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Abstract

Background: Forest inventories have always been a primary information source concerning the forest ecosystem
state. Various applied survey approaches arise from the numerous important factors during sampling scheme
planning. Paramount aspects include the survey goal and scale, target population inherent variation and patterns,
and available resources. The last factor commonly inhibits the goal, and compromises have to be made. Airborne
laser scanning (ALS) has been intensively tested as a cost-effective option for forest inventories. Despite existing
foundations, research has provided disparate results. Environmental conditions are one of the factors greatly
influencing inventory performance. Therefore, a need for site-related sampling optimization is well founded.
Moreover, as stands are the basic operational unit of managed forest holdings, few related studies have presented
stand-level results. As such, herein, we tested the sampling intensity influence on the performance of the ALS-
enhanced stand-level inventory.

Results: Distributions of possible errors were plotted by comparing ALS model estimates, with reference values
derived from field surveys of 3300 sample plots and more than 300 control stands located in 5 forest districts. No
improvement in results was observed due to the scanning density. The variance in obtained errors stabilized in the
interval of 200–300 sample plots, maintaining the bias within +/− 5% and the precision above 80%. The sample
plot area affected scores mostly when transitioning from 100 to 200 m2. Only a slight gain was observed when
bigger plots were used.

Conclusions: ALS-enhanced inventories effectively address the demand for comprehensive and detailed
information on the structure of single stands over vast areas. Knowledge of the relation between the sampling
intensity and accuracy of ALS estimates allows the determination of certain sampling intensity thresholds. This
should be useful when matching the required sample size and accuracy with available resources. Site optimization
may be necessary, as certain errors may occur due to the sampling scheme, estimator type or forest site, making
these factors worth further consideration.
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Background
Forest inventory
A comprehensive description of the state and structure
of woodlands is crucial information for forest owners
and decision-makers in particular. Details on the avail-
ability of current resources form the basis for sustainable
planning of forest use and its development. Hence, a
number of requirements concerning forest management
has been imposed on forest administrators. The Forest
Act (1991) is an official state document that requires the
development of a forest management plan (FMP) every
10 years for each forest holding in Poland. Similar bind-
ing documents are in effect in other countries (Redmond
et al. 2016). For instance, the creation of an FMP, or at
least local forest inventory data, is mandatory in the fol-
lowing European countries: Bosnia and Herzegovina,
Bulgaria, Croatia, the Czech Republic, Estonia, France,
Hungary, Latvia, Macedonia, Poland, Portugal, Romania,
Slovakia, Slovenia and Switzerland (Nichiforel et al.
2018). These examples show how crucial knowledge of
forest resources is.

Growing stock volume
The growing stock volume (GSV) is one of the most im-
portant stand characteristics to be determined as a result
of forest inventories (Tonolli et al. 2010). The GSV is a
traditional indicator of wood resources, carbon stock,
management efficiency, and sustainability in the forest
sector (Jung and Mui 2010; EEA 2017). GSV-related in-
dices, e.g., biomass or carbon, must also be reported ac-
cording to international agreements, e.g., in national
forest inventories. Many forest inventories use a design-
based approach, where survey crews are contracted to
collect data by means of field measurements on sample
plots, entailing the use of increasingly expensive human
resources (Eurostat 2018). This approach is widely ap-
plied across many European countries (FAO 2004; McI-
nerney et al. 2011; FMM 2012; Redmond et al. 2016;
Vidal et al. 2016). Although the design-based approach
may be sufficient to describe attributes of an entire
population, e.g., the forest district, it may not be precise
enough to sufficiently describe attributes of elements or
small areas, for instance, single trees or stands, especially
in areas with a low sample coverage (McRoberts et al.
2013). This issue is becoming more relevant as detailed
knowledge of stand-level resources becomes increasingly
required (Johnson et al. 2004; Mäkelä & Pekkarinen
2004; Kauranne et al. 2017).

Forest stand
A common definition of a forest stand is as follows: a
basic operational unit that is considered to be a spatially
consistent part of the forest, homogeneous in terms of
species composition, age, site type, tree origin, canopy

cover, etc. (Helms 1998; Koivuniemi and Korhonen
2006; Pasalodos-Tato 2010; FMM 2012; Bolton et al.
2018). In Poland, single-stand GSV estimation may be
performed for two reasons: once every 10 years for long-
term forest planning and 1 or 2 years prior to any cut-
ting operations for a given stand, mostly to evaluate the
potential harvest. Such estimation can be conducted by
means of a total survey, an approximation based on a
similar stand, a visual assessment, or the angle-count
method (FMM 2012; DGLLP 2015). None of the above-
listed methods appear to provide a balanced trade-off
between the accuracy, precision and cost, especially in
regard to surveying vast areas. Therefore, there seems to
be a well-founded need for more universal solutions,
which would provide objective and detailed forest inven-
tory data at large scales (Wulder 1998; Mäkelä & Pek-
karinen 2004; Mozgeris 2008; Stereńczak 2010; Tonolli
et al. 2010; Holopainen et al. 2014; White et al. 2016;
Kankare et al. 2017; Zygmunt et al. 2017).

