-
graphical range margins do not always dictate population
performance (Vilà-Cabrera et al. 2019).
According to biogeographical expectations, as climate

becomes warmer and drier, rear-edge tree populations of
temperate or mountain species may become vulnerable
to drought and show productivity and growth reductions
preceding dieback events (Camarero et al. 2017). Several
Eurasian tree species reach their southern distribution
limit in Spain (de Vries et al. 2015), where drought-
limitations on species performance and vitality have
been already reported and are expected to increase
(Lindner et al. 2010; Camarero et al. 2015). Even within
Spain, southern or low altitudinal forests of some species
such as Scots pine can be more vulnerable to drought
than forests located at higher elevations or latitudes in
the rear edge (Marqués et al. 2016; Serra-Maluquer et al.
2019). These reasons make some Spanish forests a valu-
able proxy of drought impacts on European rear-edge
tree populations.
Tree populations of species such as silver fir (Abies alba

Mill.) present lower growth rates in some Pre-Pyrenean
sites of northern Spain than in other wetter regions of
Central Europe (Gazol et al. 2015). Similarly, Scots Pine
(Pinus sylvestris L.) and European beech (Fagus sylvatica

L.) populations show greater sensitivity to drought in dry
regions of Spain than in northern or wetter areas (Serra-
Maluquer et al. 2019; Bose et al. 2020). However, local
ecological conditions can affect the growth responsiveness
of these species and populations to climate making rear-
edge populations less vulnerable to drought than their
northern counterparts (Dorado-Liñán et al. 2019). This
contingency on site conditions has been shown in silver fir
forests in the Spanish Pyrenees (Camarero et al. 2011),
Scots pine in southern Spain (Herrero et al. 2013), or
European beech forests in north eastern Spain (Vilà-
Cabrera and Jump 2019). Thus, the growth response
to drought of rear-edge tree populations can deviate
from biogeographical predictions due to the influence
of local ecological factors or genetic adaptations to
drought (Vilà-Cabrera et al. 2019).
Several factors can contribute to the strong variability

in tree growth response to drought between populations
decoupling biogeographical and ecological margins
(Vilà-Cabrera et al. 2019). Thus, population performance
may depend on the interaction between different eco-
logical factors, climate-competition trade-offs (e.g., Jump
et al. 2017; Anderegg and HilleRisLambers 2019), or
phenotypic plasticity and genetic variability (Hampe
2004; Valladares et al. 2015). For example, Herrero et al.
(2013) and Marqués et al. (2016) found that Scots pine
rear-edge populations were vulnerable to drought at low
elevations, where the evapotranspiration demand in-
creases, while at high elevations growth was less con-
strained by water shortage. Altitudinal variations can
decouple local microclimate conditions from regional
macroclimatic patterns affecting tree growth response to
climate but also competitive interactions (Anderegg and
HilleRisLambers 2019). That is, within the rear edge
those populations at lower elevations were more vulner-
able to drought. Muffler et al. (2020) found that
European beech rear-edge populations did not respond
to drought as compared to central populations and
attributed this effect to the cooling effects of local fog
events or high elevation mitigating drought impacts (see
also Rozas et al. 2015; Barbeta et al. 2019). In such situa-
tions, plant-soil interactions, and the capacity of trees to
compete within their neighbourhood may play an im-
portant role in enhancing or limiting drought impacts
(Leuschner 2020). Marqués et al. (2018) found that the
response of growth of Scots pine to drought in rear-edge
populations was modulated by stand density, pointing to
the impact of past forest management on recent growth
vulnerability, as has been found for other species
(Camarero et al. 2011; Pérez-Luque et al. 2020). Rubio-
Cuadrado et al. (2020) found competition due to the ces-
sation of traditional management as the main driver of
growth in a rear edge, mixed broadleaved forest. These
variations between populations can be even more apparent
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when different species are considered given the contrasted
sensitivity to drought between drought-sensitive species
such as European beech and Scots pine or tolerant species
such as pedunculate oak (Quercus robur L.) (Vitasse et al.
2019). These results question the universal validity of the
hypothesis of a greater vulnerability of tree growth to
drought near their rear edge (Vilà-Cabrera et al. 2019;
Muffler et al. 2020). Further, they indicate that regional
studies over geographically and climatically contrasting
tree populations are required to decipher if rear-edge
populations are the most vulnerable to drought across a
species distribution range. In this sense, it is expected
that if tree populations are climatically different or
geographically distant, rear-edge populations will be
consistently more constrained by drought events as
they face harsher environmental conditions (Anderegg
and HilleRisLambers 2019). However, genetic adapta-
tions can make rear-edge populations less vulnerable to
drought (Vilà-Cabrera et al. 2019).

