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Abstract

Background: Larch (Larix Mill) forests are widely distributed in the upper parts of mountainous areas in Chinga, playing vital
roles in constructing mountain landscapes and maintaining mountain environments. Despite their importance, our
knowledges on the large-scale patterns of structure characteristics and the relationships between different structure variables
are unclear. In this paper, we investigated 155 plots from 11 natural larch forest types across the country to explore the
biogeographic patterns of the structure characteristics and the allometric relationships between different structure variables
for Chinese larch forests.

Results: The structure characteristics were significantly different among larch forest types. For different larch forest types, the
power function fits the relationships between tree height and diameter at breast height (DBH), average DBH and stem
density, and taper and stem density well, but with different exponents among larch forest types. The power exponents of
the allometric relationships between tree height and DBH for different larch forest types varied from 061 to 0.93 (mean =
0.86) by standard major axis regression (SMA), and from 0.51 to 0.78 (mean = 0.56) by ordinary least square regression (OLS).
The 50%, 75% and 95% quantile regression (QR) and OLS indicated that the average DBH and taper of the L. gmelinii forests,
L. gmelinii var. principis-rupprechtii forests, and L. sibirica forests were significantly correlated with stem density.

Conclusions: The relationship between tree height and DBH showed a power function relationship for all larch forest types
in China, but with different exponents. Overall, stem density was negatively correlated with average DBH and taper. The Sect.

Larix forests exhibited stand density effect. Our findings provide an important basis for recognizing the biogeographic
patterns of structure factors and for the management of larch forests in China.
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Background

Forest structure variables are closely related to forest
productivity and dynamics (Enquist et al. 2009; Fang et al.
2012a, 2012b; Ali 2019). Local and regional studies have il-
lustrated that different structure variables, such as stem
density, tree height, diameter at breast height (DBH), taper
(the ratio of average DBH to average height), and slender-
ness (a quotient related to taper), were strongly correlated
with each other, mostly showing allometric relationships,
such as those between tree height and DBH, stem density
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and average DBH, and stem density and taper (Wang
et al. 1998; Falster and Westoby 2005; Li et al. 2006;
Pretzsch 2006; Comeau et al. 2010; Rivoire and Moguedec
2012; Masaka et al. 2013; Duncanson et al. 2015).

In particular, stand stem density significantly affects the
structure variables of forests, according to the self-
thinning theory (Reineke 1933; Kira et al. 1953; Satoo
1962; Yoda et al. 1963; Tadaki 1964; Drew and Flewelling
1977, 1979; Westoby 1984; Xue and Hagihara 1999, 2001;
Enquist and Niklas 2001; Xue et al. 2015; Zhou and Lin
2018). During the self-thinning processes, the plant indi-
vidual size increases and stem density decreases, following
a negative linear model when both stem density and plant
size were logarithm transformed, ie., InN ~-1.605InD,,
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where N and D, are stem density and average DBH, re-
spectively (Reineke 1933). Several hypotheses have been
proposed to explain the negative relationship. Among
them, the — 3/2 self-thinning rule (or, the Yoda’s law) is
the most acknowledged theory, which proposed a-3/2
power function relationship between the mean biomass
and stem density based on the geometric similarity theory
(ie., B, *N >, where B, is average biomass) (Yoda et al.
1963). The self-thinning rule has been tested by several
studies, e.g., West et al. (1997, 1999) and Enquist et al.
(1998), who used metabolic scaling theory to explain self-
thinning from the viewpoint of bioenergetics. As proposed
by the metabolic scaling theory, the exponent between
stem density and plant size was — 2, and that between bio-
mass and stem density was —4/3, respectively (i.e., N «
D, 2 and B, xN~*3) (West et al. 1997, 1999; Enquist et al.
1998). In addition to the biomass and plant size, the stem
density also influenced the taper of the tree stems (Dean
and Baldwin 1996; Dean et al. 2002; Sharma and Zhang
2004; Sharma and Parton 2009). However, little is known
about the influence of stem density on the taper (Sharma
and Zhang 2004; Sharma and Parton 2009).