Remote sensing
The potential of remote sensing (RS) techniques for for-
est management has been considered since the start of
the twentieth century (Hugershoff 1911; Wilson 1920;
Gieruszyński 1948). RS techniques are capable of provid-
ing continuous information over vast and hardly access-
ible sites. Nevertheless, the level of technology at that
time and awareness of needs versus possibilities in forest
communities did not facilitate either research or its
practical implementation. The spread of computers and
increased computational capacity have led to notable
progress in the development of methods related to forest
inventories. Aerial images (Bolduc et al. 1999), satellite
data (Tomppo 1991) and later laser scanning (Næsset
1997; Næsset et al. 2004) have been intensively tested in
Scandinavia and North America, with promising results
in terms of their operational implementation, as is the
case today in Nordic countries (Næsset et al. 2004; Mal-
tamo and Packalen 2014; Vauhkonen et al. 2014; Kangas
et al. 2018), Canada (Woods et al. 2011), the USA (Evans
et al. 2006), New Zealand (Pont et al. 2012; Coomes
et al. 2018) and Australia (Turner et al. 2011; Pont et al.
2012). In Poland, a joint project is being conducted by
the state forests and scientific units to provide RS data
as a mandatory part of inventories and forest manage-
ment planning.
Among RS techniques, airborne laser scanning (ALS)

is known to be particularly applicable for the assessment
of wood resources (Even et al. 2015). By testing the ac-
curacy of ALS for biomass estimation, Ene et al. (2013)
showed that ALS-aided surveys can be an economical al-
ternative to conventional inventories. ALS can provide a
3D representation of an entire forest district in the form
of a point cloud (PC). Although such a PC might be a
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relatively accurate visualization of the forest structure,
its quantification (e.g., the GSV) is usually determined
through statistical modelling (Wulder et al. 2008;
Leeuwen & Nieuwenhuis 2010; Balenović et al. 2013)
instead of direct PC measurements. A common design
applied to forest attribute extraction from ALS data is
two-phase sampling with regression estimators or the
area-based approach (Næsset & Bjerknes 2001; Næsset
2002; Köhl et al. 2006; Næsset 2014, Even et al. 2015). In
the first phase of this sampling design, a complete wall-to-
wall representation of the surveyed area is provided by
ALS metrics (auxiliary variables). In the second phase, a
limited set of ground sample plots is employed to establish
a statistical relationship between the auxiliary variables
and target variable (here, the GSV), such that the latter
variable can be estimated over the entire area of interest,
e.g., the forest district, or its part, viz. the stand.

Sampling intensity
The performance of ALS-enhanced forest inventories
may depend on several factors, such as the sampling de-
sign, sample size, estimator, PC parameters, and vari-
ation in the target variable within the population (Köhl
et al. 2006; Yang et al. 2019). There are many theoretical
studies concerning the estimation of the required sample
size, which chiefly depends on the goal and means of
analysis. Recommendations for predictive multiple linear
regression modelling (as used in this research) may be
found in Knofczynski (2017), who applied a series of
Monte Carlo simulations to artificial data to determine
the minimum sample size needed to obtain regression
parameters close to population parameters. He linked
the required sample size to the number of predictors
and correlation strength between the most reliable pre-
dictor and criterion. Similar findings were obtained by
Bujang et al. (2017), who employed power analysis of
real data to determine the minimum sample size for
multiple linear regression. There are also certain rules of
thumb for rapid sample size evaluation. Most of them
are based on the principles of power analysis. With re-
gard to regression, Voorhis and Morgan (2007) exam-
ined N > 50 observations. Harris (1985) advocated 50 +
m (where m is the number of predictors) as the mini-
mum sample size. In contrast, Green (1991) criticized
the use of constant values (e.g., 100) and instead sup-
ported N > 50 + 8m as the minimal sample size required
to verify the overall fit of a regression model.
A priori sample size considerations undoubtedly con-

stitute a firm base for planning either a research project
or a commercial inventory. However, the complex forest
structure may not always match all the theoretical as-
sumptions. Related issues have already been considered
(Adams et al. 2011; White et al. 2013, 2017) based on
empirical data published in good-practice guidelines for

the generation of inventory attributes from ALS data.
Despite the use of similar methods, different researchers
have reported fairly different results in this regard. Not-
able discrepancies in the number of sample plots utilized
have occurred in other studies, starting from 15 plots
(Tompalski et al. 2015), up to almost 800 plots (White
et al. 2014). General trends regarding the influence of
the number and area of sample plots have been pre-
sented in Gobakken and Næsset (2008) and Stereńczak
et al. (2018). Saarela et al. (2015) tested the effects of the
estimator and sample size on the precision of GSV pre-
dictions when light detection and ranging (LiDAR) data
are adopted in a two-phase sampling design, with the
simulated study area resembling the structure of Finnish
forests. Having tested various models, they found minor
to moderate effects of this forest inventory element.
Moreover, they reported that the variance in the model
error remains the same regardless of the number of
first-phase sample plots; however, the error variance is
sensitive to the number of second-phase plots. Similar
tests were performed by Fassnacht et al. (2018) to evalu-
ate the effect of the sampling intensity on ALS-based
forest biomass prediction (closely related to the GSV).
Having simulated Scots pine and European beech stands,
they reported little influence of the area and number of
sample plots on the root mean square error (RMSE), i.e.,
4–7Mg∙ha− 1, but quite a notable effect on the bias. Ruiz
et al. (2014) performed a trial to assess the influence of
the sample plot area. Having tested plots from 100 to
3600 m2, they proposed 500 m2 as the minimum area for
GSV estimation. The opposite conclusion was drawn by
Watt et al. (2013), who found LiDAR models for GSV
prediction to be insensitive to the plot size and PC dens-
ity. Regarding ALS PCs, Montealegre et al. (2016) stated
that even densities of circa 1 pulse∙m− 2 seemed to gener-
ate relatively accurate GSV estimates, provided that no
systematic error occurred caused by an insufficient num-
ber of sample plots (Næsset et al. 2004). On the other
hand, Smreček and Danihelová (2013) noted that low-
PC density data should be carefully assessed. Although
these examples show results obtained with not precisely
the same methods and for various study areas, the dis-
crepancies remain noteworthy.

