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Abstract

Background: Robinia pseudoacacia is a widely planted pioneer tree species in reforestations on barren mountains
in northern China. Because of its nitrogen-fixing ability, it can play a positive role in soil and forest restoration. After clear-
cutting of planted stands, R. pseudoacacia stands become coppice plantations. The impacts of shifting from seedling to
coppice stands on soil bacterial community and soil properties have not been well described. This study aims to quantify
how soil properties and bacterial community composition vary between planted seedling versus coppice stands.

Methods: Nine 20m× 20m plots were randomly selected in seedling and coppice stands. The bulk soil and rhizosphere
soil were sampled in summer 2017. Bulk soil was sampled at 10 cm from the soil surface using a soil auger. Rhizosphere
soil samples were collected using a brush. The soil samples were transported to the laboratory for chemical analysis, and
bacterial community composition and diversity was obtained through DNA extraction, 16S rRNA gene amplification and
high-throughput sequencing.

Results: The results showed that, compared to seedling plantations, soil quality decreased significantly in coppice stands,
but without affecting soil exchangeable Mg2+ and K+. Total carbon (C) and nitrogen (N) were lower in the rhizosphere
than in bulk soil, whereas nutrient availability showed an opposite trend. The conversion from seedling to coppice
plantations was also related to significant differences in soil bacterial community structure and to the reduction of soil
bacterial α-diversity. Principal component analysis (PCA) showed that bacterial community composition was similar in
both bulk and rhizosphere soils in second-generation coppice plantations. Specially, the conversion from seedling to
coppice stands increased the relative abundance of Proteobacteria and Rhizobium, but reduced that of Actinobacteria,
which may result in a decline of soil nutrient availability. Mantel tests revealed that C, N, soil organic matter (SOM), nitrate
nitrogen (NO3

−-N) and available phosphorus positively correlated with bacterial community composition, while a variation
partition analysis (VPA) showed that NO3

−-N explained a relatively greater proportion of bacterial distribution (15.12%),
compared with C and SOM. Surprisingly, N showed no relationship with bacterial community composition, which may be
related to nitrogen transportation.
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Conclusions: The conversion from seedling to coppice stands reduced soil quality and led to spatial-temporal
homogenization of the soil bacterial community structure in both the rhizosphere and bulk soils. Such imbalance in
microbial structure can accelerate the decline of R. pseudoacacia. This may affect the role of R. pseudoacacia coppice
stands in soil and forest restoration of barren lands in mountain areas.

Keywords: Black locust coppice plantation, Forest restoration, Afforestation, Microbial structure, Soil nutrient, Soil quality

Background
Robinia pseudoacacia (Black locust) is a leguminous tree
which can rapidly fix nitrogen (N) from the atmosphere
via Rhizobium (Zhang et al. 2019) and further alter soil
properties by increasing mineral N (Medina-Villar et al.
2016). R. pseudoacacia is able to disperse quickly and
colonize a broad range of xeric habitats, including steep
rocks or toxic man-made substrata (Cierjacks et al.
2013), and has been extensively naturalized in the tem-
perate regions of North America, Europe, and Asia
(Sabo 2000; Lee et al. 2004; Vítková et al. 2017; Yang
et al. 2019). Natural reproduction of R. pseudoacacia
plantations is primarily vegetative through root sucker-
ing and stump sprouting, allowing vigorous regeneration
after coppicing and disturbance (Peng et al. 2003).
However, after two or three rotations, the productiv-
ity of R. pseudoacacia coppice plantations tends to
decline (Cierjacks et al. 2013), which may further
jeopardize its ecological role in soil and forest
restoration.
Plant community structure and productivity in natural

environments depend, among other factors, on soil
nutrient availability and soil microbial communities
(Reynolds and Haubensak 2009; Vitkova et al. 2015;
Liu et al., 2018a; Chen et al. 2020). Soil nutrient
availability can alter soil processes catalyzed by soil
microbial communities (Yang et al. 2016). Therefore,
changes in soil microbial community composition can
affect the plant community (Balota et al. 2013; Ma et al.
2018) and nutrient absorption by plants (Weidner et al.
2015; Zhang et al. 2018b). In turn, plants can directly and
indirectly influence soil microbial communities by the ef-
fect of root exudation and litters (Sasse et al. 2018). So
plant-soil feedback may play a key role in plant species co-
existence and phylogeny of plant community (Crawford
et al. 2019).
Rhizosphere is a critical interface supporting the ex-

change of resources between plants and the surrounding
soil environment, which provides microhabitats and
niches for diverse microorganisms and microbial species
(Philippot et al. 2013; Mendes et al. 2013). Rhizosphere
microorganisms play a key role in plant growth and soil
properties, especially in the rhizosphere niche (Philippot
et al. 2013; Zhang et al. 2018a), which influences several
plant physiological processes such as growth and energy

metabolism affecting overall plant health (Fonseca et al.
2018). Generally, there are significant differences be-
tween rhizosphere and bulk soil microenvironments, the
most obvious of which is that the higher nutrient con-
tent and root exudates in the rhizosphere contribute to
improving soil carbon and nitrogen concentrations (Yin
et al. 2018). Such differences may affect the composition
of the rhizosphere microbial community (Neumann
et al. 2014). Soil properties and their ecological processes
provide a scientific basis for understanding the inter-
action between root physiological activity and soil phys-
ical and biological environments. At the same time,
rhizosphere dynamics may be a key driver for under-
standing tree growth mechanisms.
Previous research has reported the high capacity of R.