Similar to the relationship between stem density and plant
size, many models have also been proposed to fit the rela-
tionship between tree height and DBH for different species,
even for different populations within a species (Navroodi
et al. 2016). Among these models, the power function and its
extended forms were most commonly employed (Ogawa
1969; Fang et al. 1993; Falster and Westoby 2005; Wang
et al. 2006). Some suggested a constant exponent for this
model across different species which is expected to be 2/3
for adult trees (King et al. 2009), and some argued that the
exponents may vary among different taxonomic groups (such
as between angiosperms and gymnosperms) and life forms
(such as between evergreen and deciduous plants) (Hulshof
et al. 2015).

Larches (Larix Mill) are light-demanding coniferous spe-
cies tolerant to low-temperature, which were widely distrib-
uted in cool-temperate zones and in mountainous areas of
temperate northern hemisphere, and they serve as timberline
species in many mountains in northern, southwestern, and
northeastern China (Cheng and Fu 1978; Li 1995; Liu et al.
2002a, 2002b; Li et al. 2009). In China, larch species generally
form pure forests with large areas, and parts are mixed with
other needle-leaved trees (Cheng and Fu 1978). Larch forests
are sensitive to changes in climatic factors, such as
temperature and water availability (Wu 1980; Cui et al. 1999;
Carrer and Urbinati 2006; Dulamsuren et al. 2008). Although
some studies on the community structure and allometric re-
lationships have been performed in some larch forests at
local scales (Wang et al. 2006; Fang et al. 2012b; Liu et al.
2017; Usoltsev et al. 2019), knowledge of their community
structures and allometric relationships at the national scale is
still lack in China.

Page 2 of 12

Here, we explored the relationships among different
structure variables of larch forests, i.e., between tree
height and DBH, between average DBH and stem dens-
ity, and between taper and stem density, based on field
measurements of natural larch forests across China. Spe-
cifically, we attempt to answer the following questions:
(1) what are the relationships among different structure
variables of larch forests, and (2) are these relationships
consistent across the range of observed larch forest types
in China?

Methods

Study species and area

According to the Flora of China (http://foc.iplant.cn/),
there are 11 species and 3 varieties of Larix in China, in-
cluding 2 cultivated species (L. decidua and L. kaemp-
feri). According to the morphological and genetic
features, these species can be grouped into two sections,
ie. Sect. Larix and Sect. Multiseriales (Cheng and Fu
1978; Wei and Wang 2003). Except for L. decidua, the
larches constitute the dominant species of larch forests
in different areas of China.

In this study, we investigated natural larch dominated
forests distributed in mountainous areas with latitudes
of 27.10°-52.86° N, longitudes of 85.14°~128.41° E, and
elevations of 387-4317 m (Fig. 1; Table S1), each with
an area of 600 m% The plots were selected to present
natural forests without any apparent human disturbance
such as thinning or harvesting, or natural disturbance
such as fire or storm. For each plot, the species name,
height and DBH of each tree were recorded (for details
of the investigation methods, see Fang et al. 2009). In
total, we investigated 155 plots with 9722 larch individ-
uals and 1191 other trees, each contained more larch
than other tree stems, with a larch stem density of more
than 500 individuals per ha. These plots included 11
larch forest types, from two sections, i.e., Sect. Larix for-
ests including L. gmelinii, L. gmelinii var. principis-rup-
prechtii, L. olgensis and L. sibirica forests, and Sect.
Multiseriales forests including L. griffithii, L. himalaica,
L. mastersiana, L. potaninii, L. potaninii var. australis, L.
potaninii var. chinensis and L. speciosa forests. There-
into, the plot numbers of L. olgensis, L. griffithii, L. hima-
laica, L. mastersiana, L. potaninii, and L. speciose forest
were less than 10 (Table S1).

On average, the tree species richness, larch stem dens-
ity, tree stem density and total basal area proportion of
larch were 2.3, 1151.0 stems per ha, 1292.3 stems per ha
and 93.0%, respectively (Table S1). Given that larch trees
were dominant in these plots, structure variables such as
stem density were not limited by plot area, and the tree
richness of plots were relatively low (Table S1), we used
the dominant species density (i.e., larch density) to study
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Fig. 1 Distribution of larch forest plots in China. Triangles indicate plots dominated by species from the Sect. Larix (Sect. Larix forests hereafter)
and circles indicate plots dominated by species from the Sect. Multiseriales (Sect. Multiseriales forests hereafter)
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the density effect of larch forests in China and did not
consider the effects of other tree species.