Here we tested the hypothesis that even within the rear
edge those tree populations located in southern sites are
subjected to drier conditions and thus display greater
growth vulnerability to drought than populations located in
intermediate or northern sites. Alternatively, tree popula-
tions of a species in intermediate and northern sites have
not experienced an equally strong selection for drought re-
sistance because they are less adapted to experience severe
drought than those towards the species’ moisture-limited
range margin. Therefore, one would expect southern, equa-
torward populations would be less impacted by drought of
a given severity than would be poleward populations. To
test these ideas, we selected six species widely distributed in
Europe that found their rear-edge distribution limit in
Spain. The species were three gymnosperms (Pinus sylves-
tris, Abies alba and Pinus uncinata Ram.) and three
angiosperms (Fagus sylvatica, Quercus robur and Quercus
petraea (Mattuschka) Liebl.) forming rear-edge populations
in north-eastern Spain (Fig. 1). For each species in each site,

Fig. 1 Distribution maps of the studied species across Europe. For each species (a, Pinus uncinata; b, Abies alba; c, Fagus sylvatica; d, Pinus
sylvestris; e, Quercus robur; f, Quercus petraea) the green area represents the distribution of the species in Europe. The dots in the graph indicate
the location of the northern (blue triangle), intermediate (black circle) and southern or rear-edge (red squares)
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we used dendrochronology to reconstruct past radial-
growth patterns by accurately dating tree-ring width re-
cords. We expected: (i) higher growth variability, and lower
mean growth, in southern as compared to intermediate and
northern populations; (ii) stronger coupling between
growth variability and drought stress in southern popula-
tions; and (iii) an increasing growth sensitivity to drought
in southern populations during the last decades.

Methods
Studied sites and tree species
We studied six common European tree species (three
Pinaceae and three Fagaceae) widely distributed in
Europe (Figs. 1 and S1) namely: P. uncinata, A. alba, P.
sylvestris, F. sylvatica, Q. robur and Q. petraea. Moun-
tain pine (P. uncinata) is a species distributed in central
and southwestern European mountains finding its south-
ern distribution limit in the Iberian System, eastern
Spain (Camarero et al. 1998). Silver fir (A. alba) is an
economically profitable species widely distributed in
central and southwestern Europe with rear-edge popula-
tions in north-eastern Spain mountains as the Pre-
Pyrenees (Gazol et al. 2015). Scots pine (P. sylvestris)
and European beech (F. sylvatica) also find their south-
western distribution limits in Spain where drought-
induced dieback has been reported for both species
(Camarero et al. 2015, 2017). Pedunculate (Q. robur) and
sessile (Q. petraea) oaks are widely distributed from
northern to southern Europe and they form pure or
mixed stands, where they can hybridize, in wet sites (e.g.
valley bottoms) or mountain sites of north-eastern Spain
(Caudullo et al. 2017).