pseudoacacia for nitrogen fixation (Buzhdygan et al.
2016), and higher N mineralization and nitrification
rates in R. pseudoacacia plantations compared to sur-
rounding soils (Williard et al. 2005). Moreover, the ex-
cess of N can accumulate in the soil (Berthold et al.
2009) by means of root exudates, contributing to in-
creasing soil fertility (Joëlle et al. 2010). The main nitro-
gen form uptaken by plants is inorganic nitrogen
including nitrate and ammonium. R. pseudoacacia bene-
fits from nitrogen fixation associated with symbiotic rhi-
zobia in root nodules (Cierjacks et al. 2013). The
reduction of soil N availability induces nodulation and
biological nitrogen fixing of R. pseudoacacia in order to
sustain the required nitrogen amounts for plant growth
(Mantovani et al. 2015). Therefore, both bacteria and N
play an important role in the growth and development
of R. pseudoacacia plantations.
With the development of R. pseudoacacia coppice

plantations through stand conversion, unexpected prob-
lems have arisen in Mount Tai (China) forest ecosys-
tems, including the decline of landscape quality, soil
erosion and plant dwarfing, in line with previous re-
search suggesting tree growth decline and trunk shape
worsening (Geng et al. 2013). However, to date, most
studies have attempted to investigate the effects of con-
version from natural forests to plantations on soil prop-
erties, soil microbes and their community structure
(Zhang et al. 2017; Yang et al. 2018). In consequence,
there is a gap in knowledge concerning the effects of the
conversion from seedling plantations to coppice stands.
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Radtke et al. (2013) showed that repeated clear-cuttings
every 20–30 years favored the spread of R. pseudoacacia.
Yet, the effects of shifting from seedling to coppice plan-
tations on soil properties and soil microbes are not yet
well understood, and information is scarce. We hypothe-
sized that (1) the changes caused by the conversion of
seedling to coppice stands lead to decline of soil quality,
and to alterations in soil bacterial community compos-
ition, (2) nutrient availability plays an important role in
shaping the bacterial community, and (3) the relative
abundance of Rhizobium decreases in coppice planta-
tions. The aims of this study were to (1) shed light on
the effects of shifting from seedling to coppice stands in
R. pseudoacacia plantations on soil properties and soil
bacterial community composition, especially on Rhizo-
bium, and (2) investigate the relationships between soil
properties and bacterial community composition in
seedling and coppice plantations, respectively.

Materials and Methods
Study area
This study was conducted in Mount Tai region of
Shandong Province, eastern China. The region is charac-
terized by a typical temperate climate. The mean annual
temperature is 12.8 °C, and the mean annual precipita-
tion is 1124.6 mm. In the 1920s, R. pseudoacacia was in-
troduced to Mount Tai because of its potential for soil
and forest restoration. Afforestation was mainly con-
ducted between 1956 and 1958 through seedling plant-
ing. However, with increasing timber demand for use in
construction, seedling plantations were gradually har-
vested leading to naturally-regenerated coppice stands.
As a result, nowadays, most R. pseudoacacia stands are
coppice plantations, mainly distributed along an altitud-
inal gradient from 500 to 1000m above sea level, and
southern aspects.
The study was performed in: i) a first-generation seed-

ling plantation stand (hereinafter referred to as “First”,
“F”, 36°16′45′′N, 117°3′26′′E), ii) a first-regeneration
coppice stand generated after clear-cutting of a seedling
stand (hereinafter referred to as “Second”, “S”, 36°16′40′
′N,117°03′21′′E) and iii) a second-generation coppice
stand generated after clear-cutting of a first-generation
coppice stand (hereinafter referred to as “Third”, “T”,
36°16′40′′N,117°3′22′′E) (Fig. S1). The understory
vegetation is mainly composed of Vitex negundo, Oplis-
menus undulatifolius, Digitaria sanguinali, Paspalum
thunbergii, Rubia cordifolia and Oxalis corniculate. The
three forest stands were close to each other as shown in
Fig. S1, and therefore represented homogeneous condi-
tions in terms of topography (i.e., slope 25° and south-
western aspect), previous land use (i.e., stands developed
from barren land) and initial soil characteristics and tax-
onomy (i.e., classified as Alfisols). Soil moisture was

about 10%. The microbial biomass of carbon in the three
stand development stages were 247, 200 and 190
mg·kg− 1, respectively, and those of nitrogen were 41, 28
and 25mg·kg− 1, respectively (unpublished data).

