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Abstract

Background: Aboveground biomass (AGB) is a fundamental indicator of forest ecosystem productivity and health
and hence plays an essential role in evaluating forest carbon reserves and supporting the development of targeted
forest management plans.

Methods: Here, we proposed a random forest/co-kriging framework that integrates the strengths of machine
learning and geostatistical approaches to improve the mapping accuracies of AGB in northern Guangdong Province
of China. We used Landsat time-series observations, Advanced Land Observing Satellite (ALOS) Phased Array L-band
Synthetic Aperture Radar (PALSAR) data, and National Forest Inventory (NFI) plot measurements, to generate the
forest AGB maps at three time points (1992, 2002 and 2010) showing the spatio-temporal dynamics of AGB in the
subtropical forests in Guangdong, China.

Results: The proposed model was capable of mapping forest AGB using spectral, textural, topographical variables
and the radar backscatter coefficients in an effective and reliable manner. The root mean square error of the plot-
level AGB validation was between 15.62 and 53.78 tha™ ', the mean absolute error ranged from 6.54 to 32.32 tha™ !
the bias ranged from —2.14 to 1.07 tha™ ', and the relative improvement over the random forest algorithm was
between 3.8% and 17.7%. The largest coefficient of determination (0.81) and the smallest mean absolute error (6.54
tha™ ') were observed in the 1992 AGB map. The spectral saturation effect was minimized by adding the PALSAR
data to the modeling variable set in 2010. By adding elevation as a covariable, the co-kriging outperformed the
ordinary kriging method for the prediction of the AGB residuals, because co-kriging resulted in better interpolation
results in the valleys and plains of the study area.

Conclusions: Validation of the three AGB maps with an independent dataset indicated that the random forest/co-
kriging performed best for AGB prediction, followed by random forest coupled with ordinary kriging (random
forest/ordinary kriging), and the random forest model. The proposed random forest/co-kriging framework provides
an accurate and reliable method for AGB mapping in subtropical forest regions with complex topography. The
resulting AGB maps are suitable for the targeted development of forest management actions to promote carbon
sequestration and sustainable forest management in the context of climate change.
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Introduction

Forests play an important role in global carbon cycling
because they act as carbon sinks and sources for atmos-
pheric CO, (Pan et al. 2011; Chave et al. 2014). Forest
aboveground biomass (AGB) is an indicator for assessing
forest ecosystem productivity and health and determin-
ing the potential for carbon storage and carbon sink, as
well as an important parameter for estimating carbon
emissions and disturbances caused by land use and cli-
mate change (Schulze 2006; Muukkonen and Heiskanen
2007; Baccini et al. 2017; Rodriguez-Soalleiro et al.
2018). Currently, the most accurate methods for obtain-
ing forest AGB are the use of site- and species-specific
allometric equations based on measured forest biometric
parameters, such as the diameter at breast height (DBH),
height, crown closure, and stem density (Chave et al
2014; Ali et al. 2015; Paul et al. 2015). However, due to
the time required to obtain the field data, the biomass
information is often outdated when it is used (Chave
et al. 2014). Thus, region-level estimates of AGB using
only field data may not attain the same precision and
timeliness as methods that combine field data with aux-
iliary information, such as remote sensing data.

Remote sensing images contain abundant spectral and
textural information and have excellent temporal and
spatial resolutions, wide coverage, and excellent timeli-
ness (Zhu and Liu 2015). The combination of forest in-
ventory plots and remote sensing data to estimate forest
AGB has become a mainstream method (Lu 2006; Lu
et al. 2016) in the last decades. Remote sensing-based
AGB estimates have used three types of remotely sensed
data: optical imagery, radar, and light detection and
ranging (LiDAR), depending on the spatial resolution re-
quired and the application purposes. Optical remote
sensing data are the most widely available type of data.
The most commonly used optical data include low-
resolution AVHRR and MODIS (Li et al. 2018),
medium-resolution Landsat and SPOT data (Gasparri
et al. 2010; Zhu and Liu 2015), and high-resolution IKO-
NOS, Quickbird, Worldview, and drone data (Proisy
et al. 2007; Arroyo et al. 2010; Dassot et al. 2012). High
spatial resolution images have a significant amount of
shadows from trees and terrain, resulting in errors for
AGB estimation (Thenkabail et al. 2004; Vaglio Laurin
et al. 2019). Due to the high cost of the imagery, the esti-
mation of biomass is often limited to a relatively small
area (Foody et al. 2001; Gonzalez et al. 2010). Mean-
while, biomass estimation using low-resolution remote
sensing images typically has two major drawbacks,
namely, mixed pixels and difficulty to match the pixel
size with the sample plot size; these problems result in
relatively large errors of AGB estimates, limiting the
application to national, continental, or global scales
(Chopping et al. 2011; Baccini et al. 2012). In contrast,
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medium-resolution Landsat (30 m) data are widely used
in combination with sample plot data for AGB estima-
tions in the past two decades because they are freely
available since 2008, have a 16-day revisit time, and ob-
tain wide coverage. In addition, the 30-m resolution is
similar to the size of sample plots in the national forest
inventory of China (NFlIs), thus reducing the error when
matching the pixel to the field plot and obtaining better
estimation results (Hall et al. 2006; Powell et al. 2010;
Karlson et al. 2015).

In structurally complex forests, spectral saturation is
encountered when using optical remote sensing imagery,
causing estimation errors for areas of large biomass
(Mermoz et al. 2015). Optical images are also susceptible
to the influence of clouds and differences in solar illu-
mination (Avtar et al. 2012). The successful launch of
the Advanced Land Observing Satellite (ALOS) Phased
Array L-band Synthetic Aperture Radar (PALSAR) in
2007 has increased the use of radar data to measure bio-
mass. The instrument is the first long-wavelength (L-
band, 23-cm wavelength) synthetic aperture radar (SAR)
satellite sensor, it has the capability of collecting data in
single, dual, full scan-SAR mode, and can provide cross-
polarized (horizontal-transmit, vertical receive (HV))
data and co-polarized (horizontal-transmit, horizontal
receive (HH); vertical-transmit, vertical receive (VV))
data (Avtar et al. 2013). The high penetration capability
of SAR allows for extensive information extraction of
the structural parameters of plants for improving bio-
mass estimation. Methods that use L-band radar and op-
tical data to estimate AGB have proven successful in
forests with low to medium biomass levels (Lu et al.
2012; Mitchard et al. 2012; Ploton et al. 2013; Shen et al.
2019) but similar to passive optical remote sensing, these
systems suffer from signal saturation at high AGB and
show limited sensitivity to large AGB. Thus, the combin-
ation of optical and radar systems to estimate AGB in
dense tropical and subtropical forests remains problem-
atic and often results in the underestimation of AGB in
complex and mature forests (Sandberg et al. 2011). Fur-
thermore, radar systems are affected by terrain, surface
moisture, and speckle noise (Imhoff 1995; Martins et al.
2016; Mermoz and Le Toan 2016). As such, light detec-
tion and ranging (LiDAR) is an active remote sensing
technology capable of providing detailed, spatially expli-
cit, and three-dimensional information on forest canopy
structure (Lefsky et al. 2002b). Thus, LiDAR estimates of
AGB provide better precision than radar and optical data
(Cao et al. 2016). However, it is expensive to collect
wall-to-wall LiDAR for forest structure characterization
over large areas, e.g., at the state or country level. Thus,
current LiDAR systems are limited to areas smaller than
those extents. Multi-source remotely sensed images in
conjunction with appropriate statistical modeling
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algorithms are regarded as an effective and reliable
means for mapping AGB over large areas.