Field sampling and laboratory work
Three sites with contrasting climatic conditions, and
always including a drier rear-edge site, were selected for
each species (Table 1; Figs. 1 and 2). In each species, the
driest, rear-edge site presented lower precipitation than
the other two sites (Figs. 2 and S2). We quantified radial
growth because this is a reliable proxy of tree vigour
changes in response to drought (Dobbertin 2005). We
sampled at least 15 dominant trees for each species and
site. All sites form mixed stands excepting the pure
Betato and Poyales F. sylvatica sites, and the Tessó del
Son P. uncinata site situated near the alpine treeline.
The diameter at breast height of each tree (Dbh) was
measured at 1.3 m using a metric tape. Two cores (see
Table 1) were extracted per tree at 1.3 m using 5-mm
increment borers, and perpendicular to the main stem
and the slope. Then, cores were air-dried, glued, and
polished using a series of sand-paper grits until tree-ring
boundaries were clearly visible. These samples were visu-
ally cross-dated and measured to the nearest 0.01 mm
using a LINTAB measuring device (Rinntech, Heidelberg,

Germany). Cross-dating accuracy was checked by using
the software COFECHA (Holmes 1983).
Mean growth series or chronologies were created for

each site and species by detrending tree-ring width mea-
sures (Fritts 1976). Individual tree-ring width series were
detrended using a cubic smoothing spline with a 50%
frequency response cut-off at 30 years (Cook and Peters
1981). The ring width index (RWI) for each series was
obtained by dividing the observed and fitted tree-ring
width values. Pre-whitened RWI series were calculated
by removing temporal autocorrelation using autoregres-
sive models. The resulting standardized, pre-whitened
individuals RWI series were averaged into mean site
chronologies for each species using bi-weight robust
means.
To characterize the species’ chronologies of each site

for the common period 1950–2000 we calculated the
following tree-ring statistics: mean, standard deviation
and coefficient of variation (CV) of tree-ring width;
mean correlation between indexed, individual series (rbar);
and the Expressed Population Signal (EPS), a measure of
replication and internal coherence of each chronology
(Fritts 1976). The Dunnett’s modified Tukey-Kramer pair-
wise multiple comparison test (Dunnett 1980) was used to
compare tree-ring width of individuals between southern,
intermediate and northern populations for each species.

Climatic and distribution data
For each species, distribution maps were downloaded
from the EUFORGEN website (http://www.euforgen.org/
species/; de Vries et al. 2015) and they were completed
using recent distribution data across Europe (Caudullo
et al. 2017). The European distribution maps of each
species were compared with climate data to describe the
climatic niche of each species. To this end, maps of
mean annual temperature (MAT) and mean annual pre-
cipitation (MAP) were downloaded from the WorldClim
database (https://www.worldclim.org/; Fick and Hijmans
2017). These maps represent averages over the period
1970–2000 and show global patterns in climate. Then,
we plotted each site in a MAT vs. MAP graph consider-
ing the European distribution area of the study species,
i.e. between 12° W–60° E, and 32°–72° N (Fig. 2).
To quantify climate-growth relationships, monthly

mean temperature and precipitation data from the E-
OBS database v. 20.0e (Haylock et al. 2008) were down-
loaded at 2.5° resolution for the period 1950–2018 using
the Climate Explorer webpage (https://climexp.knmi.nl/
start.cgi). To quantify drought impact, we used the Stan-
dardized Evapotranspiration Precipitation Index (SPEI;
Vicente-Serrano et al. 2010). The SPEI is a multi-scalar
index that quantifies drought intensity based on the
difference between precipitation and the atmospheric
evaporative demand for different periods, with negative
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values indicating water scarcity. We used 1–48month
SPEI timescales for the period 1962–2016 for the
sampled forest sites from a high spatial resolution
gridded dataset for Spain based on quality controlled
and homogenised meteorological series (Vicente-Serrano
et al. 2017).

Statistical analyses
The relationships between tree growth (RWI) and
monthly mean temperature and precipitation (deviations
with respect to the mean temperature and precipitation
values at a site) were quantified for the best-replicated
period 1950–2006 using bootstrapped Pearson correla-
tions (Meko et al. 2011). These analyses were performed
from September in the year before the tree-ring was
formed to September of the year of tree-ring formation
(hydrological year). Moving correlation functions were
applied to assess the dynamic nature of the relationships

between RWI and relevant climate variables (precipita-
tion, temperature and July SPEI) and considering 30-
year moving windows. We used July SPEI as tree growth
for many tree species in north-eastern Spain, where
most of our studied populations are located, have been
found to respond to drought from June up to August
(Pasho et al. 2011). Analyses were performed using the
“dplR” (Bunn 2008), the “treeclim” (Zang and Biondi
2015), and the “visreg” libraries (Breheny and Burchett
2017) of the R statistical software (R Core Team 2020).