Sampling
Three 20 m × 20m plots were randomly selected in each
seedling and coppice stand (i.e., a total of nine plots).
The bulk soil and rhizosphere soil were sampled in the
nine above-mentioned sample plots in August 2017.
Bulk soil was sampled at 10 cm from the soil surface by
using a soil auger (length 50 cm, diameter 5 cm, volume
100 cm3). Rhizosphere soil samples were collected by
brush (5 samples per plot). The soil samples were trans-
ported on ice to the laboratory, where they were sieved
(mesh size 2 mm) and divided into two parts, one was
air-dried and stored at room temperature prior to chem-
ical analysis and the other was stored at − 80 °C for fur-
ther analysis. Hereafter in this manuscript, FR, SR and
TR refer to the rhizosphere of F, S and T, respectively;
and FNR, SNR and TNR refer to bulk soil of F, S and T,
respectively.

Analysis of soil physicochemical properties
Total soil carbon (C) and nitrogen (N) contents were
measured by dry combustion in an Elemental Analyzer
(Costech ECS4010, Italy). The soil nitrate (NO3

−-N) and
ammonium (NH4

+-N) were extracted by shaking 20 g of
fresh soil in 100 mL of 2 mol·L− 1 KCl solution for 1 h
and were analyzed with continuous flow analytical sys-
tem (AA3, German), available N (A.N) was a sum of
NO3

−-N and NH4
+-N, available P in the soil was mea-

sured using the colorimetric method with 0.5 mol·L− 1

NaHCO3 extraction, the total soil phosphorus (P) and
available P (A.P) were measured with a continuous flow
analytical system (AA3, German), and the soil organic
matter (SOM) was measured via the standard Mebius
method (Nelson and Sommers 1982). The exchangeable
cations (Ca2+, Mg2+ and K+) were measured using titra-
tion and atomic absorption spectroscopy (AAS, TAS-
990MFG, China). Soil moisture was determined using
the soil core method, and obtained by calculating the ra-
tio of soil mass to total volume (g·cm− 3) after oven-
drying to a constant weight at 105 °C (Zhang et al.
2019). To better describe changes in soil properties, soil
quality index (SQI) (Guo et al., 2019) was calculated.

SQI ¼
Xn

i¼1

WiY i

where W is the weighting factor for the indicator se-
lected and Y is the score. The final SQI can be used to
evaluate soil quality following vegetation restoration,
with a high SQI value indicating a high-quality soil.
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DNA extraction, 16S rRNA gene amplification, and high
throughput sequencing
Total genomic DNA from soil samples (0.5 g) was ex-
tracted using CTAB method. Bacterial 16S rRNA genes
of distinct regions (V4–V5) were amplified with the pri-
mer pair 515F (5′-GTGCCAGCMGCCGCGGTAA-3′)
and 907R (5′-CCGTCAATTCMTTTRAGTTT-3′) with
single multiplex identifier (MID) and adaptors (Jiao et al.
2018). The initial enzyme activation was performed at
95 °C for 5 min, and then 35 cycles of the following pro-
gram were used for amplification: 95 °C for 30 s, 58 °C
for 30 s and 72 °C for 30 s (Chen et al. 2017). All PCR re-
actions were carried out with Phusion® High-Fidelity
PCR Master Mix (New England Biolabs). The 16S rRNA
genes were analyzed to evaluate bacterial diversity using
IlluminaHiSeq (Novogene Bioinformatics Technology
Co., Ltd., Beijing, China).
Sequences were analyzed using QIIME software pack-

age (Quantitative Insights Into Microbial Ecology)
(Caporaso et al., 2010), and in-house Perl scripts were
used to analyse alpha- (within samples) diversities. The
low-quality sequences were filtered out using the follow-
ing criteria: sequences with a length of < 150 bp, average
Phred scores of < 20, containing ambiguous bases, and
containing mononucleotide repeats of > 8 bp (Ji et al.
2019). Following chimera detection, the remaining high-
quality sequences were clustered into operational taxo-
nomic units (OTUs) at 97% sequence identity using
UCLUST. A representative sequence was selected from
each OTU using default parameters. We picked a repre-
sentative sequence for each OTU and used the RDP
classifier to annotate taxonomic information for each
representative sequence (Wang et al. 2007).

Statistical analysis
Duncanʼs one-way ANOVA was conducted to examine
differences in soil characteristics, SQI and relative abun-
dance of Rhizobium between bulk and rhizosphere soils. A
T-test was conducted to examine differences in Shannon
and Simpson indices between bulk and rhizosphere soils.
These analyses were performed using SPSS 24.0 (IBM,
USA). Principal component analysis (PCA) was conducted
to test for differences in the OUT-based community com-
position using Bray-Curtis distance. The relationships be-
tween soil properties and dominant bacterial community
composition (TOP 10) were determined using Spearman
correlation analysis. Mantel-tests and variation partition
analysis (VPA) were used to determine the relative im-
portance of the measured soil properties in shaping soil
bacterial community, which were calculated using the
Bray-Curtis distance. These analyses were carried out
using the “vegan” package of R software (Version 2.15.3).
The graphics were drawn using Origin 2019.