Linear regression models have been widely used in
early studies of AGB estimation (Myneni et al. 2001;
Lefsky et al. 2002a). This parametric method is simple
and straightforward, but can require strict assumptions
on the model error and the normality of dependence
variable. In addition, relationship models for practical
AGB estimation are limited because of the complex non-
linear relationship between forest AGB and remote sens-
ing features. Non-parametric methods do not require a
strictly linear relationship between the response and co-
variates, and training data are used to train the model to
estimate the parameter of interest. Due to the develop-
ment of non-parametric estimation models, numerous
studies on forest biomass estimation have used these
methods in recent years, including the k-nearest neigh-
bor (KNN) method (Chirici et al. 2008), neural networks
(Foody et al. 2001), support vector machines (SVM)
(Chen et al. 2010; Shen et al. 2018) and decision trees
(Hansen et al. 2016). Random forest (RF) is a machine
learning algorithm based on decision trees that has been
used extensively for forest AGB mapping using remote
sensing data in the last two decades. RF provides higher
accuracy than comparative machine learning methods
and conventional statistical regressions because RF is
less sensitive to noise in the training samples (Powell
et al. 2010; Hoover et al. 2018; Zhao et al. 2019). How-
ever, a major shortcoming of RF is that it ignores the
spatial autocorrelation of the data when mapping the
feature distribution (Chen et al. 2019a).

Geostatistics is based on the theory of regionalized
variables; it does not only quantitatively describe spatial
heterogeneity or spatial correlation but also establishes a
spatial prediction model to interpolate and estimate
spatial data (Isaaks and Mohan 1989). Kriging is a geos-
tatisticial method and is also known as local spatial esti-
mation or local spatial interpolation; it provides the best
linear unbiased prediction (BLUP) of the regionalized
variable values in a limited area and is based on the the-
ory of variograms and structural analysis (Le and Zidek
2006). On the basis of linear regression, kriging needs to
assume the spatial stability in the spatial variation ana-
lysis within limited distance, which can make up for the
defects of non-parametric models (RF) to some extent.
Fox et al. (2020) proposed the random forest regression
kriging (RFRK) model to improve the two techniques by
comparing spatial regression and the RF (Fox et al
2020). The prediction accuracy of RF model combining
with kriging outperformed RF for predicting the spatial
distribution of soil attributes and pollutant concentra-
tions (Guo et al. 2015; Tziachris et al. 2019). Several
studies have focused on AGB prediction using remote
sensing data from different sources based on RF coupled
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with ordinary kriging (OK) (RFOK); this method com-
bines RF predictions and residual estimations by OK
(Chen et al. 2019a; Silveira et al. 2019a). OK is a linear
estimation method that is suitable for inherently station-
ary random fields and satisfies the isotropic hypothesis.
In a large study area, the interpolation of the RF resid-
uals is affected by the uneven distribution of terrain and
climate, and OK is the most suitable method (Cressie
1990; Le and Zidek 2006). Co-kriging (CK) is an exten-
sion of OK and uses one or multiple auxiliary variables
to interpolate the variables of interest. The auxiliary vari-
ables are related to the target variables and are used to
improve the accuracy of target prediction (Chatterjee
et al. 2015).

Subtropical and tropical forests are very diverse (in the
type, climate, and site conditions), with high uncertainty
of AGB estimates. AGB prediction models trained with
limited ground observations in tropical or subtropical
forests over a large area are prone to overfitting and do
not describe local features adequately (Lu et al. 2016;
Zhao et al. 2016). In this case, the optimized integration
of multiple types of remote sensing data and multiple
modeling algorithms may provide an alternative to re-
duce high uncertainty (Yu et al. 2014; Santoro et al.
2015). Numerous studies have combined active and pas-
sive remote sensing data sources for forest mapping over
large spatial scales (Shen et al. 2016; Su et al. 2016; Deo
et al. 2017). However, there are few studies on AGB
mapping of large areas in subtropical forests using the
combination of RF and CK (RFCK), especially in moun-
tainous areas with complex terrain. In this study, we
proposed a framework that uses field sample plot data,
time-series passive and active remote sensing data, and
co-kriging with RF models to improve the mapping ac-
curacy of AGB of subtropical forests in southern China
for the years 1992, 2002, and 2010. We expect that the
results of this study will support the strategic develop-
ment of carbon sequestration forests and sustainable for-
est management practices.

Materials and methods

Study area

The study area is located in northern Guangdong Prov-
ince (extending from 113.10° E, 23.64° N to 114.75° E,
25.44° N), China, and includes the administrative cities
of Shaoguan, Qingyuan, and Heyuan (Fig. 1). The topog-
raphy is undulating, and the elevation ranges from 13 to
1709 m above sea level. The area has a mid-subtropical
monsoon climate, with mean annual precipitation of
1300 to 2400 mm and a mean annual temperature of
18°C to 21 °C. The rainy season lasts from March to Au-
gust, and approximately 53% of the annual precipitation
falls between April and June. The vegetation includes
natural forests and plantations. The dominant tree
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Fig. 1 The study area in Northern Guangdong, China. Study area and field sampling sites in 201 (upper left) and overview map and legend
(lower left). Landsat p122r043 footprint, color composite of PALSAR images at 25 m spatial resolution, and the study area (red line) (upper right);
the 2010 image is displayed as RGB=HV, HH, HH/HV. DEM of the study area (lower right)

species are Pinus massoniana, Cunninghamia lanceo-
lata, Pinus elliottii Engelm, Eucalyptus, Pinus kwangtun-
gensis, Castanopsis  fissa, Acacia mangium, and
Phyllostachys edulis. Most of these species are evergreen
and fast-growing. Other vegetation includes deciduous
trees and shrubs. The most common meteorological
events causing plant damage in the region are chilling
events, storms, floods, and droughts.

Data collection

Field data

The NFI in China is the first level of China’s three-tiered
inventory system, which is administered by the State
Forestry and Grassland Administration (Xie et al. 2011).
The system is based on permanent sample plots col-
lected using a systematic sampling design. Estimates of
forest attributes are typically produced using design-
based inference. The NFI has been conducted nine times
from the 1970s to 2017, with a cycle of 5 years; the
sample sites are fixed and evenly distributed. The
Guangdong Provincial Center for Forest Resources
Monitoring provided us with nine NFI datasets collected
between 1979 and 2017 to support this research. In this
study, we used 4 years (1992, 2002, 2007 and 2012) of
data from the inventory plots located in the study area.
The hundreds of plots with a size of 25.82 m x 25.82 m

(0.0667 ha) were located in the study area. The AGB of
the plots was derived using tree species-specific allomet-
ric equations developed by the Guangdong Provincial
Center for Forest Resources Monitoring. The AGB is
calculated using linear or non-linear regression models
and DBH, tree height, and wood density of the surveyed
trees. The biomass of the sample plots in 2010 was ob-
tained by linear interpolation of the results of 2007 and
2012 to match the date of the used remote sensing data.