Aim and scope
The earlier discrepancies provided the main foundations
of this research, particularly since there are few studies
concerning Scots pine-dominated stands in Europe.
Moreover, if RS methods of forest inventory are to be
widely applied in forestry practices, further studies
should be prioritized, given their substantial impact on
inventory costs. Furthermore, access to extant large
datasets urged us to test the methods described in the
literature. At our disposal were field measurements from
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3305 sample plots and 305 control stands along with ALS
PCs acquired from 5 different forest districts. Our sole tar-
get variable in this study was the GSV. Of course, many
other variables can be determined as a result of forest in-
ventories, e.g., the tree/stand height, diameter at breast
height (DBH), basal area, tree density, and species. Many
of these variables can be directly measured using RS data,
unlike the GSV, which is usually a product of a statistical
model incorporating one or more of the above-listed vari-
ables. Due to this complexity, estimation of the GSV re-
quires higher sampling intensity, thus making this variable
a robust study case. Moreover, the GSV is a universal
index of the state of forest ecosystems (Jung and Mui
2010; EEA 2017). It is also a commonly reported index to
both state and international environmental agencies.
Given the above, this study aimed to test the influence

of the sampling intensity (i.e., the number and area of
sample plots, as well as the ALS PC density) on the per-
formance of the two-phase forest stand inventory using
an ALS regression estimator.

Methods
Study areas
The following forest districts served as investigation
areas: Milicz, Suprasl, Katrynka, Piensk and Herby. Most
of the stands were pine-dominated (Pinus sylvestris)
stands. Nevertheless, the above-listed districts vary in
site quality and environmental conditions, which ensures
a more reliable result validation. The Katrynka forest
district is situated in a lowland region comprising con-
iferous sites, where Pinus sylvestris is the dominant tree

species. Suprasl is located in the same region, but there
are more broadleaved sites. The other districts, such as
Herby and Piensk, occur in a strip of the Polish high-
lands. Pinus sylvestris-dominated stands constitute ap-
proximately 70% of the Herby sites. A more diverse
share of mixed coniferous and broadleaved sites (ap-
proximately 30% − 40%) distinguishes Milicz and Piensk,
from the other sites. Table 1 contains a quantitative
summary of the listed districts. Their locations are
shown in Fig. 1.

Field data
Two types of conventional forest inventories were estab-
lished for each district: (i) circular sample plots and (ii) a
total survey of the control stands. Field measurements
were collected in the summer of 2015 for all objects, ex-
cept Katrynka and Herby, for which surveys were con-
ducted in 2016.
In the first design, a regular network of circular sample

plots was deployed across each forest district (Fig. 1).
The total number of sample plots varied between the
districts (Table 1). In the field, all plots had a fixed area
of 500 m2. The following properties were determined for
those trees with a DBH exceeding 7 cm: species, DBH,
height, age, and position. The DBH was measured with
callipers, and the tree height was measured with range-
finders. The position of each tree was determined by the
azimuth and distance relative to the centre point of a
given sample plot. The coordinates of each centre point
were recorded for 20 min utilizing global navigation

Table 1 Quantitative description of the study areas according to the field inventory data

n | N Species Milicz Suprasl Katrynka Piensk Herby

Plots
900

Stands
56

Plots
498

Stands
60

Plots
499

Stands
60

Plots
502

Stands
58

Plots
906

Stands
71

Species
share (%)

1 Pine 63 Pine 75 Pine 46 Pine 68 Pine 69 Pine 86 Pine 70 Pine 81 Pine 64 Pine 74

2 Oak 8 Oak 13 Mix 11 Mix 7 Pine-Spr 15 Pine-Spr 11 Mix 6 Spruce 3 Pine-Oak 4 Pine-Oak 10

3 Beech 5 Beech 4 Pine-Spr 9 Pine-Mix 13 Mix 4 Mix 3 Pine-Mix 5 Beech 3 Pine-Mix 8 Pine-Mix 10

4 Mix 5 Oak-Mix 4 Spruce 8 Spruce 5 Spruce 4 – Birch 4 Birch 7 Mixed 8 Birch 3

5 Other 19 Other 4 Other 26 Other 7 Other 8 – Other 15 Other 6 Other 16 Other 3

Age x̅ (SD)
(year)

1 65 (26) 77 (30) 78 (26) 79 (18) 74 (24) 75 (20) 60 (21) 66 (16) 76 (25) 82 (19)

2 115 (35) 113 (27) 55 (13) 76 (25) 84 (22) 78 (32) 48 (10) 51 (13) 64 (12) 88 (15)

3 78 (34) 143 (18) 85 (30) 91 (34) 53 (14) 56 (13) 55 (20) 70 (0) 72 (19) 75 (18)

4 52 (19) 127 (35) 47 (16) 45 (1) 57 (12) – 50 (17) 62 (6) 55 (12) 69 (0)

5 65 (31) 74 (9) 69 (27) 58 (35) 59 (20) – 59 (23) 70 (5) 59 (19) 61 (18)

GSV x̅ (SD)
(m3∙ha− 1)

1 368 (137) 344 (104) 469 (143) 399 (87) 420 (141) 350 (105) 319 (99) 280 (60) 343 (118) 266 (75)

2 488 (244) 388 (64) 337 (125) 293 (82) 447 (165) 352 (57) 256 (99) 406 (103) 432 (109) 287 (71)

3 413 (249) 272 (149) 420 (141) 403 (136) 297 (136) 346 (8) 290 (80) 171 (18) 373 (101) 299 (81)

4 382 (150) 420 (38) 290 (130) 277 (58) 372 (120) – 165 (68) 234 (20) 321 (118) 194 (10)

