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Abstract

Understanding the relationship between stand-level tree diversity and productivity has the potential to inform the
science and management of forests. History shows that plant diversity-productivity relationships are challenging to
interpret—and this remains true for the study of forests using non-experimental field data. Here we highlight
pitfalls regarding the analyses and interpretation of such studies. We examine three themes: 1) the nature and
measurement of ecological productivity and related values; 2) the role of stand history and disturbance in
explaining forest characteristics; and 3) the interpretation of any relationship. We show that volume production and
true productivity are distinct, and neither is a demonstrated proxy for economic values. Many stand characteristics,
including diversity, volume growth and productivity, vary intrinsically with succession and stand history. We should
be characterising these relationships rather than ignoring or eliminating them. Failure to do so may lead to
misleading conclusions. To illustrate, we examine the study which prompted our concerns —Liang et al. (Science
354:aaf8957, 2016)— which developed a sophisticated global analysis to infer a worldwide positive effect of
biodiversity (tree species richness) on “forest productivity” (stand level wood volume production). Existing data
should be able to address many of our concerns. Critical evaluations will improve understanding.
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Background
An understanding of the relationships between plant di-
versity and vegetation productivity offers insight into
plant communities and the goods and services they pro-
vide (Darwin 1859; Waide et al. 1999; MEA-team 2005;
Braat and de Groot 2012; Harrison et al. 2014; Fanin
et al. 2018). In recent decades these relationships have
provoked much argument and ultimately this led to im-
proved understanding through experiments with herb-
aceous communities (e.g., Naeem et al. 1994; Tilman
et al. 1996). Nonetheless debate has persisted, from the
past (Huston 1997; Hector 1998; Huston et al. 2000;
Loreau et al. 2001; Wardle 2001), to the present (Sandau
et al. 2017; Wright et al. 2017; Oram et al. 2018).

The relationship between forest diversity and product-
ivity has generated particular interest given concerns
over forest degradation and its implications for the glo-
bal carbon cycle, water, climate and related processes and
values (Nadrowski et al. 2010; Edwards et al. 2014; Mori
et al. 2017). While large, long-term experiments ap-
pear the best way to infer causal relationships and are
increasingly being implemented (Tobner et al. 2016;
Verheyen et al. 2016; Fichtner et al. 2017; Bruelheide
et al. 2019), they remain time-consuming and costly
(Leuschner et al. 2009; Wang et al. 2016; Huang et al.
2018; Mori 2018). Furthermore, we must recognise when
and how results from planted or modified forests pro-
vide insight into natural systems (and visa-versa). Given
this context, field observations may also provide valuable
insights.
Here, we note various challenges for field based stud-

ies under three headings: volume values, disturbance dif-
ficulties and inferential inquiries. Our review was
stimulated by a high profile 84-author study (Liang et al.
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2016), that has already been cited nearly 400 times
(Google Scholar January 2020). We use this study for il-
lustration. We find broad lessons for future work and
foresee good potential for progress.

Challenges
Volume values: wood volume growth ≠ productivity ≠
value production
Here we explain why changes in forest stand volume are
neither a meaningful measure of ecological productivity
nor of economic benefits nor of any other clearly defined
values which we can identify. We start by considering
wood volumes. Equal volumes of wood grown in differ-
ent forests can differ in mass as mean wood densities
vary within and among forests (Baker et al. 2004; Swen-
son and Enquist 2007; Slik et al. 2008). Species-specific
wood densities vary from 0.1 g∙cm− 3 for Ochroma pyra-
midale (Cav. ex Lam.) Urb. (Malvaceae) to over 1.3
g∙cm− 3 for Guaiacum officinale L. (Zygophyllaceae) and
Brosimum rubescens Taub. (Moraceae) (Praciak et al.
2013). Some fast-growing pioneer species possess natur-
ally hollow stems (e.g., Cecropiaceae and Caricaceae).