Data analysis

According pervious research (Wang et al. 1998; West et al.
1999; Wang et al. 2006), we defined taper (7, cmm™ 1y as the
ratio of average DBH (D,, cm) to average height (H,, m) in a
plot (Eq. 1), and slenderness (S, mm™ ') as one hundred
times the ratio of H, to D, in a plot (Eq. 2).

T =D,/H, (1)

$=100-H,/D, (2)

The following functions were applied to fit the relation-
ship between height (H) and DBH (D) of trees (Eq. 3),
average DBH (D,) and stem density (number of stems in
a unit area, N) of plots (Eq. 4), and taper (T) and stem
density of plots (Eq. 5).

H=a D" (3)
D, = k- N* (4)
T=e N (5)

where b, d and f are power exponent parameters and 4,
k and e are the proportionality constant parameters.
Many approaches have been proposed to fit the rela-
tionships between forest structure variables with loga-
rithmically transformed data, such as ordinary least

square regression (OLS), dimensionality reduction ana-
lysis, and quantile regression (QR) (Cade et al. 1999;
Wilson et al. 1999; Li et al. 2006; Sun et al. 2010a). Here,
all data were logarithmically transformed, parameters
were estimated by OLS, and the relationship between
tree height and DBH (Eq. 3) was also fitted with stand-
ard major axis regression (SMA). QR, with quantiles of
50%, 75% and 95%, was employed to study the effect of
stem density on average DBH and taper. The Egs. 1-5
were calculated by individual larches per plot, respect-
ively. For the 11 larch forest types, we calculated average
structure variables, such as stem density, average DBH,
average height, taper and slenderness, based on individ-
ual larch stem average of plot (Table S2). We compared
the structure variables of different larch forest types by
analysis of variance (ANOVA) and multiple comparisons
with Bonferroni test, and marked the difference with
letters.

Based on general linear model (GLM) and stepwise re-
gression, we analyzed the effects of forest type, site and
climatic factors on different structure variables of the
larch forests. The site factors include longitude, latitude
and altitude. The climatic factors are moisture index
(MI, mm), mean annual temperature (MAT, °C), mean
temperature of the warmest month (MTWM, °C) and
coldest month (MTCM, °C) (for details on the climatic
factors, see Table S3). According to Thornthwaite
(1948), the MI is an index reflected the relationships
among potential evapotranspiration, moisture surplus
and moisture deficiency.
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All statistical analyses were performed in R (version
3.5.0) (R Core Team, 2018) with the “smatr” and “quan-
treg” packages (Warton et al. 2012; Koenker 2018).

Results

Statistics of the structure variables

The overall mean stem density, DBH, height, taper, and slen-
derness of larch forests in China were 1151.0 stems per ha
(standard deviation SD =590.5), 16.5cm (SD =5.0), 120 m
(SD=43), 15cmm™ ' (SD=06) and 756 (SD =274), re-
spectively (Fig. 2; Table S2). With an average of 1287.6 stems
per ha in stem density, 16.7 cm in DBH, 13.6 m in height,
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1.3cmm ! in taper and 86.1 in slenderness, the Sect. Larix
forests were denser, higher and slenderer than the Sect. Mul-
tiseriales forests (Fig. 2; Table S2). The structure variables
varied significantly among larch forest types (Fig. 2). The
stem density of the L. gmelinii forest was larger than that of
the other Sect. Multiseriales forests, except the L. himalaica
forest (Fig. 2a). The DBH of the L. potaninii var. chinensis
forest was bigger than that of the L. gmelinii, L. griffithii, L.
himalaica and L. potaninii forests (Fig. 2b). Most Sect. Larix
forests was taller, while the taper was smaller, than that of
the Sect. Multiseriales forests (Figs. 2c and d). The slender-
ness of the Sect. Multiseriales forests was bigger than 100, es-
pecially for L. gmelinii forest (Fig. 2e).