Since most remote sensing images have some amount
of cloud cover, the sample plots covered by clouds in
the images were excluded in the analysis to obtain more
accurate inversion results. Additionally, quality control
of the raw sample data was selected to remove unreliable
observations. Statistical analysis was conducted in SPSS
software (version 21.0, IBM, Armonk, NY, USA) after
screening of the samples in the three inventories. Values
that were larger or smaller than the mean plus/minus
three times the standard deviation were considered out-
liers and were removed. The AGB unit used in this
paper is tons per hectare (tha™ ).

Landsat data and SRTM digital elevation data

The Shuttle Radar Topography Mission (SRTM) digital
elevation data produced by NASA represents a break-
through in global digital elevation mapping, providing
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access to high-quality elevation data for large portions of
the tropics and other areas of the developing world. This
study used a free digital elevation model (DEM) with a
resolution of 90 m (https://earthexplorer.usgs.gov/). We
extracted geographical variables from the DEM data. We
resampled the SRTM data from 90 to 30 m resolution
for consistency with the image data and extracted the
slope and aspect in ArcGIS.

The study area of Northern Guangdong is covered by
the Landsat World Reference System-2 path/row 122/
043 tile. The Landsat 5-Thematic Mapper (TM) imagery
was acquired from the United States Geological Survey
(USGS) EROS data center (https://glovis.usgs.gov/). We
downloaded the images for 3 years (1992, 2002 and
2010) and ensured that the acquisition dates of the im-
agery fell into the growing season, and the images had
minimal cloud cover (Table 1).

The Landsat ecosystem disturbance adaptive process-
ing system (LEDAPS) is an image preprocessing algo-
rithm developed by NASA for the generation of surface
reflectance for the analysis of long-term time-series
Landsat data. The algorithm is based on the 6S radiation
transmission model and performs inversion of atmos-
pheric parameters, such as aerosol data, the visible,
near-infrared, and short-wave bands of Landsat TM/En-
hanced Thematic Mapper (ETM) + data (Vermote and
Saleous 2007). In this study, LEDAPS was used to obtain
surface reflectance products through geometric correc-
tion, radiometric calibration, atmospheric correction,
and F-mask processing for cloud detection. Subse-
quently, the C-correction (Fan et al. 2014) model was
used to conduct topographic correction based on the
surface reflectance data. The relationship between the
slope and aspect from the DEM and the solar azimuth
was used to correct the pixel reflectance value in the
shadows of the mountains.

It is crucial to select appropriate variables for the in-
version of remote sensing data to determine AGB. We
performed spectral feature transformations, including
principal components analysis (PCA), tasseled-cap trans-
formation, and extraction of vegetation indices to obtain
suitable variables. In addition to the six original bands of
the image (excluding the thermal infrared band), we also
extracted the reciprocal reflectance of the band as an
additional variable for the inversion.

For extracting image texture, the first principal com-
ponent (PC1) of the PCA, which contained more than

Table 1 Description of the Landsat imagery used in this study

Filename Acquisition time Cloud cover (%)
L T51220431992212BJC0O0 1992/07/30 3
LT51220432002287BJCO0 2002/10/14 4
LT51220432010085BKT00 2010/09/26 11
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80% of the original spectral information, was used to ex-
tract image texture using eight texture variables. The
texture variables were calculated with three window
sizes (3x 3, 5x5, and 7 x7) with an offset ([1, 1]) and
64 Gy-level quantification.

ALOS PALSAR data

The ALOS/PALSAR data were pre-processed at the Japan
Aerospace Exploration Agency (JAXA). The global 25 m
resolution PALSAR/PALSAR-2 mosaic is a seamless glo-
bal SAR image created by mosaicking SAR images of the
backscattering coefficient obtained from PALSAR/PAL-
SAR-2, where all the paths within 10 x 10 degrees in lati-
tude and longitude are path-processed and mosaicked for
processing efficiency. Since the ALOS/PALSAR data
ranged from 2007 to 2010, we selected the mosaicked im-
ages of the study area in 2010 to match the sample field
data and Landsat images. Correction of the geometric
distortion specific to SAR (orthorectification) and topo-
graphic correction based on image intensity (slope correc-
tion) were performed to facilitate forest classification. The
digital numbers of the SAR signal amplitude were ex-
tracted from the imagery and were converted to backscat-
tering coefficients in dB using Eq. 1:

¢°(dB) = 10 log,,(DN?) + CF (1)

where DN is the digital number of the amplitude of the
HH and HV backscatters (expressed as an unsigned
short integer), and CF is the absolute calibration factor,
which is equal to —83 (dB). A 7 x 7 Lee filter was used
on the HH and HV backscatter images to reduce speckle
noise (Lee 1980).

The variables included the HH and HV polarizations
and HH/HV and the radar forest degradation index
(REDI)(HH - HV)/(HH + HV) (Aslan et al. 2016). The
RFDI is a useful input layer for wetland vegetation map-
ping because HH polarized data are sensitive to water
beneath the canopy, whereas HV polarized data are
known for the sensitivity to volume scattering and bio-
mass (Hess et al. 1995; Wicaksono 2017). The derived
variables were resampled to 30-m resolution using bilin-
ear interpolation to match the Landsat datasets.

Prediction methods

Random Forest model

The RF model is a supervised machine learning algo-
rithm based on decision trees. It has the advantages of
providing variable importance, being robust to data re-
duction, generating an internal unbiased estimate of the
generalization error as the forest building progresses,
and having higher accuracy than individual decision
trees and low sensitive to parameter adjustment than
other machine learning models (e.g., neural networks)


https://earthexplorer.usgs.gov/
https://glovis.usgs.gov/

Su et al. Forest Ecosystems (2020) 7:64

(Amit and Geman 1997; Breiman 2001, 2004; Hastie
et al. 2008). We used the randomForest package (Liaw
and Wiener 2002) in the R software for AGB prediction.

Numerous variables have been used for forest AGB
prediction (Kumar et al. 2015), but choosing the right
variables has a significant influence on the prediction ac-
curacy of the model. After stacking the available feature
layers, the coordinates of the sample plots were matched
to those of the pixels so that the AGB of the plot corre-
sponded to the suite of predictor variables (feature
names), and established the models. We then performed
variable importance analysis in the randomForest
package by deriving two different variable importance
measures, the analytical result provided means to assess
the contribution of each predictor variable to the model-
ing performance based on the response type. The first
importance type was calculated by randomly permuting
each predictor variable and computing the associated re-
duction in predictive performance using the out of bag
(OOB) error for RF models and the second importance
type was calculated using the decrease in node impur-
ities attributable to each predictor variable (Breiman
2001). The larger the percent increase in mean square
error (MSE) (%IncMSE) and increase in NodePurity
(IncNodePurity) indicated a stronger importance of
these predictor variables (Karlson et al. 2015; Shen et al.
2016).