Results
The “climatic space” plot allowed to characterize the cli-
mate conditions of geographically southern populations
from the other species sites (Fig. 2). This differentiation
was clear in the case of A. alba, and less evident in P.
sylvestris, and Q. robur. In P. uncinata and F. sylvatica
intermediate and southern sites shared similar annual

Fig. 2 Representation of each studied species in the climatic space (Worldclim data; Fick and Hijmans 2017) The green dots represent values of
mean annual temperature and total precipitation where the species are present in Europe (a, Pinus uncinata; b, Abies alba; c, Fagus sylvatica; d,
Pinus sylvestris; e, Quercus robur; f, Quercus petraea). Climate data was downloaded for the distribution of the species in Europe (http://www.
euforgen.org/species/). Grey dots represent values of temperature and precipitation where the species are not found in Europe. The dots in the
graph indicate the location of the tree populations of each species
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climatic conditions (Fig. S2). Lastly, in Q. petraea the
warmest and driest conditions (highest MAT and lowest
MAP) were observed in the intermediate site, and not in
the southern site.
We found marked growth differences across populations

for some species (Table 1). Lower growth rates in the
southern sites were more evident for drought-sensitive spe-
cies such as F. sylvatica and P. sylvestris (Table 1; Fig. S3).
Growth rates of A. alba individuals were higher in the
intermediate and southern sites than in the northern site,
and the largest growth rates in the case of Q. petraea were
found in the southern site (Table 1; Fig. S3). Growth
variability varied considerably between species. Tree spe-
cies inhabiting cold and wet sites (A. alba, Q. robur), but
not P. uncinata, displayed lower growth variability (Fig. 3
and Table 1) than P. sylvestris and F. sylvatica. Q. petraea
was the only exception in which growth variability was
stronger in the central than in the rear-edge site (Fig. 3). In
this respect, the average correlation between series (rbar)
and the coefficient of variation in TRW were higher in
its intermediate site than in the other two populations

(Table 1). This result contrasts with species such as P.
sylvestris and A. alba that showed the highest rbar
values but either higher or lower growth variability in
their respective southern sites.
The relationship between growth and climate displayed

different patterns between species and sites (Fig. 4). In the
case of A. alba and Q. robur we found a greater depend-
ency of growth on summer precipitation in southern sites
than in the other two populations. In A. alba and P. sylves-
tris warmer summer temperatures negatively impacted
tree growth in southern sites (Fig. 4). This negative correl-
ation was also observed in the northern P. sylvestris site,
and particularly in the intermediate Q. petraea site which
depended on prior-winter and spring precipitation. This
dependency on the amount of rainfall received before or
early in the growing season was also observed in southern
F. sylvatica and P. sylvestris sites. The growth of P. unci-
nata and A. alba in southern populations, and P. uncinata
and P. sylvestris in intermediate populations, was nega-
tively related to temperature of September in the year
prior to tree-ring formation. In the A. alba and F. sylvatica

Fig. 3 Mean series of ring-width indices (RWI) of the six species (a, Pinus uncinata; b, Abies alba; c, Fagus sylvatica; d, Pinus sylvestris; e, Quercus
robur; f, Quercus petraea) studied in the northern (blue), intermediate (black) and southern (brown) tree populations for the period 1950–2006
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southern populations, prior-winter temperatures were
positively correlated with growth.
For all species except Q. robur, the negative impact of

summer temperatures on growth has increased over the
last decades (Figs. 5 and S4). This was evident at the
southern sites of some species (P. uncinata, A. alba, F.
sylvatica), whereas in others it was observed in all sites (P.
sylvestris). In Q. petraea, growth decreased in response to
increasingly warmer summer conditions in the intermedi-
ate site. The temporal evolution of the correlation be-
tween growth and precipitation was less clear, but spring
precipitation gained importance in the intermediate sites
of F. sylvatica, P. sylvestris and Q. petraea (Figs. 5 and S5).