3 (a) Stem<density (/ha)
o 1
0 | -
o 1 !
o i o
R Y
. ab e
g | L D B g o]t
Lr) T T T T T T T T T T
25325333585
| — 4 1 4d
L i )
N
s (¢ ) Height (m)
o N T e i o
o P
* | EE.
, @ab;
e 4 7 + - T
L om empees
TR H s
93539553558
- - 4 a1 d
o 7 o
© 1 -+(e)Slenderness (m/m)
o | T
N

80
s
5
i

o |
< ——
1 1T 1 T 71 1T 1
o 0w xx T < O 0O
9@9_!@_15—10.n_<o
- | 1 1
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Table 1 The best regression model selected by forward stepwise
regression for the structure variables of larch forests in China

Variable df F-value  p-value SS (%) R? of model
Stem density (stem-ha™") 0.15
Latitude 1 2791 < 001 1543
Residuals 153 84.57
Height (m) 048
Forest type 10 11.68 < 001 4291
Longitude 1 4.75 < 0.05 1.75
Latitude 1 2.21 0.14 0.81
Altitude 1 746 < 001 2.74
Residuals 141 5179
DBH (cm) 0.37
Forest type 10 7.07 < 001 31.23
Longitude 1 8.57 < 001 379
Altitude 1 5.02 < 005 222
Residuals 142 62.76
Taper (cm:-m™") 0.74
Forest type 10 3643 < 001 66.52
Longitude 1 1.45 0.23 0.26
Latitude 1 0.72 040 0.13
Altitude 1 40.25 < 001 7.35
Residuals 141 25.74

df, F-value and SS (%) are degree of freedom, F statistical value and
percentage of sum squares explained, respectively

Factors impact the structure variables

The GLM and stepwise regressions illustrated that forest
type and site were the dominant factors influencing the
structure variables (Table 1). Forest type was the most
important factor for mean tree height (explaining
4291% of the variation), DBH (31.23%), and taper
(66.52%) (Table 1). The site variables only accounted for
a minor part of the variations: e.g., altitude explained
2.74% for tree height, 2.22% for DBH, and 7.35% for
taper, while latitude explained as high as 15.43% for
stem density (Table 1).

Relationship among different structure variables

Tree height and DBH showed a power function relation-
ship (Fig. 3; Table 2). The SMA b-exponent between tree
height and DBH was 0.86 (standard error =0.01) for
overall plots, and it varied markedly among different
larch forest types, with a range between 0.61 (L. potani-
nii forest) and 0.93 (L. griffithii forest); and the OLS b-
exponent was 0.56 (standard error=0.01) for overall
plots, with a range of 0.51 (L. potaninii forest) to 0.78 (L.
griffithii forest) (Table 2). The allometric relationships
between height and DBH varied remarkably among larch
forest types (Table S4). For example, both intercepts and
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slopes by SMA were significantly different among larch
forest types (Fig. S1). In general, the b-exponents of the
Sect. Multiseriales forests (SMA 0.83 and OLS 0.64)
were greater than those of the Sect. Larix forests (SMA
0.74 and OLS 0.53) (Table 2).

The d-exponents for the relationship between average
DBH and stem density were —0.30, — 0.33, — 0.39 and - 043
for the OLS, the 50%, 75% and 95% quantiles, respectively
(Fig. 4; Table 3). Among the 11 larch forest types, only the L.
gmelinii (- 051, - 0.50, — 0.56 and — 049 for the OLS, the
50%, 75%, and 95% quantiles, respectively), the L. gmelinii
var. principis-rupprechtii (- 0.28, - 0.33, - 0.37 and - 0.53 for
the OLS, the 50%, 75%, and 95% quantiles, respectively) and
the L. sibirica (- 0.38, — 040, — 0.48 and - 0.60 for the OLS,
the 50%, 75%, and 95% quantiles, respectively) forests exhib-
ited a significant relationship between average DBH and stem
density (Fig. 4; Table 3). The allometric relationships between
average DBH and stem density were not different among
larch forest types (Table S4). The Sect. Larix forests (- 0.44,
- 044, - 0.50 and — 043 for the OLS, the 50%, 75%, and 95%
quantiles, respectively) exhibited a significant relationship be-
tween average DBH and stem density, while the Sect. Multi-
seriales forests did not show any significant correlations
(Fig. 4; Table 3).