In order to ensure the comprehensive representation
of each variable to the RF models, so as to balance the
accuracy and generalization ability, the variable that has
relatively high ranking in both importance types was se-
lected as the modeling variable. Based on the ranking of
each variable in GI-index and OOB error rate, a compre-
hensive chart can be obtained to help determine the var-
iables with high importance of both types, the variables
with the higher comprehensive ranking were selected as
the predictors highly related to AGB, so as to reduce the
calculation complexity and obtain more accurate and
easily interpretable results. Additional file 1 Table Al
shows all the alternative variables.

The correct parameters in machine learning do not
only increase the predictive power of the model but also
facilitate model training. The parameters of the model in
this study included the mtry, ntree, and nodesize, where
mtry represents the number of variables used to split the
tree at each node, ntree represents the number of
decision trees in the RF, and nodesize represents the
minimum number of nodes in the decision tree. For par-
ameter tuning, mtry was defaulted to the quadratic root
of the number of variables in the data set (classification
model) or to one third (prediction model). Nodesize was
defaulted to the classification model at 1 and the regres-
sion model at 5. The selection of ntree value was deter-
mined by constantly testing that how much number of
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decision trees was gained - when the error in the model
was relatively stable. After multiple tries, we used the
following values for the parameters: mtry =3, ntree =
500, and nodesize = 5.

Kriging-based model

Geostatistics is an effective method for determining
spatial or spatiotemporal variation based on statistical
measures. Since the RF model does not consider spatial
autocorrelation of the AGB sample plots, we used a
combination of RF and kriging to determine the spatial
distribution of AGB. The detailed flowchart of RFCK is
shown in Fig. 2. Specifically, a regression-kriging tech-
nique was used to extract the components of the resid-
uals obtained from the RF regression (Guo et al. 2015).
The residual is the observed AGB minus the predicted
AGB from RF. By adding the extracted components to
the RF-based predictions, we obtained a larger predic-
tion accuracy of the AGB. Since the RFOK considered
the spatial autocorrelation of the AGB residuals, the sat-
uration problem encountered in optical remote sensing
data for dense or mature forests was minimized (Lu
2005), resulting in an unbiased and reliable AGB map.
Here, we focused on comparing the accuracies of ordin-
ary kriging (OK) and co-kriging (CK).

OK is a linear estimation method suitable for inher-
ently stationary random fields and satisfies the isotropic
hypothesis (Cressie et al. 1990). In this hypothesis, the
mathematical expectation of the variable of interest is in-
dependent of its position, and the covariance is a func-
tion of the distance between the points. We assume that
we estimate n points in the neighborhood of point x;
the interpolation formula of the OK method is defined
in Eq. 2:

n

Zok" (%) = Z/liz(xi) (2)

i=1

where Zoi"(xo) is the residual value of the AGB to be es-
timated, # is the number of sample points used for
interpolation, Z(x;) is the AGB residual of site i, and 1; is
the weighting coefficient at point i.

CK is an improvement over the OK method and can
deal with multivariable problems. The random fields that
need to be modeled are called primary variables, and
other random fields involved in modeling are called
covariables. Variograms and covariograms of each attri-
bute are used in the calculation. Since the research area
is located in the mountainous area of northern Guang-
dong Province, the AGB is affected by the terrain.
Therefore, elevation was selected as a covariable for the
interpolation. The residual value is defined in Eq. 3:
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N, N, is the distance beyond which little or no spatial auto-
Zn.cx(%0) = Z MiZy (x1) + Z M2jZs (%25) (3)  correlation occurs. The sill is the maximum value of
' =1 =1 the semivariogram, where the spatial distance between

where Z, ci’(xo) is the residual value of the AGB to be
estimated; Z;(x;;) is the AGB residual of the site i; Ay; is
the weighting coefficient of site i, Z,(x,)) is the elevation
of site j, Ay; is the weight assigned to the elevation, N is
the number of training samples, and N, is the number
of sample points of the elevation, where N; = N».

A variogram describes the structural changes of re-
gionalized variables, as well as random changes, and is
an effective tool for the analysis of spatial variation and
spatial structure. In kriging, the type of variogram is im-
portant because it determines the accuracy and reliabil-
ity of the estimate. In this study, the semivariogram was
modeled in GS+ (version 9.0, Leland Stanford Junior
University, Stanford, California, USA) using spherical,
exponential, and Gaussian functions. According to the
parameters obtained from the simulation, select the
model with the maximum R* and the minimum RSS
for use. The three model parameters of a semivario-
gram are the nugget, range, and sill. The nugget repre-
sents the small-scale variability of the data. The range

two locations reaches the range (Ou et al. 2017). The
nugget effect, that is, the ratio between the nugget and
sill, calculating the nugget effect can be used to compare
the relationship between local variation and population
variation, the stronger spatial autocorrelation is de-
noted by the smaller values of nugget/sill (Matheron
1963; Zimmerman and Zimmerman 1991). The fitting
performance of the variogram was estimated by the
coefficient of determination (R?) and the residual sum
of squares (RSS). The larger the R?, and the smaller
the RSS, the lower nugget effect, the better the fitting
performance is.

The following steps were performed for RFOK model-
ing: the estimated residual value of each sample point
was obtained by subtracting the predicted value of the
RF result from the observed AGB value (Eq. 4). The re-
sidual values of the sample points were modeled using
Egs. 2 and 3 to obtain the structure of the component in
the residuals. Subsequently, the final AGB estimate was
obtained by adding the structure of the component to
the RF-based prediction (Eq. 5).
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A
Z(x;) = C(x;) = Cre(x:) (4)
A A A
Crex/reck (%) = Cre(%:) + Z(%:) (5)

where Z(x;) is the AGB residual value of site i, C(x;) is
the observed AGB of site i, Cre(x;) is the RF-based pre-

dicted AGB at site i, éRpK(xi) and é’RFCK(xi) are the pre-
dicted AGB at site i using RFOK and RFCK respectively.

Finally, we used the maximum likelihood classifier in
the ENVI 5.3 environment to classify the Landsat images
into forest and non-forest classes. The classified forest
pixels were used as a mask to extract AGB maps of the
forest areas.

Model fitting and evaluation

The stratified sampling method was applied to all the
AGB observations to pick up 80% of the samples as the
training data, and the remaining 20% as the validation
data. We used several statistical measures to quantify
the model performance, including the R*> (Eq. 6), the
mean absolute error (MAE) (Eq. 7), the root mean
square error (RMSE) (Eq. 8) the RMSE% (Eq. 9), bias
(Eq. 10) and bias% (Eq. 11).