5 359 (164) 344 (127) 359 (151) 277 (95) 286 (139) – 317 (154) 245 (65) 290 (129) 283 (26)
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satellite system (GNSS) static measurements. Having
captured all of the above properties, the volume of every
single tree was estimated according to equations com-
monly applied by the Polish state forests (Bruchwald
et al. 2000). The volume of each sample plot was then
determined via summation of tree volumes inside that
plot and normalized to per hectare values, according to
the level of factor II, i.e., the sample plot area (refer to
the section: Factors). Bruchwald (1999) claimed that at
the stand level, the expected mean error of those applied
equations should not exceed 8% with a 95% confidence
interval. Field-based GSV estimates from this type of in-
ventory were utilized to regress the relationship between
the ALS metrics and GSV.
In addition to the circular sample plots, a portion of

the control stands was surveyed in each forest district
(Table 1, Fig. 1). As the number of control stands was
considerably smaller than that of the sample plots, the
former were chosen by stratified sampling, with the use
of the stand type as a division criterion (Köhl et al.
2006). The approximate distribution of the various forest
types was obtained from previous inventories. The rea-
soning behind this approach was to capture the most

common forest types, given the limited resources in
terms of the available number of control stands to be
surveyed. The same attributes were determined for the
trees within the control stands as for those measured
within the sample plots. The only difference was the
methodology adopted to determine the tree height. Hav-
ing measured the DBH of all trees within a given control
stand, the height of at least 20 trees per every major spe-
cies was captured in order to cover the entire DBH
range. Eventually, the height of every tree was estimated
based on Näslund’s DBH-height curve (Siipilehto 2000).
As the investigated control stands generally exhibited a
one-layer vertical structure, no substantial error was ex-
pected from this simplification. Moreover, Bouvier et al.
(2019) stressed that DBH/height measurement errors
impose a minor to negligible effect upon LiDAR-based
biomass estimation for even-aged pine stands. The stand
boundaries were first delineated with a GNSS receiver
and (if required) manually adjusted based on the canopy
height model derived from the ALS data. The mean area
of the control stands was approximately 1 ha. The refer-
ence variable of interest for the ith stand—GSVREFi

(m3∙ha− 1)—was calculated as the sum of the single-tree

Fig. 1 Investigated forest districts
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volumes within the stand and normalized to a per hec-
tare value. The data acquired from this type of inventory
served as a validation set for the ALS-based GSV
estimation.

Airborne laser scanning data
ALS PCs were acquired in August 2015 for all study
areas except Katrynka and Herby, where flight missions
were performed 1 year later. The PCs were acquired with
a Riegl LiteMapper LMSQ680i scanner operating at fre-
quencies ranging from 300 to 400 kHz. The average
flight altitude above ground level was 550 m, and the PC
tile overlap was 30%. These settings provided a PC dens-
ity of approximately 12–13 pulse∙m− 2. Although the
ALS data did not vary much between the study areas,
standardization measures were applied to minimize the
influence of ALS data variation. For more details con-
cerning the standardization routines, refer to the section
below—Factors.

Factors
The first factor analysed was the number of circular
sample plots used to calibrate the model for GSV esti-
mation (Eq. 1). The second factor studied was the area
of a single sample plot. Except for a fixed radius, the
age-dependent radius (ADR) approach was tested. In the
ADR, the area of a given sample plot is fixed by the age
of the stand in which the plot is located. The following
age-area intervals were assumed: 20–40 (100 m2), 40–60
(200 m2), 60–80 (300 m2), 80–100 (400 m2), and > 100
(500 m2). The ADR approach is commonly applied by
the Polish state forests (FMM 2012), as the lower vari-
ation in the tree dimensions within younger stands ques-
tions the need for extensive sample plots, which in turn
are more expensive to survey.
The third factor analysed was the PC density (PCd).

Regarding this factor, two sets of various ALS metrics
were computed for all the plots and control stands. The
first set was calculated using a density of 7 pulse∙m− 2,
and the second set was computed using a density of 1
pulse∙m− 2. Thinning routines were conducted using the
authors’ original R script. First, the pulses were ordered
by the sending time. The loop was designed in such a
manner that in a single iteration, every second pulse (by
time) was removed, whereupon the PC density was
checked. Subsequent iterations were executed until the
desired PC density was reached for a given plot. After-
wards, both sets of PCs were independently classified
onto ground and non-ground returns and normalized
with a 1-m digital terrain model (DTM) that was inter-
polated from corresponding ground returns. The inverse
distance weighting k-nearest neighbour approach from
the lidR package (Roussel et al. 2018) was adopted for
DTM interpolation.

General concept
The designed methodology relied on a series of scenarios
(simulations), which were unique in terms of the levels
of the factors. After the levels had been set for a given
scenario, two-phase sampling (Köhl et al. 2006; Miścicki
and Stereńczak 2013; White et al. 2013; Næsset 2014)
was applied to estimate the GSV of the single stands
with the regression estimator (Eq. 1). For example,
single-scenario estimates were derived from the model
calibrated on 100 sample plots, each 300 m2 in size,
where the ALS metrics were calculated at a PC density
of 1 pulse∙m− 2. The estimated stand-level GSV values
from a single scenario were then compared with ref-
erence values (GSVREF) derived from ground measure-
ments. As sample plots can be deployed across the
investigation area in an infinite number of configura-
tions, 1000 random plot draws were performed under
each scenario. Finally, the error distributions were
established based on the scores received from every
single draw per scenario. Figure 2 shows the above
concept. All analyses and data processing steps were
performed in the R programming environment (R
Core Team 2016).