These differences result in variations in mean stem-
weighted wood densities among forest communities that
can vary over twofold in a given location (Slik et al.
2008).
Differences in wood density relate to various factors

including soil conditions and drought tolerance, but also
with each species’ typical successional position and abil-
ity for rapid growth (van Nieuwstadt and Sheil 2005;
Nepstad et al. 2007; Poorter et al. 2019). For example, in
wet tropical forests when species are ordered from early
through to late succession their characteristic wood
densities generally increase and their maximum volume
growth decrease (Ter Steege and Hammond 2001; Slik
et al. 2008). Thus, mean (volume-, basal area- or stem-
weighted) wood density within any wet climatic region
tends to be lower in the early stages of secondary re-
growth forest when compared to a site comprising rela-
tively undisturbed old growth. As a tree’s carbon costs
per unit wood volume are directly related to its wood
density (King et al. 2006), volume growth rates also tend
to be greater in (younger) post-disturbance forests than
in late successional formations dominated by tree

Fig. 1 Schematic example of how species diversity (S), volume production and mean wood density may co-vary with disturbance and recovery
in an example wet forest. The top schematic shows four idealized stages in forest recovery (I–IV) comprised of three species: pioneer, early- and
late-successional (after Connell 1978). These species possess characteristic volume-growths and wood-densities indicated by the relative size of
the red and blue circles respectively on the adult trees. Species diversity in the four schematic successional stages shows a rise and fall with long-
term forest recovery (a peak occurs between II and III when all three species have the potential to co-occur). The central graphic illustrates the
rise and fall of diversity (continuous black line), declining volume growth (red dotted line), and increasing mean stand wood density (blue dashed
line) with recovery (absence of disturbance) in a wet forest. The two lower figures show the potentially contrasting relationships between
diversity, volume growth and wood density that may occur depending on the disturbance histories observed. This schematic is a stylized
representation of patterns that will differ among locations (for example, wood densities may decline with succession in dry Neotropical forests)
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species with higher wood density (see blue and red lines
in Fig. 1). Typical stand level biomass production
changes with succession too. Contrasting patterns of vol-
ume growth and wood density may cancel to some de-
gree, typically leading to a rapid early rise to reach high
rates of stem biomass production in early succession
and a gradual decline through mid- and late-succession
(Lasky et al. 2014). In dry tropical forest contrasting
trends can occur with denser wood found in early suc-
cession, and declining wood densities as the forest ma-
tures (Poorter et al. 2019)—whatever the underlying
patterns, plot level wood density and disturbance histor-
ies are not independent.
Forest productivity is defined, measured and esti-

mated, in many ways. All methods involve assumptions,
approximations and potential errors and biases (Sheil
1995a, 1995b; Waring et al. 1998; Clark et al. 2001a,
2001b; Chave et al. 2004; Roxburgh et al. 2005; Williams
et al. 2005; Litton et al. 2007; Malhi 2012; Sileshi 2014;
Talbot et al. 2014; Searle and Chen 2017; Šímová and
Storch 2017; Kohyama et al. 2019). Typically, in eco-
logical studies, focused on forest stands (not individual
trees), we are interested in net primary production
(NPP) or major components of biomass such as above
ground woody material—these expressed as mass per
unit area per unit time. Large scale studies suggest that
forest properties, notably stand age and biomass, explain
much of the variation in NPP (estimated annual dry-
mass biomass production of root, stem, branch, repro-
ductive structures and foliage) while climate often has
surprisingly little influence (Michaletz et al. 2014). Such
patterns differ among forests, notably, biomass and bio-
mass production tend to be closely correlated in early
succession as a stand establishes and grows to fill space,
but this relationship tends to weaken and reverse in ad-
vanced succession (Lohbeck et al. 2015; Prado-Junior
et al. 2016; Rozendaal et al. 2016).
In some situations, changes in forest volume produc-

tion may covary with changes in market values. This
would be the case when timber of all sizes, species and
qualities are bundled together, as may arise when a for-
est stand is being managed to produce wood fibre or
charcoal—but this generalisation is at best an approxi-
mation and is seldom true. In most stands not all vol-
ume is equally valued or valuable. Sizes matters: only
stems with sufficient size and good form yield high value
saw logs or veneer. Furthermore, relatively few tree spe-
cies have high commercial value, especially in the tropics
(Plumptre 1996). After a disturbance, it will generally be
quicker for a forest to recover in terms of volume of
small stemmed pioneers (low value volume), than to re-
generate large stems of valuable dense timbered species
(high value volume). These preferences are why timber
extraction in species rich forests is usually selective:

targeting only large stems of certain species. For ex-
ample, commercial exploitation in Gabon typically in-
volves less than one tree per ha (e.g., average 0.82
according to Medjibe et al. 2011). Note that once the
small numbers of valued stems are removed the value of
the remaining stand is much lower despite maintaining a
similar volume and diversity. Such selective impoverish-
ment has been widespread. An example is the Caribbean
regions where high-value mahogany (Swietenia macro-
phylla King Meliaceae), has long been sought, removed
and depleted (Snook 1996). Even where there are oppor-
tunities to use a broad range of species, e.g., for charcoal,
some stems are still likely to be treated separately as a
result of their greater commercial value (Plumptre and
Earl 1986).
These stem specific differences in value also explain

why silviculture in mixed species forests aims not to im-
prove overall stand volume growth (or diversity) but ra-
ther to favour the production of particular species
(Dawkins and Philip 1998; Peña-Claros et al. 2008; Dou-
cet et al. 2009). These differences also apply in low di-
versity systems. Consider a high value teak (Tectona
grandis L.) forest and a nearby monoculture stand of an
abundant weak hollow stemmed species such as Cecro-
pia (Cecropia peltata L.): volume production in these
two stands represents very distinct commercial values.
We are unaware of any general studies that indicate that
other forest derived values, such as non-timber products,
conservation benefits or hydrological function, vary in a
predictable manner with stand volume or productivity
(or related measures). Indeed indications from studies of
stand structure and other forest characteristics such as
tree or mammal diversities or palm densities—though
seldom examining volume or volume growth—suggest
such relationships are unlikely (Clark et al. 1995; Beau-
drot et al. 2016; Sullivan et al. 2017). Valid global rela-
tionships appear especially implausible. We cannot
identify any clearly defined values that vary linearly with
volume production.

Disturbance difficulties: how histories influence stand
properties
Forests reflect their histories including past disturbances
and subsequent recovery. These relationships remain
central themes in forest ecology (e.g., Guariguata and
Ostertag 2001; Sheil and Burslem 2003; Canham et al.
2004; Royo and Carson 2006; Ghazoul and Sheil 2010;
Drake et al. 2011; Seidl et al. 2011; Ding et al. 2012;
Gamfeldt et al. 2013; Chazdon 2014; Lasky et al. 2014;
Rozendaal and Chazdon 2015; Scheuermann et al. 2018).
Indeed, while themes have evolved, the importance of
these temporal relationships has long been recognised in
both temperate (for example, Transeau 1908; Gleason
1917; Tansley 1920; Phillips 1934; Clements 1936; Watt
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1947; Langford and Buell 1969) and tropical contexts
(see, e.g., Richards 1939; Eggeling 1947; Greig-Smith
1952; Hewetson 1956; Webb 1958; Aubréville 2015).
Even the first major treatise to examine tropical forests
in a global manner, presented them in terms of succes-
sion and associated characteristics (Richards 1952). It is
because of these somewhat predictable patterns, and the
range of disturbance histories encompassed in most for-
est samples, that many stand properties co-vary; for ex-
ample, stand turnover rates, wood density and tree-
diversity (Sheil 1996; Slik et al. 2008). Similarly, because
of such underlying relationships, we expect tree-
diversity, productivity, and volume growth to co-vary
with disturbance history.
Tree species richness typically rises in early succession

as species accumulate, and, if conditions-permit, ultim-
ately falls in later stages due to competition and the fail-
ure of shade-intolerant species to replace themselves
(see black line, S, in Fig. 1). This “humped” or unimodal
pattern is the basis for Connell’s Intermediate Disturb-
ance Hypothesis (Connell 1978, 1979; Sheil and Burslem
2003, 2013). Despite debate and frequent misrepresenta-
tion, there is general agreement that the original mecha-
nisms proposed by Connell, involving competition-
colonization trade-offs among species, are valid and eco-
logically relevant (e.g., see Fox 2013a, 2013b; Sheil and
Burslem 2013; Huston 2014). While other factors play a
role too, disturbance dependent mechanisms often con-
tribute to observed patterns of species diversity (Ker-
shaw and Mallik 2013; Huston 2014).
When sampling and disturbance histories permit, both