Z;’:l (9 —J’i)z

R =1-=EL-1 2 (6)
i 0y _J’i)z
1. .
MAE = ;ZI(yi—yi)I (7)
i=1
24—1 (§’ —y‘)z
RMSE = |/ &= = (8)
RMSE
RMSE% = ——— x 100 (9)
Bias = XH:M (10)
= 7
Bi
Bias% = ? x 100 (11)

where 7 is the number of samples, y; is the AGB pre-
dicted by the model, y; is the observed AGB from the
ground measurements, y is the arithmetic mean of all
observed AGB values. Additionally, the relative improve-
ment (RI) index of the RFOK and RFCK models over
the RF model was calculated using Eq. 12 to assess the
performance improvement:

Rl = RMSERp — RMSEgpk/rECK
o RMSEgr

(12)
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Results

Variable importance

In the variable importance analysis, %IncMSE is the im-
portance ranking result obtained by replacing the OOB
data, and IncNodePurity is the importance ranking re-
sult calculated by the Gini index. Figure 3 shows the top
25% IncMSE variables identified by the RF OOB strat-
egy, the size and color of the circles indicate the IncNo-
dePurity, the two importance types comprehensively
indicate the ability of the variables to predict AGB. The
10 variables with the largest IncNodePurity were se-
lected as independent variables for AGB mapping. In the
2010 variable selection, the PALSAR-derived variables
(e.g., HH_HV and RFDI), were included in the list, indi-
cating the relatively large importance for the prediction
of AGB. Overall, the reflectance and combined indices
from Landsat-5 accounted for a large proportion of the
better-performing variables, and the texture variables
from the PC1 were also important variables for AGB
estimation.

We selected 10 variables to reduce the complexity and
calculation load, including TM7_1, B7, B2, SAVI, TM14,
TM17, B5, TM37, VRI, and second77 to map AGB in
1992. For 2002, we used the mean55, RSI, mean77,
TM37, VRI, TM12, TM27, TCD, elevation. And TM34,
Mean77, B1, TM34, HH_HV, TM2_1, TM25, ARVI, B2,
RFD], and EVI were selected for mapping AGB in 2010.

Random forest modeling

We attained the performance measures for the three RF
prediction models. Table 2 lists the performance mea-
sures of the fitted models for 1992, 2002, and 2010. The
R? for model training ranged from 0.86 in 1992 to 0.95
in 2010; when the fitted models were used to predict the
training data, we obtained RMSEs of 9.05, 43.68, and
37.51 tha ' for 1992, 2002, and 2010 respectively, and
the corresponding RMSE% were was 71.57%, 63.34% and
56.21% respectively. We also obtained bias of - 0.01,
0.35, 1.09 tha™' for 1992, 2002, and 2010 respectively,
the corresponding bias% were — 0.05%, 2.29%, and 1.02%
respectively. The smallest RMSE was observed for the
1992 AGB because the biomass values were smallest for
the 1992 training plot; the same was observed for the
standard deviation (Table 3). As a result, the R* had the
smallest value (0.86) of the 3 years. Compared with
those of 2002 and 2010, the values of the bias% for the
1992 model were nearer closer to 0, with the smallest
RMSE and the largest RMSE%. Figure 4 shows the valid-
ation performances of the three fitted models; 20% of
the data were used to conduct the validation. The valid-
ation R* values were around 0.40, and the fitted line
(red) was substantially different from the 1:1 line; the
small AGB observations were overestimated, and the
large AGB observations were underestimated.
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Fig. 3 The importance ranking of the predictor variables for AGB in RF models
J

Random forest combined with kriging models

Residuals of RF-derived AGB and semivariance analysis
Table 4 summarizes the descriptive statistics of the re-
siduals. The absolute kurtosis values of the three groups
of residuals were close to 3 or 2, and the skewness was
close to 1, indicating that the residuals were approxi-
mately normally distributed (Fig. 5). The means of the
residuals in 1992 and 2010 were 0.004 and 0.186 t-ha™’,
respectively; these values were closer to 0 than the value
in 2002 (-1.223tha™'). The 1992 residuals had the
smallest standard deviation, indicating a small difference
between most residuals and the mean residual. The
range of the residuals was largest in 2002 (159.1 tha™ b,
The residuals are shown in different colors and sizes
based on the quartile distribution (Fig. 5).

After confirming the approximate normality, the three
groups of the residuals were used to calculate empirical
semivariograms for the subsequent RFOK interpolation.
In the simulation results obtained from GS+, the model
with the largest R* and smallest RSS is selected for the
semivariogram, the Gaussian model was used for 1992,
the exponential model for 2002, and the spherical model
for 2010. Additionally, the elevation of the plots was
used as a covariable in the RFCK model to obtain accur-
ate estimates. Table 5 and Fig. 6 show the parameters of
the semivariogram models and the semivariograms, re-
spectively of the RFOK and RFCK models. Overall, the
fitting performance was better for the RFCK than the

RFOK model; the former had a larger R* smaller RSS,
and smaller nugget/sill value than the latter (Table 5).
In comparison to Table 5, the nugget/sill values indi-
cated that the variability caused by spatial autocorrel-
ation in the 1992_RFOK model is the larger than the
other years’ models. The largest nugget value of 402.91
for the 2002 RFOK model suggested that the 2002 re-
siduals exhibited the strongest spatial heterogeneity.
The RFCK models had smaller nugget values than the
RFOK models, indicating that the addition of the eleva-
tion covariable reduced the spatial variability (Table 5).
Overall, there was lower spatial heterogeneity in the
1992 residuals than in the 2002 and 2010 residuals, in-
dicating by the smallest nugget/sill ratio in the 1992_
RFOK model. The 1992 models had the highest spatial
autocorrelation and highest suitability for kriging than
models in 2002 and 2010, so 1992 models provided bet-
ter kriging results.

Forest AGB mapping using RFOK and RFCK

Based on Eq. 5, the predicted AGB was obtained from
the RFOK and RFCK models (Fig. 7), followed by valid-
ation with 20% of the samples. Table 6 shows the valid-
ation accuracies of the three AGB models in each of the
3 years. The 1992 RFCK model had the largest RI value
(17.7%) (compared with the 1992 RF model); the R? in-
creased from 0.41 to 0.81, the MAE decreased from 9.93
tha™' to 6.54tha ', the bias% changed from - 22.59%

Table 2 Summary of the modeling performance measures derived from the three RF training models

Year Variables used for model prediction RMSE (tha~') RMSE Bias Bias MAE (tha™') R?
(%) (tha™) (%)

1992  TM7_1, second?77, B2, SAVI, TM14, TM17, B5, TM37, VRI, B7 9.05 7157 -0.01 -005 404 0.86

2002  mean55, RSI, mean77, TM37, VRI, TM12, TM27, TCD, elevation, TM34 4368 64.34 035 229 16.68 0.90

2010 mean77, B1, TM34, HH_HV, TM2_1, TM25, ARV, B2, RFDI, EVI 3751 56.21 1.09 1.02 13.88 095
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Table 3 Descriptive statistics of the AGB (tha™ ') of the sample plots in the three forest inventories