Results
Impact of the conversion to coppice stands on soil quality
Soil nutrient contents diminished mostly from seedling
to coppice plantations (Table 1). Soil characteristics var-
ied considerably in both rhizosphere and bulk soil from
F stands to T stands. Total C, N and NO3

−-N concentra-
tion and SOM content in both the rhizosphere and bulk
soil was significantly higher in seedling stands compared
to first- and second-generation coppice stands. There
were significant differences in P concentration in the
rhizosphere and bulk soil. There was no statistically
significant difference in available phosphorous (A.P)
concentrations between FNR and SNR, but A. P concen-
tration was significantly greater in FNR and SNR com-
pared to TNR. No differences were found regarding
exchangeable ions in bulk soil between seedling and
coppice plantation, while significantly higher concentra-
tions appeared in the rhizosphere of coppice plantations
compared to seedling stands. The SQI of both bulk soil
and rhizosphere was higher in seedling plantations than
in coppice stands, i.e., the highest SQI value (29.14) was
found in the rhizosphere of seedling stands whereas the
lowest SQI (24.33) was found in the bulk soil of second-
generation coppice stands.

Differences in soil bacterial abundance and diversity
In total, 2,562,381 sequences and 2,358,270 combined
sequences were obtained. The read lengths ranged from
211 to 407 base pairs (bp), with an average of 373 bp.
When grouped at the 97% similarity level, there were 42
different phylotypes in all soils. The dominant groups
(TOP 10) across all soil samples (Fig. 1a) were Proteo-
bacteria (30.54%), Actinobacteria (25.30%), Acidobac-
teria (13.94%), Firmicutes (7.19%), Verrucomicrobia
(6.86%), Planctomycetes (5.22%), Chloroflexi (3.87%),
Gemmatimonadetes (2.37%), Bacteroidetes (1.14%), and
Cyanobacteria (0.40%), and these groups accounted for
more than 96.43% of the bacterial sequences. Moreover,
the Shannon and Simpson indices for alpha bacterial di-
versity declined from seedling to coppice plantations
and from first-rotation to second-rotation coppice plan-
tations by 2% and 0.2%, respectively (Table 2).
At the genus level (Fig. 1b), the six most abundant

bacteria (≥1%) were Bacillus (4.22%), Bradyrhizobium
(2.82%), Acidothermus (1.88%), Bryobacter (1.44%), Bur-
kholderia-Paraburkholderia (2.00%) and Streptomyces
(1.41%). The relative abundances of Bacillus and Bur-
kholderia-Paraburkholderia in the rhizosphere were
lower than that of bulk soil in seedling plantations, but
the opposite trend was found in coppice plantations. In
addition, the relative abundance of other bacteria in the
rhizosphere was higher than that of bulk soil in seedling
and coppice plantations.
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Relative abundance of rhizobium in seedling and coppice
plantations
The relative abundance of Rhizobium in both bulk soil
and rhizosphere in second-generation coppice stands
was significantly higher than in seedling and first-
generation coppice stands. The relative abundance of
Rhizobium was the highest in the rhizosphere of T
stands (0.32%), while the lowest was found in the bulk
soil of seedling (F) stands (0.11%). Moreover, the

difference in Rhizobium abundance between rhizosphere
soil and bulk soil was significant in seedling plantations
(p = 0.002), while there was no difference in coppice
plantations (Fig. 2).

Bacterial community composition in seedling and coppice
plantations
The results showed five replicates usually clustered
closely (Fig. 3). The first and second PCA axes revealed

Table 1 Bulk soil and rhizosphere soil properties (mean ± standard error) of the three types of Robinia pseudoacacia stands following
forest conversion from seedling to coppice stands

Rhizosphere Bulk soil

FR SR TR FNR SNR TNR

N (%) 0.38 ± 0.03a 0.32 ± 0.01b 0.33 ± 0.01b 0.43 ± 0.02a 0.32 ± 0.01c 0.36 ± 0.02b

C (%) 3.80 ± 0.27a 3.31 ± 0.14b 3.50 ± 0.15b 4.56 ± 0.16a 3.33 ± 0.16c 3.77 ± 0.30b

P (%) 1.58 ± 0.13b 1.88 ± 0.05a 1.63 ± 0.08b 1.66 ± 0.05a 0.93 ± 0.03b 0.85 ± 0.02c

C/N 10.14 ± 0.18b 10.22 ± 0.31b 10.57 ± 0.22a 10.52 ± 0.26a 10.35 ± 0.47a 10.51 ± 0.17a

C/P 2.31 ± 0.30a 1.76 ± 0.11c 2.15 ± 0.18b 2.75 ± 0.10c 3.59 ± 0.24b 4.43 ± 0.28a