GSV estimation routine and error computation
The two-phase sampling design with the ALS regression
estimator (i.e., the area-based approach or ABA) was ap-
plied to estimate the stand GSV. Our implementation of
the ABA relied on the determination of the relationship
between the dependent variable (here, the GSV) mea-
sured on the ground sample plots and LiDAR-derived
sample metrics (independent/auxiliary variables), both
representing the same spatial locations. Over 200 differ-
ent ALS metrics calculated for a total of 3305 circular
sample plots from all investigation sites were analysed to
create a general form of the model (Eq. 1). First, a
boosted regression trees (BRT) algorithm (Elith et al.
2008) was applied to reduce the high initial number of
predictors by depicting those that were highly correlated
and the most significant to the dependent variable. Next,
the auto-correlated groups of predictors were eliminated
by retaining the most frequently occurring ones in par-
ticular BRT iterations. With the reduced set of predic-
tors, using stepwise regression, we developed a relatively
simple model that would describe the general relation-
ship and would not favour any of the analysed factors.
Equation 1 presents the general form of the proposed es-
timator. In general, the model was capable of explaining
approximately 70%–80% (R2 ≈ 0.7–0.8) of the GSV vari-
ance among the sample plots.

ŷ ¼ a0 þ a1 X1ð Þ1:5 þ a2X2 þ a3X3 ð1Þ

where:
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ŷ - dependent variable ð dGSV Þ (m3∙ha− 1); a0, a1, a2, a3
– regression coefficients; X1 – cubic mean of the height
values from all returns over a plot; X2 – ratio of the num-
ber of first returns above the 2nd height stratum* (For
each plot/cell, the range from 2m above ground level up
to the 95th height percentile was divided into 10 equal
strata) to the number of all first returns; X3 – ratio of the
number of last returns above the 10th height stratum* to
the number of all last returns over plots, X2 and X3 akin to
Næsset (2002) and Gobakken et al. (2012).
Having linked the relationship between the ALS met-

rics and the target variable with Eq. 1, the next step was

to estimate the dGSV over the control stands under each
scenario. A regular wall-to-wall grid was drawn over the
boundaries of each control stand, as shown in Fig. 2,
step 3. The size of a single grid cell under a particular
scenario was identical to the size of the circular sample
plots that were used to calibrate the model under this
scenario. For instance, if under the sth scenario, the cir-
cular sample plots that were used for model calibration
had an area of 400 m2 each, the single grid element was
then a 20-m side length square, etc. Next, the spatial ex-
tent of the edge cells was truncated to the borders of the

stand in which they were located. Each cell’s GSV ( dGSV c)
was estimated based on the model predictors (X1, X2, and

X3), which were computed according to the cell area (fac-
tor II), the level of the PC density (factor III) set under a
given scenario, and the model parameters (a0, a1, a2, and
a3) calibrated for the sample plots, which were selected in
a given draw (factor I). There were 1000 independent
sample draws per scenario to account for the variability of
a given forest district structure (simple random sampling
without replacement from the grid). No plots from outside
the forest district given the specific scenario were consid-
ered in model calibration. The final GSV estimate of the
ith control stand under the sth scenario and dth draw

( dGSV isdÞ was the mean of all dGSVc values determined for
that stand, weighted based on the cell area (Fig. 2, steps 3
and 4). Area weighting was performed to reduce the influ-
ence of the edge cells (the silver cells) (Næsset 1997),
which often exhibit a tree structure different from that ob-
served in the inner parts of the forest stand. Moreover,
edge cells are commonly assigned a larger estimation
error, as they usually border roads, meadows, or other dif-
ferent structures. Whenever applied in this study, area
weighting decreased the magnitude of the estimation

error. The estimated dGSV isd value was juxtaposed with
the corresponding reference value—GSVREFi. Based on the
obtained residuals, the errors expressed as Eqs. 2 and 3
were calculated for the dth draw and sth scenario. Having

Fig. 2 Graphical representation of the designed methodology
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computed the errors from all the draws, their distribution
under a given scenario could be easily generated, as shown
in Fig. 2, step 7.

nRMSEds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

dGSV isd −GSVREFi

� �2

N

vuut

� 100%

GSVREF
ð2Þ

nBIASds ¼
PN

i¼1
dGSV isd −GSVREFi

� �
N

� 100%

GSVREF
ð3Þ

where:
nRMSEds – normalized root mean square error for the

N control stands under the sth scenario and dth draw;
nBIASds – normalized systematic error for the N con-

trol stands under the sth scenario and dth draw;
N – number of control stands in a forest district;

GSVREFi – reference growing stock volume of the ith

control stand (m3∙ha− 1);dGSV isd – estimated growing stock volume of the ith

control stand under the sth scenario and dth draw
(m3∙ha− 1);
GSVREF – mean reference growing stock volume from

all the control stands in a forest district (m3∙ha− 1).

Results
Common trends
Figures 3 (nBIAS) and 4 (nRMSE) reveal the general in-
fluences of all 3 factors on the performance of the two-
phase ABA approach under the applied estimator. The
range of the errors obtained is shown according to the
levels of particular factors. The gain due to the number
of sample plots is shown along the vertical axis of each
graph. The gain due to their area is shown from left to
right. The whiskers delineate the range where 95% of the
best scores were found for a given scenario. The

Fig. 3 nBIAS distributions of the stand-level GSV estimations across the analysed factors. Factor III – point cloud density: 1 pulse∙m−2 – grey
boxplots, 7 pulse∙m−2 – blue boxplots. Objects: S – Suprasl, P – Piensk, M – Milicz, H – Herby, K- Katrynka. *ADR – age-dependent radius, ** Milicz
and Herby only
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boxplots enclose the interquartile range of the errors,
and the centreline indicates the median error. The col-
ours denote the levels of factor III, i.e., the PC density.
To ensure figure clarity, we show the results only up to
the level of 600 sample plots, as we did not observe any
notable improvement in performance when more sample
plots were considered.
The most common trend visible in Figs. 3 and 4 is a

lack of significant differences among the distributions
according to factor III—the PC density. Therefore, this
implies that this factor had little influence on the imple-
mented methodology. Next, the number of sample plots
(factor I) affected the error distributions more than the
sample plot area (factor II). An increase in the number
of sample plots improved both the precision, i.e., the
range of errors obtained due to repeated application of
the sampling procedure, and the accuracy of the esti-
mates, i.e., small absolute error values. This gain was
notable only up to a certain level. For instance, we did
not observe nBIAS exceeding +/− 5% or a nRMSE value
of 20%, above the level of 300 sample plots of 200 m2.