sides of the successional rise-and-fall in the species-rich-
ness pattern becomes evident. Consider Guyana, where
some areas of forest possess a higher proportion of faster
growing but light-timbered species whereas other, typic-
ally lower-diversity, forests possess more dense-
timbered, slow-growing species (Molino and Sabatier
2001; Ter Steege and Hammond 2001).
Sampling may not capture the full pattern. For ex-

ample, evaluations of sites representing only the rising
section of diversity and succession may be interpreted
(incorrectly) as evidence against disturbance playing a
positive role in maintaining diversity, when an absence
of disturbance would nonetheless lead to a loss of spe-
cies (for more detailed explanations please see Sheil and
Burslem 2003).
Sometimes interpretations remain ambiguous. For ex-

ample, a study of diversity and successional state across
Ghana’s forests found that while the predicted rise and
fall diversity patterns were detected across all the major
forest types, disturbance appeared to contribute more to
maintaining diversity in drier than in wetter sites. The
most mature (i.e. apparently old growth) forests found in
these wetter sites maintained most (but not all) of the

species found in less advanced sites (Bongers et al.
2009). Among drier sites, the most mature forests
showed less diversity compared to younger sites. These
results cannot distinguish whether other mechanisms
contributed more to maintaining diversity in wetter (ver-
sus drier) forests or whether there was simply a paucity
of sufficiently undisturbed (late successional) examples
to show what happens under these conditions (Bongers
et al. 2009).
So diversity tends to rise in early succession, reach a

peak and may then gradually decline if there is little dis-
turbance. What about volume growth and productivity?
After an extreme event, volume and biomass production
grow before levelling off and gently declining with stand
age (Lorenz and Lal 2010; Goulden et al. 2011; He et al.
2012; Lasky et al. 2014). This can be understood as a re-
sult of the initial influx and establishment of fast grow-
ing (in wet forest typically low-wood-density) early
successional pioneer species, with the forest becoming
more efficient at capturing light as the more shade-tolerant,
later-successional species also become established. The
decline likely results from the reduced efficiency (per unit
area) of light interception and photosynthesis of larger
(versus smaller) trees (Yoder et al. 1994; Niinemets et al.
2005; Nock et al. 2008; Drake et al. 2011; Quinn and
Thomas 2015) and the proportion of energy invested in
woody growth (Kaufmann and Ryan 1986; Mencuccini
et al. 2005; Thomas 2010).
The consequence of these successional trends is that

various stand properties tend to co-vary (see Fig. 1).
Depending on if and how the rising and falling section
of the relationships are represented in the data, this
covariation alone can result in an increase (or de-
crease) in stand-volume-growth, or productivity, with
increasing diversity (see lower insets in Fig. 1). Con-
sider an old-growth forest disturbed by some event
that opens the canopy (a windstorm or timber-
cutting): fast growing pioneer species that were not
previously present can now establish, boosting species
numbers and volume growth. Such patterns neither
prove nor disprove that diversity bolsters productivity
but they show how correlations can arise independ-
ently of such relationships.
Can we avoid the complications created by disturbance