N/P 0.24 ± 0.03a 0.17 ± 0.01c 0.20 ± 0.01b 0.26 ± 0.01c 0.35 ± 0.03b 0.42 ± 0.02a

NO3
−-N (mg·kg− 1) 69.06 ± 1.53a 63.29 ± 1.63b 59.50 ± 1.84c 67.20 ± 2.99a 60.52 ± 1.39b 60.71 ± 2.14b

NH4
+-N (mg·kg− 1) 58.60 ± 1.24a 58.81 ± 1.62a 55.20 ± 2.42b 45.99 ± 4.02b 54.25 ± 0.43a 39.41 ± 1.48c

A.N (mg·kg− 1) 127.66 ± 2.27a 122.10 ± 2.95a 114.70 ± 4.10b 113.19 ± 4.19a 114.77 ± 1.36b 100.12 ± 2.87c

A.P (mg·kg− 1) 16.93 ± 1.26a 11.18 ± 0.9b 8.35 ± 0.98c 14.41 ± 0.91a 14.24 ± 1.08a 9.60 ± 1.27b

SOM (g·kg− 1) 64.91 ± 0.92a 62.84 ± 1.29b 50.73 ± 1.05c 61.93 ± 1.78a 51.69 ± 0.58b 46.70 ± 1.47c

Exchangeable Ca (cmol·kg− 1) 48.74 ± 9.48b 44.63 ± 11.21b 65.83 ± 12.46a 61.78 ± 13.15a 51.01 ± 7.96a 65.26 ± 11.27a

Exchangeable Mg (cmol·kg− 1) 12.09 ± 1.60b 12.01 ± 1.17ab 13.17 ± 0.75a 11.68 ± 0.93a 12.66 ± 0.78a 13.07 ± 0.74a

Exchangeable K (cmol·kg− 1) 0.71 ± 0.05ab 0.70 ± 0.03b 0.76 ± 0.05a 0.72 ± 0.05a 0.86 ± 0.28a 0.72 ± 0.07a

Soil moisture (%) 7.66 ± 0.61b 13.28 ± 0.52a 13.95 ± 0.60a

Soil quality index 29.14 ± 0.36a 27.42 ± 0.33b 26.72 ± 0.64b 27.59 ± 0.29a 26.14 ± 0.29b 24.33 ± 0.97b

Mean values ±SE (n = 5) are shown. FR, SR and TR represent the rhizosphere of seedling plantations, first generation coppice plantations and second generation
coppice plantations, respectively; FNR, SNR and TNR represent bulk soil of seedling plantations, first generation coppice stands and second generation coppice
stands, respectively. N nitrogen, C carbon, P phosphorus, C/N carbon and nitrogen ratio, C/P carbon and phosphorus ratios, N/P nitrogen and phosphorus ratios,
NO3

−-N nitrate nitrogen, NH4
+-N ammonium nitrogen, A. N available nitrogen, A. P available phosphorus, SOM soil organic carbon. Different lowercase letters

indicate significant differences in soil properties among the bulk soil or rhizosphere in different R. pseudoacacia plantations (p < 0.05)

Fig. 1 Relative abundance of the dominant bacteria phylum and genus among the soil bacterial phyla via sequencing of 16S rRNA gene
amplicons in bulk soil and rhizosphere of different stands

Li et al. Forest Ecosystems            (2021) 8:19 Page 5 of 12



that the rhizosphere- and bulk soil-associated bacterial
microbiota were inhomogeneous at phylum (12.77% and
8.23%, respectively; Fig. 3a) and genus (17.21% and
13.16%, respectively; Fig. 3b) levels. The soil layer and
plantation type rendered a significant effect on bacterial
community composition. The similarities in bacterial
community composition within rhizosphere and bulk
soil were lower in seedling plantations than in coppice
plantations (Fig. 3).
We found that C, N, SOM, NO3

−-N and A. P were
positively correlated with bacterial community compos-
ition by Mantel tests at both phylum and genus levels
(Table 3). Spearman correlation analysis of the relation-
ships between soil properties and bacterial community
at the phylum (Fig. 4a) and genus levels (Fig. 4b) also
confirmed the positive correlation between bacterial
communities and nutrient concentrations. At the
phylum level, SOM, NO3

−-N, and A. P were significantly
and negatively correlated with Proteobacteria (r = − 0.66,
p = 0.000; r = − 0.62, p = 0.000 and r = − 0.73, p = 0.000,
respectively), and were significantly and positively corre-
lated with Actinobacteria (r = 0.71, p = 0.000; r = 0.64,
p = 0.000 and r = 0.59, p = 0.001, respectively), but there
was no significant correlation with Acidobacteria. At the
genus level, Acidothermus, Bryobacter and Mizugakiibac-
ter were significantly and positively correlated with
SOM, NO3

−-N, and A. P (r = 0.65, 0.62 and 0.68; p =
0.000, p = 0.000 and p = 0.000, respectively). Bacterial

taxa were also more correlated with soil nutrient con-
centrations at the genus level than at the phylum level.
N, C, SOM and NO3

−-N, the most significant factors
for bacterial community composition according to the
Mantel test results (p < 0.001, at the phylum and genus
levels), were selected for variance partitioning canonical
correspondence analysis (VPA), to quantify the relative
contributions of soil properties to bacterial community
structure. The soil properties explained 75.46% of the
observed variation, leaving 24.54% of the variation unex-
plained. Among them, C, N, SOM and NO3

−-N ex-
plained 9.28%, 0.00%, 3.52% and 15.12%, respectively.
Thus, NO3

−-N, but not N, was the most important fac-
tor in shaping the bacterial community structure
(Fig. 5).