Unexpectedly, the strongest correlation between the
SPEI and growth was found for Q. petraea in the inter-
mediate population (Fig. 6). According to our expecta-
tions, we found a stronger correlation between SPEI and
growth in the southern than in the other two sites for
three out of the six species studied. This was the case of
the drought-sensitive species F. sylvatica and P. sylves-
tris, and A. alba. Differences between populations were
less evident in Q. robur and P. uncinata. The temporal
evolution of the correlation between growth and SPEI
showed that in the southern P. sylvestris population
there was a marked increase in the vulnerability of
growth to long droughts (12- to 18-month SPEI values;

Fig. 4 Correlations (Pearson coefficients) calculated between mean site series of ring-width indices and precipitation (left) and temperature (right)
deviations. Dots indicate significant coefficients according to bootstrapping tests. Colours represent: northern (blue), intermediate (black), and southern
(brown) populations of the six tree species (a, Pinus uncinata; b, Abies alba; c, Fagus sylvatica; d, Pinus sylvestris; e, Quercus robur; f, Quercus petraea)
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Figs. 7 and S6). In the rear-edge A. alba site, there was a
persistence influence of short- and mid-term droughts
on growth, and, again, this influence was more evident
in the intermediate Q. petraea site.

Discussion
We found that drought is a major factor limiting tree
growth for most of the studied species and sites near the
rear edge of their distribution range. According to our
expectations, drought-sensitivity increased towards the
equatorial border of the species distribution range for
most of the species studied. That is, populations located
in southern sites were in general more vulnerable to
drought than populations located in intermediate or
northern sites. In accordance, growth sensitivity to
drought varied markedly among tree populations within
each species (Fig. 6). For drought-sensitive species as
Scots pine, the results showed that tree growth is more
limited by drought in the southern site (Figs. 6 and 7).
This negative impact has been exacerbated due to the

increase in growing-season temperatures, and probably
evapotranspiration rates, over the past decades (Vicente-
Serrano et al. 2015). Our findings evidence the drought
vulnerability of tree species such as silver fir, European
beech and Scots pine (see also Vitasse et al. 2019; Bose
et al. 2020). There is a notable exception in the case of
sessile oak, a drought-sensitive species (Aranda et al.
2000), whose growth is more impacted by drought in
intermediate than in southern populations, pointing to
the importance of other ecological or local factors
modulating tree growth sensitivity to drought (Cavin
and Jump 2017). The intermediate and southern sites
are separated by 120 km (Fig. S1) and the highest re-
sponsiveness to drought was observed in the climatic
limit or most xeric site (Monsomero). This site was also
formerly exploited as a coppice forest about 60 years ago
(JJ Camarero, pers. observ.), which could have exacerbated
its current sensitivity to drought due to competition
among stems of the same individual (Corcuera et al. 2006;
Pérez-Luque et al. 2020). The case of Q. petraea shows

Fig. 5 Moving window correlations calculated between mean site series of ring-width indices and monthly temperature (T.) and precipitation (P.)
data from May to August. Moving correlations were obtained for 30-year intervals shifted by one year and the middle year of the interval is
shown in x axes for each species (a, Pinus uncinata; b, Abies alba; c, Fagus sylvatica; d, Pinus sylvestris; e, Quercus robur; f, Quercus petraea). The
colour scale (right side) shows the Pearson correlation coefficients
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that other ecological factors besides climate can constrain
the growth responsiveness to drought and can modify
latitudinal patterns of drought sensitivity. Recent studies
have pointed out that discrepancies between micro and
macroclimate conditions, interactions between ecological
factors, species interactions and genetic adaptations can
play an important role in driving growth response to
drought, despite biogeographical differences being import-
ant (Vilà-Cabrera et al. 2019). The lack of reliable infor-
mation on local conditions only allows us to speculate on
the factors that make intermediate and northern popula-
tions less vulnerable to drought than southern populations
in some cases. Solving this question will require a more
holistic approach to understand the interactions between
geographical, ecological and historical factors. Overall, the
presented results enlighten that rear-edge populations are,
most of the times, reliable monitors of the long-term re-
sponse of drought-sensitive tree species to climate change
and show that most tree populations are more vulnerable
to drought southwards.