Taper and stem density showed a significant correl-
ation for overall larch forests with f~exponents of - 0.43,
-0.47, - 0.42 and - 0.70 for the OLS, the 50%, 75%, and
95% quantiles, respectively (Fig. 5; Table 4). The L. gme-
linii (-0.27, —0.29, —0.30 and - 0.19 for the OLS, the
50%, 75%, and 95% quantiles, respectively), the L. gmeli-
nii var. principis-rupprechtii (- 0.23 and - 0.31 for the
OLS and the 95% quantile, respectively) and the L. sibir-
ica (-0.33, —0.27, —0.33 and - 0.53 for the OLS, the
50%, 75%, and 95% quantiles, respectively) forests
showed a significant relationship between taper and
stem density (Fig. 5; Table 4). The allometric relation-
ships between taper and stem density were not different
among larch forest types (Table S4). The Sect. Larix for-
ests (-0.33, —0.33, —0.39 and - 0.37 for the OLS, the
50%, 75%, and 95% quantiles, respectively) exhibited a
significant relationship between average DBH and stem
density (Fig. 5; Table 4).

Discussion

Variation of structure variables among larch forest types
Slenderness reflects forest stability, and greater slender-
ness indicates higher susceptibility of forest to disturb-
ance (Wang et al. 1998; Masaka et al. 2013). In this
study, we found greater slenderness for the Sect. Larix
forests than for the Sect. Multiseriales forests (Fig. 2e).
In this sense, the Sect. Larix forests were more sensitive
to disturbance than the Sect. Multiseriales forests. The
slenderness of the Sect. Larix forests was consistent with
that reported in previous studies in Europe (Orzel 2007).
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Fig. 3 Relationships between tree height and diameter at breast height (DBH) for larch trees in China. a L. gmelinii forest; b L. gmelinii var. principis-
rupprechtii forest; ¢ L. olgensis forest; d L. sibirica forest; e L. griffithii forest; f L. himalaica forest; g L. mastersiana forest; h L. potaninii forest; i L. potaninii
var. australis forest; j L. potaninii var. chinensis forest; k L. speciosa forest; | Sect. Larix forests (Sect. L); m Sect. Multiseriales forests (Sect. M); and n overall.

The structure variables varied remarkably among larch
forest types (Fig. 2), partly because of the differences in
the phenotypes of the dominant trees and site distribu-
tions of different larch forests (Figs. 1 and S2; Table 1).
Forest type was the most important impact factor for all
structure variables except the stem density (Table 1).
Among the site factors, altitude was the main factor and
latitude was the most important factor for the stem
density (Table 1). All structure variables except the DBH

exhibited significant geographic patterns (Fig. S2). Be-
sides, stand age may influence the structure variables of
different forest types (Chazdon et al. 2005), such as
diameter of tree in the old-growth hemlock-hardwood
forests (Tyrrell and Crow 1994), and DBH growth,
height of branch and crown width in the Pinus sylvestris
var. mongolica plantation (Zhou 2017). The absence of
stand age in this study may limit the generalization of
our conclusion.
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Table 2 Parameters of the standard major axis regression (SMA) and the ordinary least square regression (OLS) between tree height

and DBH for larch forests in China

Forest type No. of tree stems SMA OLS
In (a) b R? In (a) b R?