Year Number AGB (tha ") Number of samples used
of Value range Median Mean Std Deviation Training Validation
sample
plots

1992 201 1.134-50.241 13511 9484 6.152 161 40

2002 278 2.388-256.310 55.340 41.856 23522 222 56

2010 218 4.728-250.881 61.839 47.600 24.924 174 44

to — 10.68%, and the RMSE% decreased from 112.47% to
92.48%. The accuracy of the 1992 AGB maps was sub-
stantially larger than that of the 2010 and 2002 maps.
The reason may be that the observed forest AGB values
were smallest in 1992, and the variability was lowest
(Table 3); thus, the saturation effect was minimal in the
1992 models, resulting in larger validation R* values. At
the same time, the 1992 models had larger bias% and
RMSE%, which were also related to the smaller arith-
metic mean value of observed AGB in 1992. In 2002 and
2010, saturation occurred (the largest measurements on
the ground were above 250 tha™ !, Table 3), resulting in

a significant decrease in the validation R* values to about
0.4 and 0.5. The absolute value of bias% and bias of the
validated model in 2010 was smaller than those in 1992
and 2002. The RFCK models outperformed the RFOK
and RF models in all 3 years (Table 6).

In addition to accuracy evaluation, the generalization
ability of the model is also important. The range of AGB
values in the prediction map of the study area could re-
flect the adaptability of the models to new samples (i.e.
generalization ability) to some extent. The range of the
AGB predictions obtained from the RF model was 3.73—
36.73tha” " in 1992, 24.47-247.04tha™" in 2002, and
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Fig. 4 Scatterplots of the observed AGB and the predicted AGB
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Table 4 Descriptive statistics of the RF models’ residuals
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Year Residual value

Mean (t-ha™") Std deviation (t-ha™") Value range (tha™") Skewness Kurtosis
1992 0.004 5.746 —11.16-20.90 1.39 267
2002 -1.223 21.906 —53.87-104.23 131 295
2010 0.186 18.166 —42.98-7042 0.90 2.09

33.30-258.38 tha™ ' in 2010. The range of AGB predic-
tions obtained from the RFOK model was 3.78—48.84
tha ! in 1992, 8.09-266.67 tha ' in 2002, and 23.23—
270.58 tha™ ' in 2010. The range of AGB predictions ob-
tained from the RFCK model was 2.09-51.03 tha ' in
1992, 14.15-259.55tha™' in 2002, and 21.89-267.43
tha™' in 2010. The range of AGB showed an increasing
trend from 1992 to 2010. A decreasing trend in AGB
was observed from the southeast to the northwest in
1992, whereas, in 2002 and 2010, larger AGB was ob-
served in high-elevation mountain areas (Fig. 7a, d, e).
From 2002 to 2010, areas with AGB greater than 100
tha™ ! increased substantially, whereas areas with AGB
less than 40 tha™ ' decreased.

Discussion

Variable selection and AGB estimation accuracy

The selection of suitable remote sensing variables is a
critical step in AGB estimation (Lu et al. 2016). The var-
iables used as input parameters before modeling can be
divided into three types: spectral index, terrain variables,

and texture measures. An importance analysis was used
to determine the best predictors. The importance of the
variables on AGB mapping was determined by the order
of importance (Fig. 3), the performance measures of the
models (Table 2), and the mapping results (Fig. 7). Previ-
ous research has shown that texture measures have the
potential to improve AGB estimation. Zhao et al. (2016)
found that texture measures were valuable for AGB esti-
mation of subtropical forests in southwest China, espe-
cially for forests with complex stand structures, such as
mixed forests and pine forests with understories of
broadleaf species. Tuominen and Pekkarinen (2005) ex-
tracted features from normalized difference vegetation
index and band ratio images and analyzed the correla-
tions between the extracted image features and forest at-
tributes measured from sample plots. Our research
results confirm the role of texture in AGB estimation.
The results of the importance analysis of the 2002 and
2010 variables indicated a high correlation between the
textural variables and AGB, especially for the mean tex-
ture measure of the gray-level co-occurrence matrix
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Table 5 Parameters of the theoretical semivariogram models of the residuals for the RFOK and RFCK models

Model parameter Theoretical model Nugget Sill Nugget/Sill ratio Range (degree) R? RSS
1992_RFOK Gaussian 9.95 27.19 0.366 0.618 0.921 80.90
1992_RFCK Gaussian 8.11 1242 0653 0.653 0.923 52.15
2002_RFOK Exponential 40291 50746 0.792 0.935 0.139 9865.00
2002_RFCK Exponential 365.46 482.14 0.758 0.905 0.143 9217.00
2010_RFOK Spherical 307.80 328.50 0937 0.348 0.156 9364.00
2010_RFCK Spherical 302.93 312.96 0.968 0492 0.181 812450

(Fig. 3). The eight texture measures based on the gray-
co-occurrence matrix generated from the PC1 and the
backscatter of PALSAR performed well for AGB estima-
tion, and the texture variables obtained from the Landsat
PC1 in the 2010 model were better than those from
PALSAR HH/HV. All predictors contributed to the inte-
grated model, but the vegetation indices and spectral
bands comprised the largest proportion of modeling var-
iables (Table 2); this result was consistent with previous
studies (Foody et al. 2003; John et al. 2018; Zhang et al.
2019). For forest sites with complex forest structure and
species composition, such as pine forests with under-
stories of broadleaf species, texture measures are needed.
They had higher importance values than spectral infor-
mation when TM imagery or PALSAR HH and HV

polarization data were used. The importance analysis of
the 1992 data showed that spectral variables ranked
higher than texture variables. The reason may be that no
large-scale afforestation projects were conducted in
Guangdong Province, and the average AGB in the study
area is relatively small; thus, spectral saturation was not
a problem. Furthermore, most forests are not mature
(small AGB values in Table 3) and have a relatively sim-
ple structure; therefore, texture measures are less suit-
able than spectral variables for capturing the simple
structure.

Precipitation is absorbed by the forest soil and plant
leaves, and the moisture affects not only the spectral in-
formation of ground features but also the forest biomass
(Chen et al. 2019b). We used Landsat images acquired
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Table 6 Accuracy of the RF, RFOK, and RFCK models based on the validation data

Year Models R? MAE (t-ha™") RMSE (t-ha™") RMSE (%) Bias (t-ha™") Bias (%) RI
1992 RF 041 993 1899 11247 382 ~22.59 /
RFOK 081 6.64 1564 9261 177 -1048 0.176
RFCK 081 6.54 1562 9248 -1.80 -1068 0.177
2002 RF 035 3481 56.67 97.19 -331 -567 /
RFOK 040 3357 5381 9229 -3.19 -547 0.050
RFCK 041 3232 5378 9224 214 367 0052
2010 RF 049 24.56 3121 52,08 2.09 -3.89 /
RFOK 053 2347 3023 5205 226 -359 0031
RFCK 055 2214 2997 5160 107 -185 0038

during the summer in the growing season (Table 1),
which was coincident with the period of heavy precipita-
tion in the study area. The spectral signatures of sparse
forests are affected by the soil background. Subtropical
forests grow vigorously due to the abundance of water.
Vegetation indices were included because they minimize
the influence of the background on AGB estimation, but
more ground data need to be obtained by multi-source
sensors. HH polarized data are sensitive to moisture be-
neath the canopy, whereas HV polarized data are sensi-
tive to volume scattering and biomass (Hess et al. 1995).
However, the estimation of forest biomass using ALOS
PALSAR data currently has limitations, because the L-
band saturates at about 150 tha! (Ho Tong Minh et al.
2018). Mermoz et al. (2015) found a negative correlation
between the SAR backscattering coefficient and forest
biomass after reaching a maximum value. This result
was attributed to signal attenuation from the forest can-
opy as the canopy becomes denser with increasing bio-
mass. We also selected PALSAR-based polarized
features as predictors to map AGB, and our results were
in agreement with previous research findings.