histories by using basal area as a proxy and including it
as a random variable in our analyses? No—while basal
area change can be useful as an immediate measure of
disturbance there is no simple, one-to-one relationship
between basal areas and successional stages or related
processes. Partial basal area values can arise in many
ways: for example, a value of 80% might result after sev-
eral years of recovery following a large disturbance (a re-
duction to less than 50%), more recently after a lesser
one (a reduction to 75%), or a cumulative consequence
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of many small events without sufficient time to recover
(each event leading to only a few percent decline). In
any case, few stands result from a single disturbance to
an otherwise never-disturbed old-growth forest. Most
experience a complex mixture of intrinsic and extrinsic
disturbances of varying forms and magnitudes that to
some degree decouples basal area from composition and
other successional responses. Also, while basal area typic-
ally recovers quite rapidly this is not necessarily true for
other stand characteristics (Rozendaal et al. 2019). Com-
parisons of regrowth and old-growth show how idiosyn-
cratic recovery is, with many plots surpassing pre-
disturbance reference levels of species richness in less than
a decade while others don’t reach it in more than one cen-
tury (see, e.g., Martin et al. 2013). Relatively rapid, but
variable, recovery of species richness was also reported
from a recent review of Neotropical sites (Rozendaal et al.
2019). For biomass, there is also variation with some sites
recovering within a couple of decades and others not
reaching original levels in 80 years (Martin et al. 2013;
Poorter et al. 2016). Composition typically remains dis-
tinct for longer—decades or even centuries (see, e.g., Chai
and Tanner 2011; Rozendaal et al. 2019).
How are basal area and successional state related? As

basal area and compositional maturity both decline as a
result of disturbance, and recover subsequently, we
might expect that these variables would track each other
yielding a clear positive relationship, but this is not ne-
cessarily the case. In forests subjected to repeated dis-
turbance, basal area can become decoupled from
composition. For example, consider any system in which
stand basal area and composition (percentage of late
successional species) both recover after disturbance, and
in which stems can persist for decades, and subject it to
just one disturbance: basal area and (some years later)
composition will subsequently recover towards their
pre-disturbance levels (Fig. 2 upper panel). Now subject
this same system to stochastic disturbances over an ex-
tended period: if the disturbance events are sufficiently
frequent and severe, any relationship between basal area
and composition is readily obscured (see Fig. 2 lower
panel). Our point here is not to identify specific condi-
tions under which such decoupling occurs in a specific
model—this will reflect many factors including both the
vegetation persistence and response lag-times as well as
details of the disturbance—but to recognise that it can
plausibly do so in a wide range of cases that arise in na-
ture. Studies of managed forests also show that, while
some patterns appear typical, the nuances of stand struc-
ture, age and productivity cannot be readily captured in
any one variable (Liira et al. 2007). For such reasons in-
corporating basal area, or similar univariate stand prop-
erties, in the analysis may influence results but not
remove the impact of disturbance.

We are not claiming that succession provides a simple
explanation of community change. Succession is only
predictable in part (Norden et al. 2015). Patterns can be
complex, context dependent and idiosyncratic (Chazdon
2003; Ghazoul and Sheil 2010; Sheil 2016; Bendix et al.
2017). They may include alternative pathways, or stall
(Royo and Carson 2006; Norden et al. 2011; Tymen
et al. 2016; Arroyo-Rodríguez et al. 2017; Ssali et al.
2017). Nonetheless, these patterns—however mani-
fested—may be sufficiently consistent to influence statis-
tically defined relationships among stand properties like
diversity, volume growth and productivity.

Fig. 2 Outputs from a simple simulation model in which “basal area”
and “composition” (percentage late successional species) both recover
after disturbance. Composition involves persistence (the composition of
surviving stems is unchanged immediately following disturbance), lag-
times and integration (the composition of recruits depends on canopy
openness over previous years with more early successional species
surviving in more open conditions). a shows the simulated response
over 400 years where a single event removes 90% of basal area in the
tenth year. b shows an example where, from year ten onwards,
disturbances occur with a 5% probability each year. If a disturbance
event occurs it removes a randomly generated fraction of basal area
between 0 to 100% (skewed to lower values). While both basal area and
our measure of composition decline with disturbance, and increase with
recovery, the Pearson product moment correlations (r) between these
variables are often negative (as in the example)
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We cannot understand forests separate from their dis-
turbance histories. The importance of sampling and context
mean that generalisations may not be readily transferrable
from one data set to another unless we know, and can
account for, such histories. Thus, we need to consider these
factors explicitly and be wary of generalisations that neglect
them. Simple fixes are unlikely to be effective.