L. gmelinii 3009 0.74 + 004 0.75 + 001 069" 1.03+002 063 + 001 069"
L. gmelinii var. principis - rupprechtii 3397 0.03 + 0.06 087 + 0.02 044" 085 + 0.03 0.58 + 0.01 044"
L. olgensis 56 0.70 + 0.17 068+006 087  081+008 063+003 087
L. sibirica 1205 053 + 007 081+003 066 091+ 004 066 + 001 066"
L. griffithii 120 —0.05 + 0.21 0934009 071" 027010 0.78 + 0.05 071"
L. himalaica 210 -023+017  080+007 049 027 +008 056 +004 049"
L. mastersiana 101 —003+020 0794007 076 023010 069+004 076"
L. potaninii 183 052 +0.12 061 + 005 0717 0.74 + 0.06 051 + 002 071"
L. potaninii var. australis 491 -026+0.13 0.84 + 0.05 058" 025+006 064 +002 058"
L. potaninii var. chinensis 892 —-053+0.12 092 + 004 053" 0.18 + 006 067 + 002 053"
L. speciosa 58 —~0.36 + 029 083 +0.10 079" —-0.10 £ 0.14 0.74 + 0.05 079"
Sect. Larix 7667 059 + 0.03 0.74 + 001 051" 114 + 002 053 % 001 051"
Sect. Multiseriales 2055 ~0.22 + 006 083+002 0597 0284003 064 + 001 059"
Overall 9722 0.16 + 0.03 0.86 + 0.01 042" 095+ 002 056 + 0.01 042"

The a and b are the parameters of Eq. 3. Values represent estimate value + standard error. ™ indicates that the p-value was less than 0.001

The differences of exponents between tree height and
DBH among larch forest types

Inconsistent with King et al. (2009), we found that the
b-exponent between tree height and DBH of overall
larch forests in China was larger than 2/3 for the SMA
and equal to 2/3 for the OLS (Tables 2 and S5).

However, the forest type dependence of the exponent
was consistent with Wang et al. (2006) and Lopez-
Serrano et al. (Lopez-Serrano et al. 2005), who found
that this relationship was significantly modulated by cli-
mate at a large scale. Similarly, Liu et al. (2017) found
that the b-exponents between tree height and DBH of
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regression (QR) with quantiles of 50%, 75% and 95% and the ordinary least square regression (OLS). a L. gmelinii forest; b L. gmelinii var. principis-
rupprechtii forest; c L. sibirica forest; d L. potaninii var. australis forest; e L. potaninii var. chinensis forest; f Sect. Larix forests; g Sect. Multiseriales
forests; and h overall. For abbreviations of each larch forest type, see Figs. 2 and 3
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Table 3 Parameters of the quantile regression (QR) and the ordinary least square regression (OLS) between average DBH and stem

density for larch forests in

China

Forest type No. of plots Exponent d (mean + standard error)

OLS 50% quantile 75% quantile 95% quantile
L. gmelinii 37 —-0.51+005" —-0.50+008" —-056+007" —-049+008"
L. gmelinii var. principis - rupprechtii 51 -028+0.10" —-033+009" -037+008" -053+0.23"
L. olgensis ° 1 - - - -
L. sibirica 19 -038+007" ~040+008" —-048+0.11" ~060+0.13"
L. griffithii 4 ~0.35+068 013+ 1.16 115+ 174 —1.15+204
L. himalaica 4 0.13+074 042+1.15 020+1.17 0.20+1.09
L. mastersiana 3 0.16£0.36 -003+473 -0.03+482 —-003+£511
L. potaninii 4 ~0.38+040 —-033+089 —040+ 099 040+ 097
L. potaninii var. australis 1 -025+0.36 -0.19+0.59 -0.28+0.60 -1.01+£087
L. potaninii var. chinensis 19 -025+0.15 -0.13+0.23 -0.49+0.31 -030+047
L. speciose ° 2 - - - -
Sect. Larix 108 —044+005" —044+006" 0504006 —043+0.12"
Sect. Multiseriales 47 -0.05+0.17 0.03+0.17 -0.02+0.19 -0.57+040
Overall 155 ~030+005" -033+007" 0394006 —043+0.12"