We found that RF modeling overestimated small bio-
mass values and underestimated large biomass values
(Fig. 4), which partly explained the presence of bias in
the AGB prediction and indicated a saturation problem.
The 2010 RF model incorporated a combination of
Landsat TM and PALSAR variables, and this model im-
proved the AGB estimation of forest stands by less than
150 tha™'. The scatterplots in Fig. 4 showed that the
points of the 2002 RF model were clustered. The pre-
dicted value obtained by the 2010 RF model was smaller
than that of the observed AGB. Similarly, the predicted
values of the two verification points with AGB values
greater than 150 tha™' in 2010 are small, indicating the
limitation of the L-band SAR sensor when dealing with
saturation in high biomass stands. In the comprehensive
ranking of variable importance (Fig. 3), the variable HH_
HV from microwave data was relatively high in 2010,
and the R* of 2010 model was the largest (0.95) in the

RF modeling performance measures (Table 2). The
model accuracy evaluation in Table 6 also shows that,
when the measured AGB in 2002 and 2010 have similar
range, mean and standard deviation (Table 3), the 2010
models with microwave data have better prediction ef-
fect (i.e., the smaller RMSE and RMSE%, and the closer
to 0 bias and bias% values). Nonetheless, the use of SAR
sensors with higher radar wavelengths (e.g., P-band) may
be suitable for the estimation of biomass at higher levels
(on the order of 300 mg-ha™ 1 (Ho Tong Minh et al.
2014). Additionally, LiDAR systems can capture the
horizontal and vertical structure of vegetation in great
detail, and the data have a larger threshold for sensor
saturation (e.g., biomass estimation on the order of
1200 Mg-ha™ ') (Lefsky et al. 2002b; Giannico et al. 2016;
Manuri et al. 2017; Valbuena et al. 2017). However, con-
sidering the high acquisition cost and limited acquisition
scope, LIDAR data were not considered in this study.

In addition, we had to obtain the AGB of the sample
plots in 2010 by linear interpolation to ensure time
matching of the data; therefore, the results may have dif-
fered from the AGB obtained by the allometric growth
equations using NFI data. The forest growth rate is not
uniform, and the dependent variable in 2010 was not ac-
curate enough compared with the AGB obtained from
field investigation, which affects reliability of the subse-
quent mapping to some extent. During sample point
screening, the standard deviation method we used to re-
move outliers may not be appropriate enough, because
the occurrence of outliers would have a great impact on
the mean value and standard deviation. There is a more
stable technique of outlier removal worth considering
like the Center distance calculation method based on
median absolute deviation (Leys et al. 2013). In the co-
kriging process for the residual, we did not consider the
nonlinear relationship between the covariable with AGB,
the selection of covariables could be quantitatively con-
sidered in the further research, and some methods
should be used for linear transformation of covariates
(e.g. Box-Cox transformation) (Fox et al. 2020). In
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general, the results of the RF model indicate that time-
series derived from multi-temporal Landsat images and
PALSAR data can improve the accuracy of AGB estima-
tion and reduce the saturation problem. The accuracy of
model prediction can be further improved by obtaining
dependent variables obtained from more accurate sam-
ple site measurements in a future study.

Model improvement and map accuracy

This study demonstrated that the RF model combined
with kriging provided higher mapping accuracy than the
RF models, and on this basis, RFCK was marginally bet-
ter than RFOK. Table 6 shows the performance of the
three models (RF, RFOK and RFCK). In 1992 models,
the difference between RFCK and RFOK was very small
that it could be ignored. Basically, among the three
models each year, the RFCK model was the one with the
largest R?, the smallest RMSE, RMSE%, MAE, and the
value of bias% and bias was closest to 0. The RI was lar-
gest in 1992, followed by 2002 and 2010. Chen et al.
(2019a) found that due to the low spatial autocorrelation
of the RF-based residuals, the improvement in the accur-
acy of the RFOK model was limited, and the degree of
accuracy improvement was higher in the models that
used variables from a single sensor. Hengl et al. (2004)
showed that if the model residuals exhibited spatial
autocorrelation, the model performance could be im-
proved by interpolating residuals using kriging and add-
ing the components to the RF model. Nothdurft et al.
(2009) and Fox et al. (2020) has demonstrated the feasi-
bility of improved accuracy of non-parametric models by
including a parametric component. The results of our
analysis confirmed these results. The model variables in
1992 were derived from a single remote sensing source,
and the RI of the RFOK model was 0.176; in contrast,
the 2010 model used a combination of optical remote
sensing data and radar data, resulting in the smallest RI
of the RFOK model for the 3 years (RI=0.031). In
addition, the semivariogram results (Table 5) indicated
that the 1992 RFOK model had a large RI because of the
strong spatial autocorrelation of the residuals. Studies
using similar residual interpolation methods to predict
soil organic matter have shown that the accuracy was
substantially improved when the nugget/sill values were
smaller than 0.6 (Guo et al. 2015; Tziachris et al. 2019).
The results of our study confirmed these findings. The
spatial distribution of the RF residuals (Fig. 5) showed
that there was less spatial autocorrelation, the results of
the OK interpolation were more accurate, and the RI in
the accuracy of the RF model was larger (i.e., for the
1992 model) when the residual range was relatively nar-
row, and the spatial distribution was uniform. The valid-
ation R” values of the RFOK and RFCK models were
both 0.81, and the RMSE of the RFOK model increased
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by 17.6% compared to the RF model. As shown in Fig.
7a and e, there are significant differences in the AGB be-
tween the RFOK map and the RF map, and the patches
are better defined in the RFOK map.