Inferential inquiries: conclusions about causation
Determining causality has been a theme in the philoso-
phy of science since Aristotle (Holland 1986)—and has
fuelled analytical innovations concerning the ability to
infer and assess causal effects using both experimental
and non-experimental observations (e.g., Freedman
2006; Cox 2018). While some issues remain contested
(see, e.g., Pearl 2018) there is broad consensus that cor-
relation alone should not be assumed as strong evidence
of causation in non-experimental data (Höfer et al.
2004) and statistical methods used to “draw causal infer-
ences are distinct from those used to draw associational
inferences” (Holland 1986). While many will consider
this obvious, the prevalence and persistence of the prob-
lem justifies concern.
So, if we find it, how should we interpret a positive

correlation between species diversity and productivity?
Potential explanations abound. Maybe greater diversity
causes greater productivity. This could result from a
niche interpretation in which a greater diversity of spe-
cies use resources more effectively due to their comple-
mentary use of resources in space and time (del Río
et al. 2017; Williams et al. 2017; Lu et al. 2018). It could
also result if species which occurred at lower abundances
(as occurs for an average species in richer communities)
tend to have greater productivity than common species,
through “rare species advantage” (Bachelot and Kobe
2013) permitting better growth and productivity than in
lower diversity systems (Mangan et al. 2010; LaManna
et al. 2016). It can also arise through a “sampling effect” in
which communities with more taxa are more likely to
include high-productivity species (Huston 1997).
Maybe, rather than diversity facilitating productivity it

is productivity that facilitates diversity (Waide et al.
1999; Coomes et al. 2009; Jucker et al. 2018). For ex-
ample, there are data indicating that taller forests occur
on richer, presumably more productive, soils (at least in
Africa and Asia, Yang et al. 2016), and also that, all else
being equal within a given region, taller forests tend to
contain more species than shorter forests (Huston 1994;
Duivenvoorden 1996).
A positive correlation could also result from shared

causes. For example, both diversity and productivity may
vary with climate, soil nutrients or disturbance histories
(see previous section). Stem densities and numbers are
also a plausible explanation, as the count of individuals is

an upper bound to the possible number of species
(Hurlbert 1971; Colwell et al. 2012) and denser forest also
tends to be more productive (Michaletz et al. 2014) at
least in early succession (Lohbeck et al. 2015; Prado-
Junior et al. 2016; Rozendaal et al. 2016). In any case, stem
numbers and related measures can vary due to sampling
noise making any such recorded variables non-
independent—with such influences being particularly
important when plots are small (Colwell et al. 2012). Positive
correlations could arise from more complex relationships
too, for example, when observations span only the left-hand
(e.g. low productivity) part of a unimodal rise-and-fall
relationship where productivity determines diversity (Tilman
1982), or result from more complex sampling effects (see,
e.g., Waide et al. 1999; Chase and Leibold 2002).
Explanations and mechanisms are not exclusive and may

be valid concurrently. Grassland studies indicate that differ-
ences in diversity can be simultaneously a cause and a conse-
quence of differences in productivity (e.g., Grace et al. 2016).
We should also expect interactions amongst causes, ef-

fects and mechanisms. For example, many of the under-
lying processes will respond to climate (Fei et al. 2018).
Or, to take a more specific example, we know that the
responses and the effect of disturbance will vary with the
local species—and we know that this can be determined
by context. Consider, for example, the forests of the
islands of Krakatoa versus the Sumatra mainland where
though many tree species are shared, many mainland
species, including the regionally dominant dipterocarps
have failed to re-establish on the islands since the 1883
eruption due to dispersal limitation which has limited the
convergence of the regrowth forest (Whittaker et al.
1997). Mechanisms vary too. For example, niche comple-
mentarity can vary with composition, context (Fichtner
et al. 2017) and disturbance history in both temperate and
tropical forests (Lasky et al. 2014; Gough et al. 2016).
We don’t dispute that diversity generally contributes

to increased productivity. That has been demonstrated
many times in various systems including forests (Wang
et al. 2016; Fichtner et al. 2017; Huang et al. 2018; Mori
2018). But that doesn’t mean that this contribution alone
determines the relationship between tree diversity and
stand productivity. Correlations arise in many ways.
Recognising the multiple processes that might generate
and influence a correlation between diversity and prod-
uctivity is essential for correct interpretation.