The d is the parameter of Eq. 4. “indicates larch forest types with the number of plots less than 3. " and " indicate p <0.01 and p < 0.05, respectively

larch forests were not only correlated with larch forest
type, but also significantly affected by MAT. Climatic
conditions are very important for tree growth (Littell
et al. 2008; Fang et al. 2012a, 2012b). Trees tend to grow
vertically under warm and humid climatic conditions,
while they tend to grow radially under cold climatic

conditions (Wang et al. 2006; Liu et al. 2017; Littell et al.
2008). Hence, the relationship between height and DBH
differs among climatic conditions. For different larch
forests, climate factors also significantly influence tree
growth (Carrer and Urbinati 2006; Dulamsuren et al.
2008, 2010, 2011). For example, Dulamsuren et al.
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Fig. 5 Relationships between taper and stem density for larch forest types with more than 10 plots in China according to the quantile regression
(QR) with quantiles of 50%, 75% and 95% and the ordinary least square regression (OLS). a L. gmelinii forest; b L. gmelinii var. principis-rupprechtii
forest; ¢ L. sibirica forest; d L. potaninii var. australis forest; e L. potaninii var. chinensis forest; f Sect. Larix forests; g Sect. Multiseriales forests; and h
overall. For abbreviations of each larch forest type, see Figs. 2 and 3
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Table 4 The parameters of the quantile regression (QR) and the ordinary least square regression (OLS) between taper and stem

density for larch forests in China

Forest type

Exponent f (mean + standard error)

oLS 50% quantile 75% quantile 95% quantile
L. gmelinii —027+006" -029+009" —-030+006" —-019+005"
L. gmelinii var. principis -rupprechtii -023+008" —-0.12+0.12 -0.18+0.10 —-031+009"
L. olgensis ° - - - -
L. sibirica ~033+007" ~027+007" -033+0.11" ~053+0.12"
L. griffithii —~131+083 —~1.83+168 ~2.55+205 —2.55+198
L. himalaica -038+0.14 —032+0.28 ~046+032 ~046+ 035
L. mastersiana -027+0M —-021+£1.30 —-034+£162 —-034+156
L. potaninii ~0.18+025 —0.07+1.20 —0.26+148 —026+1.12
L. potaninii var. australis ~035+024 ~035+032 ~056 +0.49 ~0.72+069
L. potaninii var. chinensis 0.14+0.23 —-0.05+0.28 -020+0.27 0214038
L. speciose ° - - - -
Sect. Larix —033+005" —033+004" -039+0.11" —-037+009"
Sect. Multiseriales 0.06+0.14 0.05+0.15 0.03+0.22 0.05+0.25
Overall —043+006" —047+006" —042+0.10" ~0.70+020"

The fis the parameter of Eq. 5. ®indicates larch forest types with the number of plots less than 3. " and " indicate p <0.01 and p < 0.05, respectively

(2010, 2011) found that the tree-ring width of L. sibirica
was positively related to warm and humid climatic con-
ditions and that aridity reduced the growth of this spe-
cies. Zhang et al. (2013) found that average DBH and
stem density of the L. gmelinii in northeastern China
were largely determined by precipitation of the driest
quarter. Bhatta et al. (2018) found that radial growth
of the L. griffithii was significantly positively corre-
lated with the precipitation of the wettest quarter and
negatively correlated with the mean temperature of
the warmest month in Nepal near the Tibetan Plat-
eau. Meanwhile, the growth response of larch to cli-
matic conditions depends on altitude (Sun et al.
2010b). In this study, the differences in site and cli-
matic conditions among larch forest types (Figs. 1
and S2) resulted in markedly different tree height-
DBH relationships. The b-exponent of overall larch
forests was consistent with the result of Liu et al.
(2017) (0.56 vs. 0.51) at the national scale. However,
in contrast to our study (Table 2), Liu et al. (2017)
found that the b-exponents between tree height and
DBH of Sect. Larix forests in northeastern China
(0.65+0.11 for the L. gmelinii forest and 0.68 + 0.10
for the L. olgensis forest) were significant bigger than
those of the Sect. Multiseriales forests in southwestern
China (L. mastersiana forest: 0.51 +0.17 and L. potaninii
forest: 0.54 + 0.15), partly because of their limited number
of forest types. In their studies, Liu et al. (2017) included
only four forest types, while we included seven forest types
dominated by the species from the Sect. Multiseriales.