The six studied species are widely distributed in
Europe, excepting the mountain pine (P. uncinata), and
find their southwestern distribution limit in Spain.
However, as occurs with the geographical and climatic
extents of their distribution ranges (Figs. 1 and 2), the
drought sensitivity of each species varies notably (Fig. 6).
In the mountain pine we found that its growth in the re-
gion is controlled by late-spring and early-summer tem-
peratures (Fig. 4a), in line with previous studies (e.g.,
Camarero et al. 1998; Tardif et al. 2003), but we also
found a low drought susceptibility in the rear edge
which could be explained by ontogenic or genetic differ-
ences (Galván et al. 2014; González-Díaz et al. 2020).
This contrast with what was found for Scots pine, a
widely distributed drought-sensitive species (Dorado-
Liñán et al. 2019; Bose et al. 2020). Despite growth posi-
tively responded to summer precipitation and negatively
to summer temperature in all studied Scots pine sites,
the response occurred earlier (in the case of temperature)
and was more intense in the southern site. In this site, an

Fig. 6 Correlations between mean site series of ring-width indices and the SPEI drought index calculated at 1- to 48-month temporal resolution
(x axes) and from January to December (y axes). Northern, intermediate and southern populations are represented for the six species (a, Pinus
uncinata; b, Abies alba; c, Fagus sylvatica; d, Pinus sylvestris; e, Quercus robur; f, Quercus petraea). The colour scale shows the Pearson correlations
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acute dieback episode started after the severe 2012
drought and resulted in the death of many Scots pine trees
(Camarero et al. 2015; Gazol et al. 2018). The significantly
lower growth rates and the larger vulnerability of tree
populations to drought and warmer conditions in this re-
gion as compared to other populations, together with the
observed lack of recruitment of Scots pine, point towards
major compositional changes and the replacement of that
species by more drought-tolerant oak and juniper species
(Gazol et al. 2018).
Our results also highlighted the drought sensitivity of

European beech in line with previous research (Serra-
Maluquer et al. 2019; Vitasse et al. 2019; Wilmking et al.
2020). Both, Scots pine and European beech have been
recognized as drought-sensitive species in terms of
growth loss (Dorado-Liñán et al. 2019) despite their
marked differences in functional traits including stoma-
tal control in response to drought (Klein 2014). Scots
pine is a species with a tight stomata regulation (Klein
2014), and thus very vulnerable to early summer

droughts, which is corroborated in our study by the earl-
ier sensitivity of growth to precipitation and SPEI in the
southern site (Figs. 4 and 6). It has been found that the
stomatal control over water loss and the leaf area /
sapwood area ratio change along gradients of dryness in
Scots pine (Martínez-Vilalta et al. 2009), which can also
explain the lower growth rates found in the southern
site. The sensitivity of European beech to drought in-
creased also notably in the southern site, but no clear
changes in temperature-growth couplings were found in
this species (Fig. 4). European beech presents large
geographical differences in drought-response across its
distribution area since southern populations are located
in mountain areas, which allow mitigating Mediterranean
drought stress, and present local adaptations related to
leaf phenology (Peaucelle et al. 2019; Vilà-Cabrera et al.
2019; Wilmking et al. 2020; Leuschner 2020). However,
we found that the growth rates were lower and the vulner-
ability of European beech growth to drought was stronger
in the southern as compared to the other two populations