Discussion
Conversion from seedling to coppice stands reduced soil
quality
Forest conversion has a great impact on plant and soil
characteristics, altering soil bacterial community struc-
ture, soil nutrients and plant diversity and composition
(Wang et al., 2011; Zhao et al. 2019). Previous studies
have shown that R. pseudoacacia may induce significant
changes on several physical and chemical properties of
the soil (Khan et al. 2010; Liu et al. 2018b; Du et al.
2019). In R. pseudoacacia coppice stands, intra-specific
competition increases because of the high stem density,
which may result in differences in microclimatic and
ecological conditions as compared to seedling stands. In
this regard, our results provide incremental knowledge
to previous research by further showing that the conver-
sion from seedling to coppice stands reduced soil quality
(Table 1), consistently with the findings of Johnson and
Curtis, 2001) and Luo (2006). Therefore, it supports our
first hypothesis inasmuch as R. pseudoacacia is a N2-fix-
ing species with a strong nitrogen fixation ability. How-
ever, our results showed that soil N (N, NO3

−-N and
A.N) concentrations declined in coppice stands. It pos-
sibly indicates that the nitrogen fixation ability of R.
pseudoacacia coppice decreased to a certain extent, and
the N mineralization rate was significantly lower com-
pared to seedling (F) stands (unpublished data). The
main reason may be that the conversion decreased the
net primary production and aboveground biomass and
productivity (Liao et al. 2012). Specially, the coppice
stands had lower stand productivity than the stand

Table 2 Differences in bacterial α-diversity in the rhizosphere and bulk soil between seedling and coppice R. pseudoacacia
plantations

FR SR TR FNR SNR TNR

Shannon 9.2205 ± 0.0473a 9.1055 ± 0.0119bc 9.1803 ± 0.0155ab 9.2186 ± 0.0482a 9.0159 ± 0.0329c 9.0336 ± 0.0339c

Simpson 0.9954 ± 0.0001a 0.9949 ± 0.0001ab 0.9945 ± 0.0002b 0.9954 ± 0.0003a 0.9945 ± 0.0002b 0.9934 ± 0.0004c

b

b

a

c

b

a

FR SR TR FNR SNR TNR
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

R
el
at
iv
e
ab
un

da
nc
e

FR vs FNR, p=0.002

SR vs SNR, p=0.116

TR vs TNR, p=0.323

Fig. 2 Differences in the relative abundance of Rhizobium between
the rhizosphere and bulk soil seedling and coppice stands. α = 0.05
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developed from seedlings (Fig. S2), which could contrib-
ute to modifying soil structure and lead to less inputs
and more losses of soil nutrients (Zheng et al. 2005), fi-
nally affecting the absorption of N by trees (Zhang et al.
2018b). Additionally, we found that the greater soil
moisture content occurred in coppice plantations
(13.95%), which might reduce root and microbial activity
(Banerjee et al. 2016), then reduce the soil total N con-
centration, N storage, N cycling and availability (Wang
et al. 2010).

Due to root exudations, microbiota activity, and plant
absorption, which may lead to the accumulation of nu-
trients in the rhizosphere, the micro-environments be-
tween the rhizosphere and bulk soil may differ markedly
(Philippot et al. 2013). Our results showed that N and C
contents in bulk soil were higher than those in the
rhizosphere, but the concentrations of other nutrients
(e.g. SOM, NO3

−-N and A.P) were lower in the bulk soil
than in the rhizosphere (Table 1). These results are con-
sistent with previous research (Chaudhary et al. 2015).
One possible main reason is that plant roots directly up-
take less available nutrients and reduce carbon loss in
the rhizosphere (Jones et al. 2009), and they could also
adapt to changes in soil nutrient availability through the
elastic distribution of underground roots (Bardgett et al.
2014). The consumption of N for tree growth, the strong
physiological metabolism function of root system and
the activity of rhizosphere microorganisms drive the
transformation of N to A. N, and this may be the reason
why we found that rhizosphere soil had lower N content
and higher A. N content (Table 1).