Site condition and self-thinning of larch forests in China

Gradel et al. (2017) found that thinning significantly in-
creased the growth of larch. In other words, low stem
density is conducive to the growth of larch. This finding
is consistent with our result regarding the stem density
effect. There were significant negative power function
relationships between average DBH and stem density,
and between taper and stem density for overall larch for-
ests and the Sect. Larix larch forests in China (Tables 3
and 4). However, the results varied among forest types.
The L. gmelinii, the L. gmelinii var. principis-rupprechtii
and the L. sibirica forests, all belonging to the Sect. Larix
forests, showed a significant negative power function re-
lationship, while the other types did not exhibit signifi-
cant relationship (Figs. 2 and 3). Compared with the
Sect. Larix forests, the Sect. Multiseriales forests suffered
more environmental stress and their densities were com-
paratively low (average stem density: 605.8—945.7 stems
per ha) and even did not result in natural thinning. For
example, the Sect. Multiseriales forests are distributed in
the alpine regions of southwestern China, with a mean
elevation of over 3000 m, and some are even distributed
in the frigid areas at an elevation over 4000 m (Fig. S2)
(Cheng and Fu 1978; Wu 1980). Therefore, environmen-
tal conditions of the Sect. Multiseriales forests are gener-
ally more stressful (Cheng and Fu 1978; Wu 1980). For
woody plant communities, site conditions would com-
monly affect the natural thinning process (Fang 1992).
Compared with that of conifer forests distributed at
lower altitudes, crown density of the Sect. Multiseriales
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forests was lower (average stem density: 837.0 stems per
ha). Some of these forests were even sparse forests, and
self-thinning may not have occurred. Therefore, the ef-
fect of density was less obvious for the Sect. Multiser-
iales forests. This finding is consistent with the results of
Comeau et al. (2010), who found that the relationship
between stem density and average DBH was influ-
enced by environmental and other factors, and indi-
cated the need to elucidate the relationship between
stem density and average DBH for different forest
types and for different regions where the forest types
grow.

The exponents of average DBH vs. stem density re-
lationship and taper vs. stem density relationship dif-
fered greatly among forest types and varied between
different approaches (QR vs. OLS). Although there
were few literatures of allometric relationships be-
tween density and other structure variables about
larch forests, dependence of the exponent on forest
type was also observed for other coniferous forests.
For example, Cui et al. (2016) found that the expo-
nent between stem density and average DBH for the
Cunninghamia lanceolata plantations was not con-
stant but obeyed a normal distribution with an aver-
age of 1.88. Rivoire and Moguedec (2012) found that
the exponents varied from - 1.59 by a stochastic fron-
tier function to -1.85 by a generalized optimization
method. Pretzsch (2006) found that the exponents be-
tween stem density and average DBH, and between
biomass and stem density were not constant, but
were related to forest types. These results, together
with ours, indicated that the power exponents of
structure variables vs. stem density relationship
tended to vary with forest types and depended on the
analytical methods (Sun et al. 2010a; Cui et al. 2016).
The site conditions differed among larch forest types,
which were distributed in different regions (Fig. 1).
Site conditions are commonly found to affect the nat-
ural thinning process in woody plant communities
(Fang 1992). Therefore, the exponents between aver-
age DBH and stem density, and between taper and
stem density for larch forests were not constant and
varied with larch forest types.

Conclusions

In this study, we explored the relationships among struc-
ture variables of larch forests in China based on an ex-
tensive investigation of natural larch forest across China.
We found that the Sect. Larix forests were denser, taller
and slenderer than the Sect. Multiseriales forests. The
relationship between tree height and DBH showed a
power function relationship for all larch forest types, but
they had different exponents. Overall, stem density was
negatively correlated with average DBH and taper.
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Among the 11 larch forest types, stem density was nega-
tively correlated with DBH and taper of the L. gmelinii,
the L. gmelinii var. principis-rupprechtii and the L. sibir-
ica forests, but not for other types. We concluded that
all structure variables except stem density were forest
type dependent. The exponents between tree height and
DBH, average DBH and stem density, and taper and
stem density for larch forests varied among larch forest
types. The Sect. Larix forests exhibited significant dens-
ity effects.
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