Fig. 7 Moving window correlations calculated by relating mean site series of ring-width indices and the July SPEI drought index at 1-, 3-, 6-, 9-,
12-, 15-, 18-, and 21-month temporal resolutions (y axes). Moving correlations were obtained for 30-year intervals shifted by 1 year and the
middle year of the interval is shown in x axes for each species (a, Pinus uncinata; b, Abies alba; c, Fagus sylvatica; d, Pinus sylvestris; e, Quercus
robur; f, Quercus petraea). The colour scale shows the Pearson correlation coefficients
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(Fig. 6), suggesting that the tightest responses to drought
occur in the driest site (Fig. 2), and pointing to the import-
ance of geographical differences in climate as drivers of
European beech growth (Dorado-Liñán et al. 2019).
Special attention should be paid to silver fir, a species

that has been found to be resistant and resilient to
spring droughts (Vitasse et al. 2019), but that has
showed drought-induced dieback in some Spanish Pyr-
enean populations over the last decades (e.g., Camarero
et al. 2011; Gazol et al. 2015, 2020). The large difference
in growth rates found between the northern and the
other two populations can be explained by the mature-
ness of the old-growth Gamueta site (Molina-Valero
et al. 2021). Thus, site conditions modulated growth
rates but not the vulnerability to drought, which in-
creased in the southern sites. Silver fir displayed larger
sensitivity of tree growth to drought in the southern site,
in line with the observed vulnerability of the species to
drought in the Pyrenees (Camarero et al. 2011). In cen-
tral Europe, silver fir is one of the most productive tree
species (Vitasse et al. 2019). However, this contrasts with
the observed growth reductions and loss of vitality ob-
served in some Pyrenean sites (Gazol et al. 2015). In this
region, low-altitude forests are suffering exacerbated
growth sensitivity to drought and warmer conditions in
comparison with other colder sites located at higher ele-
vations. The prevalence of the species in rear-edge sites
is extremely contingent on sufficient precipitation during
the summer months (Fig. 4), but also on the existence of
a positive water balance in the year before tree-ring for-
mation (Fig. 6) which depends on summer temperatures
(Vicente-Serrano et al. 2015). Over the last decades, the
dependency of silver fir growth on summer temperature
has increased (Fig. 5) suggesting that the occurrence of
hotter summers as a consequence of climate change may
negatively impact the species rear-edge (Sánchez-Salguero
et al. 2017). We cannot obviate the fact that Iberian popu-
lations of silver fir are genetically differentiated from core
populations situated in Central Europe (Gazol et al. 2015).
Pedunculate oak (Q. robur) showed no clear re-

sponses to drought at the rear edge as it can be ex-
pected for this drought-tolerant species (Vitasse et al.
2019). Climate-growth correlations showed that
growth depended on wet conditions during the grow-
ing season, with a negative signal of March tempera-
tures in the southern site. This signal can be due to a
shift in the use of stored carbohydrates allowing an
earlier expenditure and reducing its availability to
produce new leaves and earlywood vessels, thus de-
creasing hydraulic conductivity (Alla and Camarero
2012). The response of pedunculate oak growth to
precipitation during summer (Fig. 4) is in line with
the response of the species to drought in nearby sites
(Rozas 2001; Granda et al. 2017).

The response of pedunculate oak to drought contrasts
with the response of sessile oak (Q. petraea) that showed
a marked reaction of growth to temperature, precipita-
tion, and drought (Figs. 4, 5 and 6), particularly in the
intermediate site. Wet-warm prior winter and cool-wet
spring-summer conditions improved its growth in the
drought-sensitive, intermediate site. This represents the
only example in which we found a greater vulnerability
of tree growth to drought in a site different from the
geographical rear edge (i.e., southernmost site). Previous
studies have found that site-specific conditions can alter
broad biogeographical patterns resulting in mismatches
between the geographical and the ecological rear edges
for oak forests (Pérez-Luque et al. 2020). In this respect,
the rear-edge population (Valdemeca) is located at a
relatively high elevation (Table 1) which can milder cli-
mate conditions thus reducing negative drought impacts
(Herrero et al. 2013). Further, it is a mixed forest, com-
posed of scattered stands with Scots pine, which could
reduce the evaporative demand of oak canopies thus
modulating the sensitivity of trees to drought (Rubio-
Cuadrado et al. 2020). In other words, altitudinal changes
decouple micro- from the macroclimate conditions thus
modulating the vulnerability of tree growth to drought.
Finally, the distributions of many tree species are out