Conversion from seedling to coppice stands altered the
structure of bacterial communities
Changes in forest community types can affect soil mi-
crobial structure (Cardenas et al. 2015) and α-diversity
(Vitali et al. 2016). Our results showed that Shannon
and Simpson indices declined from seedling to coppice
stands (Table 2). These shifts can be accompanied by
changes in bacterial functional activity (Kaiser et al.
2014), contributing to one of the reported changes of
soil nutrients (Zhao et al. 2018). Previous research

Fig. 3 Principal Component Analysis (PCA) (Bray-Curtis distance) among bulk soil and rhizosphere bacterial communities at phylum a and genus
b level. Red and green represent the bacterial community of bulk soil and rhizosphere in seedling plantations (F); blue and cyan represent the
bacterial community of bulk soil and rhizosphere in first-generation coppice stands (S); pink and yellow represent the bacterial community of
bulk soil and rhizosphere in second-generation coppice stands (T)

Table 3 Mantel-test between bacteria phylum and genus and
soil properties

Soil properties Phylum Genus

r p r p

N 0.495 0.001 0.505 0.001

C 0.4433 0.001 0.4419 0.001

P 0.08502 0.07 0.04408 0.236

C/N 0.008762 0.499 0.04093 0.665

C/P 0.1329 0.046 0.09815 0.106

N/P 0.1254 0.044 0.09049 0.13

SOM 0.4002 0.001 0.3239 0.001

NO3
−-N 0.5758 0.001 0.5383 0.001

NH4
+-N 0.2009 0.016 0.1892 0.017

A.N 0.2144 0.007 0.2028 0.015

A.P 0.4528 0.001 0.4239 0.001

Exchangeable Ca 0.03213 0.308 0.04071 0.285

Exchangeable Mg 0.1988 0.017 0.187 0.033

Exchangeable K 0.06525 0.767 0.07211 0.764
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(Shi et al. 2016) found that rhizosphere microbes dis-
played higher levels of interactions than bulk soil mi-
crobes. However, we found that the bacterial
community structures of bulk soil and rhizosphere
were not significantly different in coppice plantations
(Fig. 3), which supports the hypothesis that the bac-
terial community structures of rhizosphere soil and
bulk soil tend to be homogeneous. One possible ex-
planation is the higher moisture content in coppice
stands, which could better meet the needs of the mi-
crobial community (Cui et al. 2019). Another comple-
mentary possible reason may be that root activity was
weaker in coppice stands due to their lower product-
ivity (Table S2). Thus, both soil environment and root

activity may be responsible for the consistency of the
bacterial community composition between the rhizo-
sphere and bulk soil in coppice plantations.
At the phylum level, the three most abundant bacteria

in both rhizosphere and bulk soil samples were Proteo-
bacteria, Actinobacteria and Acidobacteria, in accord-
ance with the findings of Fonseca et al. (2018). The
relative abundance of Actinobacteria and Verrucomocro-
bia decreased from F to T stands, while Proteobacteria
showed an opposite trend (Fig. 1a). A possible explan-
ation for this result is that the Proteobacteria are gener-
ally fast-growing r-strategists with the ability to use a
wide range of root-derived carbon substrates (Philippot
et al. 2013). Thus, the decline in soil quality would drive

Fig. 4 Spearman correlation matrix between soil physicochemical characteristics and bacterial communities at phylum level a and genus level b.
N: soil nitrogen content, C: soil carbon content, P: soil phosphorus content, NO3

−-N: soil nitrate content, NH4
+-N: soil ammonium content, A.N:

available nitrogen content, A.P: available phosphorus content, Ca: soil exchangeable calcium content, Mg: soil exchangeable magnesium content,
K: soil exchangeable potassium, SOM: soil organic matter. *P < 0.05, ** P < 0.01

Fig. 5 Variance partition analysis (VPA) of the effects of soil properties on the bacterial community structure. Soil properties include C, N, SOM
and NO3

−-N and interaction among them. “Others” include other soil properties, such as P, NH4
+-N, Ca and so on
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Proteobacteria to acquire more abundant carbon sources
to sustain growth, but the underlying mechanisms need
to be further explored. The main function of Actinobac-
teria is to absorb nutrients and excrete metabolic prod-
ucts, which results in the decline of soil quality (Wang
et al., 2007). At the genus level, the relative abundance
of Bacillus and Bradyrhizobium increased from F to T
stands, while Acidothermus and Bryobacter showed an
opposite trend (Fig. 1b). Therefore, the proportion of
dominant species changed, resulting in bacterial com-
munity composition homogeneity of bulk soil and rhizo-
sphere in coppice stands. Such a homogenization in
community composition is predicted to alter ecosystem
function and reduce ecosystem resilience to disturbance
(Olden et al. 2004) and result in a net loss of diversity
(Rodrigues et al. 2013).