However, the results were generally slightly overesti-
mated. The distributions across the sites were similar
but not exactly the same. Excluding the most parsimoni-
ous scenarios, i.e., < 25 plots of 100 m2, the best results
were observed for the Katrynka and Herby forest dis-
tricts, whereas the largest errors occurred for Milicz and
Piensk, regardless of the scenario. Moreover, for Milicz,
the widest range of errors was observed, which might be
due to the slightly more complex stand structure than
that at the other sites (≈ 40% of the broadleaved stands).

Accuracy
In general, the nBIAS gradient was consistent across the
investigated sites (Table 2, Fig. 3). A small overesti-
mation was observed for all objects except Katrynka,
where the transition from overestimation to underesti-
mation occurred between the levels of 100 and 300 m2

of the sample plot area. We did not observe any substan-
tial change in the nBIAS distribution above the 200-m2

plot level in the other objects. For the nBIAS ranges, the
factor of the number of sample plots suppressed the

Fig. 4 nRMSE distributions of the stand-level GSV estimations across the analysed factors. Factor III – point cloud density: 1 pulse∙m−2 – grey
boxplots, 7 pulse∙m−2 – blue boxplots. Objects: S – Suprasl, P – Piensk, M – Milicz, H – Herby, K- Katrynka. *ADR – age-dependent radius, ** Milicz
and Herby only
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range of the obtained errors the most. The narrowing ef-
fect was the most visible up to a level of approximately
300 sample plots, above which the gain due to this factor
diminished. However, regarding this effect, one should
bear in mind that according to Newton’s binomial the-
orem, while increasing the number of elements chosen
from a finite set of elements, the number of possibilities
decreases after a certain subsample level. Therefore, the
obtained results should be analysed with a certain degree
of caution. However, by increasing the sample size, one
should expect more biased results (e.g., > 8%) to be less
probable.

Precision
Regarding nRMSE, the distributions (Table 3, Fig. 4)
were not as coherent across the districts as was the case
for nBIAS. Excluding certain scenarios, e.g., < 100 sample
plots of 100 m2, the Katrynka forest district attained the
lowest nRMSE (≤ 15%) with the narrowest range (≤ 2%),
whereas Piensk achieved the highest error rate (≤ 20%),
and Milicz was found to have the widest nRMSE range
(≤ 5%). Again, the number of sample plots imposed the
strongest impact on nRMSE until a level of 300 plots,
above which we did not observe nRMSE values higher
than 20% in any object, provided that sample plots of at
least 200 m2 were used. No remarkable change in the
nRMSE distribution was observed above 300 m2. Negli-
gible improvement (up to 1% under most scenarios) was
observed with the transition from 1 to 7 pulse∙m− 2, in
contrast to nBIAS, where no gain due to the PC density
was observed.

Discussion
Benefits
This study points to the wide benefits of the application
of ALS data in conducting forest inventories. The
method analysed enables the acquisition of practical in-
formation on single-stand wood resources over vast for-
est areas. The reduction in sampling intensity as a result
of using ALS support could likely compensate for the
cost of flight missions. Ene et al. (2013) stated that ALS-
aided inventories can be a cost-efficient alternative to
conventional approaches. Lower inventory costs could
result in more frequent data updates than in the case of
conventional surveys, which are conducted with intervals
of a few years. Moreover, traditional design-based
methods aim to assess the mean/variance in the entire
population (forest district) or specific strata (forest types)
(Köhl et al. 2006; Ståhl et al. 2016), providing little or
even no knowledge of the attributes of specific popula-
tion elements. If detailed inventory data are needed, total
field surveying might be conducted. Nevertheless, such
an assignment must be limited to a particular stand or
small areas for economic reasons. Therefore, the main

step towards improvement shall be manifested in the
possibility of acquiring knowledge of every single stand
or even every single tree (Maltamo et al. 2004; Packalén
et al. 2008; Bergseng et al. 2015) across entire regions,
including hardly accessible sites while incurring reason-
able costs. Thus, the results of this study provide look-
up tables representing exemplary commitment (the sam-
pling intensity) and expected outputs in terms of the
error distributions.