Previous studies have shown that there is a strong cor-
relation between elevation and biomass in subtropical
mountains (Silveira et al. 2019b). Vegetation carbon
storage and elevation showed similar spatial variation
trends, and carbon storage was closely related to AGB
(Yadav et al. 2019). In our study, the residual values of
2002 and 2010 were randomly distributed, and large re-
sidual values were observed in the mountain areas. This
finding was related to the overestimation and underesti-
mation of the small values in the RF model in 2002 and
2010, respectively. The sample sites in the high moun-
tains are in areas of dense forest with large biomass; the
AGB at these sites was underestimated by the RF model,
resulting in large residual values. As shown in Table 6,
in 2002 and 2010, the RECK model, which included ele-
vation as a covariable, had smaller nugget and sill
values and larger R* values than the RFOK model. This
result demonstrated that in regions with an uneven
spatial distribution of AGB, the use of elevation as a
covariable improved the accuracy of the interpolation
results and minimized the saturation effect in areas
with high biomass, especially in intersection of moun-
tains and plains. Future studies should consider other
covariables, such as fractional vegetation cover (FVC)
and precipitation, which are often used for estimating
forest AGB with geostatistical methods (Barni et al.
2016).

Compared with the RF model that only considered the
variables from remote sensing data, the RFCK model in-
cluded the residuals, resulting in higher accuracy of the
AGB prediction because spatial autocorrelation was con-
sidered (Table 6). Figure 4 shows the scatter plots of the
observed values against the predicted values from the
model validation process, different colors are used to
distinguish different models. The RFOK scatter points
(orange) get closer to the 1:1 trend line than the RF’s
(blue), and the RFCK scatter points (green) are closer to
the 1:1 trend line than the RFOK’s. Figure 7 shows the
interpolation results of the residuals (Fig. 7b and c) and
the final AGB maps (Fig. 7d and e) derived from adding
the structured components to the maps generated by the
RF model (Fig. 7a). The interpolation results of OK and
CK exhibit slightly differences, but both results show
smaller residual values in areas with less forest biomass,
such as valleys and rivers. At the boundary of mountain
valleys and plains, errors caused by the sensor angle and
solar azimuth cannot be eliminated (Saraf et al. 1996).

The R* of the RCFK model was 0.81 in 1992, 0.41 in
2002, and 0.55 in 2010. The ensemble model used by
Zhang et al. (2019) explained 75% of the variance of
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Fig. 8 Afforestation areas in Guangdong in 1992-2012

forest AGB in a Chinese subtropical forest, with an
RMSE of 45.5 Mgha™ ', Our study demonstrated that the
RFCK model provided improved accuracy for forest
AGB estimation. Shen et al. (2016) used an RF model
with multi-temporal Landsat images for AGB estimation
in northern Guangdong in 2011; the RMSE was 39.49
tha !, and the R* was 0.51. The accuracies of this study
are better than those of other studies of modeling AGB
in subtropical mountains using a combination of optical
and radar data. The RFCK model can deal with nonlin-
ear relationships and eliminate some overfitting in non-
parametric estimation. On the other hand, the disadvan-
tage is that it is challenging to interpret the relationships
between the response variable and independent variables
(e.g., the residuals represented the unexplained variance
of the model).

Long-term changes in AGB and their effects on policy

In the study area, significant changes were observed in
the AGB values and spatial distribution in the 18 years.
Previous studies have shown that extensive deforestation
contributes to global climate change, altering hydro-
logical cycle patterns, and resulting in adverse environ-
mental effects, such as soil erosion and degradation
(Eckert et al. 2011; Muttaqin et al. 2019). Shen et al.
(2018) found increases in the temperature and decreases
in the precipitation from 1986 to 2016 of Guangdong

Province, and the correlation between climate and AGB
decrease was smaller than that between human activities
and AGB. In addition, there were interactions between
climate and human activities. The changes in the AGB
in the study area was primarily the result of afforestation
and deforestation. Guangdong Province had limited for-
est resources in the 1980s, and the forest coverage was
only 30.2%; however, the population density was large,
and the economy prospered. After the implementation
of China’s “Economic Reform and Opening Up” policy,
Guangdong’s economy developed rapidly, the population
increased, and a large proportion of forest land was used
for urban expansion and construction. As a result, the
forest area was reduced substantially. In the 1990s, the
province implemented forest land protection policies
and deforestation projects, and the area of forest land
gradually increased.

The afforestation areas in Guangdong Province, China
from 1992 to 2010 are shown in Fig. 8 and Table 7; the
data were obtained from the Statistical yearbook of
Guangdong (http://stats.gd.gov.cn/gdtjnj/). Wang et al.
(2016) found that trees planted in the late 1980s grew
into medium and near-mature forests between 1992 and
1997, increasing the capacity of the forest for carbon
storage and resulting in a substantial increase in forest
biomass and carbon density in 1997. Shen et al. (2017)
examined forest disturbance and recovery in Guangdong

Table 7 Proportion of forests of different stand ages in 1992-2012 in Guangdong

Year Young forest (%) Half-mature forest (%) Near-mature forest (%) Mature forest (%) Over-mature forest (%)
1992 40.19 4052 1532 3.04 0.93
2002 3878 39.74 15.18 592 0.38
2012 21.90 4133 20.75 12.84 3.18
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Province from 1986 to 2015 also identified correspond-
ing abrupt changes. These data are in agreement with
our findings that both the AGB data provided by the
NFI and the AGB estimates obtained from the proposed
model in this study showed a significant increase in
AGB from 1992 to 2002. In the decade from 2002 to
2010, the mean and maximum of the biomass also in-
creased slightly. These changes are attributed to harvest-
ing of timber within the scope of forest management
practices, as well as the establishment of many nature
reserves to develop tourism resources in the mountains
in northern Guangdong. In 2012, the proportions of
near-mature forests, mature forests, and over-mature
forests in the province were substantially larger than
those in 2002 and 1992, confirming the effects of affor-
estation in the past 20 years. The AGB trend of the maps
obtained by the RFCK model for the period corresponds
well to the data obtained from the Statistical yearbook of
Guangdong well, demonstrating the reliability of the
model. In this paper, only three time points (1992, 2002
and 2010) of data spanning 20 years were used to ex-
plore the improvement of model accuracy. Future re-
search should focus on longer time series data, and
establish a year-by-year models to obtain accurate spatial
distribution of AGB to discuss the region’s dynamics
(such as forest disturbance and recovery), so as to deter-
mine the influence of other factors on regional AGB to
provide information for administrative departments and
forest management.

Conclusions

The results demonstrated that the RFCK model based
on Landsat had the best performance for the prediction
of AGB in 1992, with an R* value of 0.81. The changes
in the spatial distribution of the AGB in the 3 years were
confirmed by forest management statistics. Validation
with an independent dataset showed that the RFCK
model had the highest accuracy for AGB estimation,
followed by the RF and RFOK models. The RFCK model
also provided a more realistic spatial distribution of
AGB than the RFOK model. The saturation effect was
minimized by using PALSAR data; the residuals had
higher spatial autocorrelation and less heterogeneity in
2010 than in 2002. Overall, the proposed RFCK model
provided the best performance for AGB mapping in the
subtropical forest with complex terrain. It is our belief
that combined geostatistical optimization of the machine
learning algorithm is beneficial to create a reliable spatial
mapping of aboveground biomass in subtropical forests
and provide a critical component for assessing forest
management, forest carbon sequestration and protecting
forest resources in the region.
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