Case study
Liang et al. (2016) presented a global evaluation of tree
diversity versus what they called “productivity” and in-
ferred that greater diversity leads to greater productivity.
They use this result to estimate the economic value of
the diversity in forests. By way of context, they argued
the need for “accurate valuation of global biodiversity”.
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They quantified plot level tree species richness and vol-
ume productivity using 777,126 tree plots from 44 coun-
tries (the plots contain more than 30 million trees from
8737 identified species, coverage is uneven with tropical
forests being poorly represented). They used various
analytical approaches, including spatially constrained
resampling and regression. From these, they inferred a
worldwide positive effect of tree species richness on tree
volume productivity that varies somewhat among regions.
They used the derived relationship to estimate that the
economic value of biodiversity in maintaining commercial
forest productivity is more than double the total estimated
cost of effective conservation of all terrestrial ecosystems
(between 166 billion and 490 billion USD$∙yr− 1). So how
does this study measure up against our concerns?

Volume values
Liang et al. (2016) estimated changes in stem volume
(m3∙ha− 1∙yr− 1 ) as their measure of productivity and as-
sociated values. This measure contrasts with more con-
ventional assessments of productivity that consider rates
of change in biomass or carbon stocks. Liang et al. de-
fend their choice by noting that volume is easier to esti-
mate and is sufficient for their goal of summarising
overall forest product values. Assuming a linear relation-
ship between stem volume productivity and “values” (we
remain unclear how these values are circumscribed and
what they represent—see below) they use their relation-
ships to estimate that an evenly distributed worldwide
decrease of tree species richness of 10% would reduce
volume, and associated value, productivity by 2.1 to 3.1%
which, using two alternative values for forest production,
equates to costs of USD$ 13–23 billion per year. Volume
growth is a poor proxy for timber value or carbon gains.
Questions over which values might relate adequately to
volume growth, and how, were debated previously. We
will not repeat the details here (see, Barrett et al. 2016;
Paul and Knoke 2016). Our view is that the implied
values are ill-defined and the underlying assumptions
and relationships undemonstrated. We highlight that
volume increment does not provide a meaningful meas-
ure of primary productivity nor does it equate to an in-
crement in economic values.

Disturbance difficulties
Liang et al. (2016) sought to eliminate the influence of
disturbance by excluding plots where forest harvest had
exceeded 50 % of stocking volume and by including
basal area as a random variable in their analyses. Having
taken these steps, they gave disturbance and recovery no
further consideration. This is inadequate. There is no
evidence that disturbance effects diversity and productiv-
ity only once stocking is reduced by over 50%, or that
basal area is a valid and consistent—let alone

sufficient—measure of succession (see previous discus-
sions, and Fig. 2). The patterns they observe remain in-
fluenced by disturbance histories (as suggested in Fig. 1).

Inferential inquiries
Liang et al. (2016) find that, in general, higher diversity
is associated with higher productivity. They interpret
this as showing that greater diversity causes greater
productivity and favour a niche interpretation. Indeed,
this causation is assumed when they define the
biodiversity-productivity-relationship as “the effect of
biodiversity on ecosystem productivity”. While such a re-
lationship likely exists, their estimates should be treated
with caution as alternative influences and explanations
remain unexamined.

Discussion and conclusions
We have highlighted pitfalls in the study of forest diver-
sity and productivity and illustrated our concerns by
showing that these faults are manifested in a highly
cited, multi-author study in a prestigious journal. These
pitfalls include the use of volume production as a meas-
ure of productivity and value; the neglect of disturbance
histories; and interpreting a simple correlation as causal
when other explanations exist. The problems would pre-
sumably be recognised and rectified given time, but in
the meantime we observe these studies being cited as if
they are established fact (see, e.g., Bruelheide et al.
2019). In fairness, we note that the problems we have
detailed may not be common, and there are many more
nuanced analyses in the literature (e.g., for USA forests,
Fei et al. 2018). Nonetheless, that may change if flawed
studies become influential. For example, we note that
Luo et al. (2019), like Liang et al. (2016), adopt the same
implicit causal assumptions and disregard alternatives.
Forewarned is forearmed.
Our list of pitfalls and concerns is not exhaustive (see,