Factors
Our results show the broad possibility of maintaining a
relatively low sampling intensity. There seems to be no
point in increasing the sampling intensity above a cer-
tain threshold. First, increasing the PC density from 1 to
7 pulse∙m− 2 seems to be pointless if the GSV is the tar-
get variable to be assessed at the stand level. Similar
conclusions regarding this matter have been drawn by
Watt et al. (2013) and Bouvier et al. (2019). Second,
practical improvement due to the sample plot area was
attained only up to a level of approximately 200/300 m2.
One has to be careful when using smaller plots on Scots
pine-dominated stands as the precision of the GSV esti-
mates may decrease (Fig. 4, Table 3), even up to a
nRMSE value of approximately 40% as in Næsset (1997).
The ADR also seems to be a promising sampling design,
as it can reduce some workload, and the errors obtained
did not differ much from fixed-radius scenarios.
The number of sample plots was found to be the fac-

tor with the strongest influence on the results. By
exploiting 300 sample plots, it was possible to maintain
nRMSE (Fig. 4) below 20% for Piensk and below 12% for
Katrynka, with a minimal gain due to additional sample
plots. The nRMSE value varied between the objects. All
these findings suggest that the stand structure imposes a
significant influence on the estimation precision. Re-
ferring to the level of 300 sample plots, the model
produced systematic errors within the range of +/−
5%, indicating a slight overestimation tendency (Fig.
3). The obtained bias could have inter alia occurred
due to the slightly lower GSV values characterizing
the control stands than those characterizing the sam-
ple plots (Table 1). Although the bias issue is known
and looms large over many model-based estimators
(Köhl et al. 2006), we also obtained unbiased scores.
As shown in Fig. 3, quite a few draws derived un-
biased model parameters, particularly certain sparse
scenarios, e.g., 50 plots of 200 m2. These results
could be due to chance, but as simple random sam-
plings were simulated based on a regular network of
circular sample plots, in the second phase of the sam-
pling design, a reduction in random scores is ex-
pected if ALS variables are used for stratification and
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deployment of sample plots, as in the case of Gobak-
ken et al. (2013). Moreover, we do not expect any
substantial change in error distribution across the
analysed factors even if the validation dataset was a
perfect representation of the training sample plots.

Relation to existing studies
How does our research correspond to the results pub-
lished in other studies? According to Knofczynski
(2017), n = 95 would be the minimum recommended
sample size if the model used in this research was tested
with his method, where sample size estimation involves
a number of predictors (3 in this case) and correlation of
the strongest predictor (X1 in Eq. 1) with the criterion
(r ≈ 0.8). As a rule of thumb, Bujang et al. (2017) stated
that for multiple linear regression, the minimum sample
size should be 300 to derive statistics that sufficiently
represent population parameters in non-experimental
study designs. Following the recommendations by Voor-
his and Morgan (2007), Harris (1985) and Green (1991),
the minimum recommended sample size in our research
would have been 51, 53 and 74, respectively. Regarding

empirical studies, Gobakken et al. (2013) reported that
40 sample plots of 250 m2 allocated with the support of
ALS data were enough to provide reliable GSV esti-
mates, i.e., a nBIAS level between 2% and 6% and
nRMSE ranging from 15%–18% (average values after 300
iterations). Similar results were found by Bouvier et al.
(2019), who also recommended the use of at least 40
plots (but larger than 530 m2) to obtain a robust
model for pine plantation biomass estimation; how-
ever, as in our study, this led to slightly overestimated
results. Junttila et al. (2010) applied non-parametric
and Bayesian methods utilizing extra plots from previ-
ous missions. In that study, only 30–60 new plots of
250 m2 were sufficient to provide satisfactory GSV es-
timates, i.e., a nBIAS SD of 3.5% and a mean nRMSE
of 21% out of 50 iterations, at a PC density below 1
pulse∙m− 2. In Stereńczak et al. (2018), 100–200 plots
of 500 m2 produced nBIAS and nRMSE values below
+/− 5% and 20%, respectively. Fassnacht et al. (2018)
bridged theoretical and empirical approaches for sam-
pling intensity evaluation in a novel manner, by com-
bining real and simulated data. Despite the biomass

Table 3 nRMSE (%) distributions of the stand-level GSV estimations across the analysed factors. Objects: S – Suprasl, P – Piensk, M –
Milicz, H – Herby, K – Katrynka. *ADR – Age-Dependent Radius

Quantiles Sample plot size (m2) Number
of
sample
plots

100 200 300 400 500 ADR*

97.5% 31 36 46 30 31 26 28 34 24 21 22 27 33 20 18 22 26 29 18 18 22 25 28 18 18 22 25 28 20 18 25

Median 18 21 23 16 16 16 20 20 15 13 16 19 19 14 14 16 20 18 14 14 16 20 18 13 13 16 20 19 14 13

2.5% 15 17 15 12 11 14 17 15 12 12 14 17 15 12 13 14 17 14 12 13 14 17 14 11 12 14 17 15 12 12

97.5% 25 29 35 28 22 19 24 28 18 16 18 24 25 16 16 18 24 24 15 16 19 23 23 15 14 19 23 24 16 15 50

Median 16 20 21 14 14 15 19 18 14 12 15 19 18 13 14 15 19 17 13 13 15 19 17 13 12 15 19 18 13 13

2.5% 14 17 15 12 11 14 17 15 11 12 14 17 15 11 13 14 17 14 12 13 14 17 14 11 11 14 17 15 12 12

97.5% 21 24 30 21 19 17 22 24 16 14 17 22 23 15 15 17 22 21 14 14 17 21 21 14 13 17 21 21 15 14 100

Median 16 19 21 14 13 15 19 18 13 12 15 19 18 13 13 15 19 17 13 13 15 19 17 12 12 15 19 18 13 12

2.5% 14 18 15 12 11 14 17 15 12 12 14 17 15 12 13 14 18 14 12 13 14 18 15 12 11 14 18 15 12 12

97.5% 18 21 26 17 16 16 21 21 15 12 16 20 20 13 14 16 21 19 13 14 16 20 19 13 12 16 20 20 14 13 200

Median 16 19 20 13 13 15 19 17 13 12 15 19 17 12 14 15 19 16 12 13 15 19 17 12 12 15 19 17 13 12

2.5% 14 18 16 12 12 14 18 15 12 12 14 18 16 12 13 14 18 15 12 13 15 18 15 12 11 14 18 16 12 12