of equilibrium with climate at their range margins
(Talluto et al. 2007). The high longevity and limited dis-
persal ability of trees explain their extinction debts near
the warmer, equatorward margins of their distribution
ranges. Thus, rear-edge tree populations could persist
under unsuitable climate conditions despite of increasing
climate-distribution disequilibrium (Svenning and Sandel
2013). We show that tree-ring data are suitable monitors
of rapid forest responses to climate and drought and could
complement other variables (e.g., recruitment and mortal-
ity rates). Since tree species rear edges are predicted to
experience contraction in response to climate warming
(Talluto et al. 2007), conservation and management
strategies could use retrospective growth assessments to
quantify how trees respond to climate warming and in-
creasing drought stress. This would be a first step towards
accounting for lags between climate change, tree perform-
ance and distribution shifts.

Conclusions
Our findings demonstrate that the growth of major
European tree species is constrained by drought in the
rear edge, but genetic adaptations, ecological interactions
and discrepancies between micro- and macroclimate condi-
tions can alter the expected increase in aridity as we move
southwards. We studied representative Pinaceae and
Fagaceae species and found that they presented greater
growth sensitivity to drought in southern than intermediate
or northern sites within the rear edge. This was the case of
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Scots pine, European beech and silver fir. Given the great
sensitivity to drought of some of the tree species studied in
the rear-edge of their distribution and the expected increase
in aridity as climate keeps warming, monitoring and con-
serving such populations is a fundamental tool to under-
stand their resilience capacity. Dendrochronology provides
tools to identify vulnerable populations based on their
long-term responsiveness to drought. However, deciphering
whether increased drought responsiveness results in en-
hanced forest vulnerability, including increased dieback and
tree mortality rate, requires a more holistic approach. We
combined dendrochronology with biogeography, but we
lacked reliable information on the historical and ecological
characteristics of each site allowing us to draw strong
conclusions on why some intermediate or northern sites
are equally or even more vulnerable to drought than their
southern counterparts. Further studies will be improved by
a better characterization of each site in terms of local fea-
tures and potential genetic adaptations.
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Pinus uncinata; b, Abies alba; c, Fagus sylvatica; d, Pinus sylvestris; e, Quer-
cus robur; f, Quercus petraea) studied in the northern (blue lines), inter-
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width indices of north, intermediate and south tree populations and
monthly temperature data from previous September to September in the
year of tree-ring formation. Previous and current months are abbreviated
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obtained for 30-year intervals shifted by one year and the middle year of
the interval is shown in x axes for each species (a, Pinus uncinata; b, Abies
alba; c, Fagus sylvatica; d, Pinus sylvestris; e, Quercus robur; f, Quercus pet-
raea). The colour scale shows the significance (p < 0.05) of the Pearson
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positive values). Figure S5. Significance of the moving window correla-
tions calculated between mean site series of ring-width indices of north,
intermediate and south tree populations and monthly precipitation data
from previous September to September in the year of tree-ring forma-
tion. Moving correlations were obtained for 30-year intervals shifted by
one year and the middle year of the interval is shown in x axes for each
species (a, Pinus uncinata; b, Abies alba; c, Fagus sylvatica; d, Pinus sylves-
tris; e, Quercus robur; f, Quercus petraea). The colour scale shows the sig-
nificance (p < 0.05) of the Pearson correlation coefficients (blue,
significant negative values; red, significant positive values). Figure S6.
Significance of the moving window correlations calculated between
mean site series of ring-width indices of north, intermediate and south
tree populations and the June SPEI drought index at 1-, 3-, 6-, 9-, 12-, 15-,
18-, and 21-month temporal resolutions (y axes). Moving correlations
were obtained for 30-year intervals shifted by one year and the middle
year of the interval is shown in x axes for each species (a, Pinus uncinata;

b, Abies alba; c, Fagus sylvatica; d, Pinus sylvestris; e, Quercus robur; f, Quer-
cus petraea). The colour scale shows the significance (p < 0.05) of the
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