e.g., Dormann et al. 2019). Other studies raise other con-
cerns too. For example, one reviewer suggested that we
assess some studies using European forest data: Jucker
and colleagues concluded that aboveground stand bio-
mass growth (not volume as in Liang et al. 2016), in-
creased with tree stand species richness (Fig. 7 in Jucker
et al. 2014a and Fig. 2 and Figure S11 in Jucker et al.
2016). Yet they also determined that neither stand basal
area nor stem densities varied with species richness (Fig.
S7 in Jucker et al. 2015 and Fig. S4 in Jucker et al. 2016)
and indicated that neither mortality nor thinning varied
with richness too (Jucker et al. 2014b, 2015). This raises
questions concerning how biomass production can vary
if basal area, mortality and thinning do not. As the re-
viewer noted, the claim that mortality does not vary with
diversity may be the critical issue given results from
other studies (for example, Liang et al. 2005, 2007; Lasky
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et al. 2014). Furthermore, the researchers suggested that
canopy packing increased in response to species mixing
and disregarded silvicultural activities as a possible cause
(Jucker et al. 2015). However, such packing can be pro-
moted by thinning: foresters often wish to ensure
retained crop trees have the space and conditions for
good growth and identify and remove trees that interfere
with others or are likely to be supressed. Even if limited
thinning occurred early in the stands' development the
effects could be long lasting and could subsequently ap-
pear to result from “species mixing” alone. We cannot
judge these suggestions from available information.
Clearly there is much still to clarify and in the meantime
all such studies should be treated with skepticism—even
if they are published in reputable journals.
Returning to our concerns with Liang et al. (2016):

how can such problems go unrecognised by authors, re-
viewers or editors in a high profile peer reviewed article?
In particular, the simplistic causal inference? Part of the
explanation may be prevalence and plausibility. Clearly,
views can differ and—while we make no claim to be be-
yond such criticisms—we advocate less tolerance of
causal claims based on plausibility. While correlations
can be interesting and important we should be aware
and explicit what we assume, infer and claim.
It is recognised in health and social sciences that ele-

gant studies can gain undue prestige despite their fail-
ings (Ioannidis 2005; Smaldino and McElreath 2016;
Camerer et al. 2018; Huebschmann et al. 2019). Our
own numerous examples (e.g., Sheil 1995, 1996; Sheil
et al. 1999, 2013, 2016, 2019; Sheil and Wunder 2002;
Makarieva et al. 2014), and many others, suggest similar
processes in other sciences including ecology, environ-
ment and climate. We all appreciate short, elegant arti-
cles but there is a cost to such simplification when key
nuances and shortcomings are ignored or brushed aside.
When presenting forest and biodiversity sciences to a
wide readership we (authors, reviewers, editors and
readers) must maintain our standards in terms of self-
critical framing and interpretation. We know that the re-
lationships between diversity and productivity are likely
to be complex—as indeed much of the debate over pre-
vious studies indicates (Huston 1997; Sandau et al. 2017;
Wright et al. 2017; Fei et al. 2018). In such contexts, we
should beware simplicity.
Despite our concerns, field observations remain valu-

able. While formal experiments are essential for control-
ling and clarifying many aspects of the diversity-
productivity relationship for trees and forests, field ob-
servations offer additional insights.
Furthermore, our concerns about disturbance histories

and successional influences can be addressed with a
thorough evaluation of available data. For example, the
influence of disturbance histories on forest diversity,

productivity and other characteristics can be explored
through permanent plots and other available data (see,
e.g., Rozendaal and Chazdon 2015; Li et al. 2018;
Scheuermann et al. 2018). Linking stand characteristics
to known histories should also aid more general charac-
terisation. The understanding available from such ana-
lyses when combined with field experiments and critical
reflection offers further insights into forests communi-
ties and their values. In this sense, we support calls for a
detailed and nuanced appraisal of how plant diversity
contributes to biomass production and other ecosystem
properties (Adair et al. 2018).
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