Conversion from seedling to coppice stands increased the
relative abundance of rhizobium
R. pseudoacacia can increase the availability of soil inor-
ganic N, presumably because of Robiniaʼs ability to fix
N2 by association with Rhizobium (Zhang et al. 2019),
which is the main source of nitrogen in Robinia stands
(Papaioannou et al. 2016). Our results showed that the
relative abundance of Rhizobium increased from seedling
to coppice stands, which was against our third hypoth-
esis. The reason may be that most of the Rhizobium bac-
teria are free-living individuals in the soil, resulting in
the decrease of the symbiotic fixation of atmospheric N
within the root nodules of legume hosts (Joëlle et al.
2010; Wang et al. 2018b). Another plausible reason may
be that the biological nitrogen fixation requires an ex-
penditure of more C and P (Liu and Deng 1991; Tye and
Drake 2011). Deficit of C and P in R. pseudoacacia
stands would decrease and, finally, inhibit symbiotic fix-
ation of atmospheric nitrogen. In the meantime, some
study has reported that soil nitrogen-fixing bacterial
communities can increase the level of soil available N via
biological N-fixation (Wang et al. 2018a), while our re-
sults showed an opposite trend. This may be related to
the decline of soil C and N or to the reduced amount of
litter biomass (Cao et al. 2018).

Relationships between bacterial community and soil
properties
Soil bacterial communities are strongly influenced by
abiotic controls (Thoms and Gleixner 2013), such as
total organic carbon (TOC), total nitrogen (TN) (Zhou
et al. 2012; Lazzaro et al. 2017). And, vice versa, shifts in
microbial communities can affect multiple environmen-
tal factors (Fonseca et al. 2018), including potential
negative impacts on soil health and plant nutrient acqui-
sition. Therefore, environmental conditions mainly affect
the diversity of bacterial communities by changing the

physical and chemical properties of the soil (Zhang et al.
2018b). In this study, we found that bacterial communi-
ties in both the rhizosphere and bulk soil were strongly
influenced by soil C, N, SOM, A. P and NO3

−-N (Table
2, Figs. 4 and 5), which supports our second hypothesis,
i.e., that nutrient availability plays an important role in
shaping bacterial community. C and N contents exhib-
ited a strong significantly positive correlation with Bac-
teroidetes, and a negative correlation with Proteobacteria
and Firmicutes, whereas no correlation with Actinobac-
teria and Acidobacteria (Fig. 4), which was consistent
with the results reported by Fierer (2007) and Zhao
(2018). Proteobacteria are considered to be rhizospheric-
plant-promoting bacteria that can influence C accumula-
tion (Ren et al. 2016), and have a significantly positive
effect on C fractions. However, our results showed an
opposite trend. The reason may be that Bacteroidetes
can influence the rate of C mineralization and fix atmos-
pheric nitrogen in symbiosis (Fierer et al. 2007).
Soil bacterial community can increase soil NO3

−-N
content (Zhang et al. 2015; Lazzaro et al. 2017). The
conversion from seedling to coppice stands altered the
structure of the soil bacterial community and decreased
soil resource availability (Zhang et al. 2017), which also
partly supports the hypothesis that nutrient availability
plays an important role in shaping the bacterial commu-
nity. In this study, we found that bacterial communities
in both the rhizosphere and bulk soil were strongly in-
fluenced by soil NO3

−-N (Fig. 5), similarly to the results
of Liu et al. (2018a). NO3

−-N may play an important role
in shaping bacterial communities in R. pseudoacacia
plantations. Nitrogen in soil can be decomposed by bac-
teria to promote N absorption by trees. All N transform-
ation and uptake processes are correlated with soil
carbon resources and regulated by soil microbes (Geisse-
ler et al. 2010). Our results showed that C and NO3

−-N
contents in the coppice stands were lower than those in
seedling plantations, leading to inhibition of microbial
activity.

Conclusions
Our research revealed three important findings for
assessing the impacts on soil habitat arising from the
conversion of R. pseudoacacia seedling plantations to
coppice stands. First, we found that this conversion can
negatively affect soil properties such as total carbon,
total nitrogen, nitrate and soil organic matter, and the
conversion could also alter soil bacterial community
composition. Second, we found that NO3

−-N is the most
important factor in shaping soil bacterial structure in
this ecosystem. Additionally, the stand conversion in-
creased the relative abundance of Rhizobium, while the
soil N and available N decreased, suggesting that the ac-
tivity of Rhizobium was restricted. Finally, we found
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higher homogeneity of the bacterial community compos-
ition in bulk soil and rhizosphere in coppice stands due
to the higher moisture content and weaker root activity
in coppice stands.
In conclusion, we confirmed the hypotheses that (1)

the changes caused by the conversion of seedling to cop-
pice stands can lead to decline in soil quality, and to al-
terations in soil bacterial community composition, and
(2) nutrient availability, in particular NO3

−-N, plays an
important role in shaping the bacterial community.
Nevertheless, we did not find evidence supporting the
hypothesis (3) that the relative abundance of Rhizobium
decreases in coppice plantations. Further research on N
cycling including N mineralization, nitrification, anaer-
obic ammonium oxidation, denitrification and nitrogen
fixation, as well as understory cover changes resulting
from stand conversion from seedling to coppice stands
can help to better assess this phenomenon.
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