97.5% 17 20 25 16 15 15 20 20 14 12 15 20 19 13 14 16 20 18 13 14 16 20 18 13 12 16 20 19 13 13 300

Median 16 19 20 13 13 15 19 17 13 12 15 19 17 12 13 15 19 16 12 13 15 19 17 12 12 15 19 17 13 12

2.5% 15 18 16 12 12 14 18 15 12 12 14 18 16 12 13 15 18 15 12 13 15 18 15 12 11 15 18 16 12 12

97.5% 17 20 24 15 14 15 20 19 14 12 15 19 19 13 14 15 20 18 13 13 16 19 18 13 12 15 19 19 13 12 400

Median 16 19 20 13 13 15 19 17 13 12 15 19 17 12 13 15 19 16 12 13 15 19 17 12 12 15 19 17 13 12

2.5% 15 18 17 12 12 14 18 16 12 12 14 18 16 12 13 15 19 15 12 13 15 19 15 12 12 15 18 16 12 12

97.5% – – 22 14 – – – 18 13 – – – 18 13 – – – 17 12 – – – 17 12 – – – 18 13 – 600

Median – – 20 13 – – – 17 13 – – – 17 12 – – – 16 12 – – – 17 12 – – – 17 13 –

2.5% – – 18 12 – – – 16 12 – – – 16 12 – – – 16 12 – – – 16 12 – – – 17 12 –

S P M H K S P M H K S P M H K S P M H K S P M H K S P M H K
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being the target variable, the trends reported were
similar to those in our study.
As is evident from the above examples, the reality is

not too far removed from the theory. Many studies (in-
cluding ours) have reported nRMSE values oscillating
below 20% and nBIAS values up to 5% using a sample
size derived from theoretical assumptions. The current
research has yet to specify the acceptable intervals for
these kinds of errors. The acceptable error magnitude
should depend on the data quality, field specification,
available resources, and, above all, the inventory goal. In
the presented case, the goal was to estimate the stand-
level GSV. Ideally, the aptness of this question should be
clarified via a comparison to other methods. It is import-
ant to recognize the needs and alternative solutions.
This study was solely focused on the GSV, as it is closely
related to carbon and biomass stocks, which currently
seem to be crucial indices for many activities related to
climate change mitigation. Nevertheless, ALS-based in-
ventory methods can provide a number of other vari-
ables, e.g., the tree height, stem density, basal area, and
species identification, many of which may be important
to foresters. Therefore, the end-users should also have a
say in this regard.

Constraints
However, prior findings cannot be directly compared to
ours because we investigated the error rate at the single-
stand level, in contrast to many other studies, in which
models were validated using only sample plots. Eventu-
ally, foresters are interested in stands, not merely sample
plots. We recognize this issue as a novelty in the field.
Moreover, not exactly the same sampling designs and es-
timators were applied in the cited examples. Some limi-
tations of our test should also be mentioned. The
presented results should be considered with a degree of
caution as the following error components have not
been excluded by the research: (i) only one instance of
the general form of the model (note: Saarela et al. (2015)
found the type of regression model to have a moderate
effect on the precision) and (ii) only one aggregation
function (the area-weighted mean) was used for the
transition from the sample plot level to the stand level,
(iii) the intrinsic error of dendrometric equations was
considered to derive the reference data (Bruchwald
1999), (iv) only object-specific stand structures (mostly
Pinus sylvestris-dominated stands) were studied, and (v)
one sampling method. Therefore, the obtained distribu-
tions can only be considered expected results, although
the entire dataset was large. The above-listed issues de-
serve to be further investigated in greater detail, for ex-
ample, by testing non-parametric estimators such as
random forest or regression trees, especially considering
the notable results obtained by Yang et al. (2019), who

found random forest imputations to be efficient for
small sample sizes (e.g., below 50). The stratification of
the area according to the stand structure should also be
investigated, as we have observed its potential influence,
which would be perhaps more relevant if one had to
evaluate more species-diversified forest districts. Lastly,
we assumed that applied sampling method would not
favour any analysed factor, as the draws were random
from a very dense grid of sample plots. It also enabled
us getting many possible outcomes. We do not recom-
mend any sampling method in this article, however this
certainly should have some influence on the final per-
formance. On the other hand it would dramatically ex-
pand the article, thus making it more convoluted. In this
study we wanted to present only general trends and pos-
sibilities. However, accounting for these factors would
probably more reliably validate the results and ensure
that they were more generally applicable.

Conclusions
A considerable number of studies dedicated to the
utilization of ALS data to aid of contemporary forest in-
ventories have emphasized the relevance of RS tech-
niques for environmental surveys. Knowledge of the
relationship between the sampling intensity and possible
accuracy may be relevant for decision-makers prior to
survey campaigns. Having outlined the above relation-
ship, we can draw the following conclusions. Even a low
scanning density such as 1 pulse∙m− 2 may be sufficient
for the growing stock inventory. The analysed inventory
method enables maintaining the sampling intensity at
200 − 300 sample plots ranging from 100 − 200 m2.
Negligible score improvement is attained above these
thresholds. Reduced inventory costs can result in more
frequent data updates than in the case of conventional
surveys, data from which expire quickly.
In this study, simple random sampling was applied to

systematic network of plots. This means no prior know-
ledge of the surveyed object. However, as in the case of
managed forest districts, such information should usu-
ally be available. Moreover, certain drawings at sampling
levels below the above thresholds generated results com-
parable to those obtained at higher levels. This could be
related to factors such as the sampling scheme and in-
tensity, the estimator type, and their synergistic effect on
the overall performance of the ALS-aided stock inven-
tory. The abovementioned aspects support the need for
further sampling optimization with respect to other sam-
pling methods and local ecosystem conditions.
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