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Abstract

Background: Global warming has brought many negative impacts on terrestrial ecosystems, which makes the
vulnerability of ecosystems one of the hot issues in current ecological research. Here, we proposed an assessment
method based on the IPCC definition of vulnerability. The exposure to future climate was characterized using a
moisture index (MI) that integrates the effects of temperature and precipitation. Vegetation stability, defined as the
proportion of intact natural vegetation that remains unchanged under changing climate, was used together with
vegetation productivity trend to represent the sensitivity and adaptability of ecosystems. Using this method, we
evaluated the vulnerability of ecosystems in Southwestern China under two future representative concentration
pathways (RCP 4.5 and RCP 8.5) with MC2 dynamic global vegetation model.

Results: (1) Future (2017-2100) climate change will leave 7.4% (under RCP 4.5) and 57.4% of (under RCP 8.5) of
areas under high or very high vulnerable climate exposure; (2) in terms of vegetation stability, nearly 45% of the
study area will show high or very high vulnerability under both RCPs. Beside the impacts of human disturbance on
natural vegetation coverage (vegetation intactness), climate change will cause obvious latitudinal movements in
vegetation distribution, but the direction of movements under two RCPs were opposite due to the difference in
water availability; (3) vegetation productivity in most areas will generally increase and remain a low vulnerability in
the future; (4) an assessment based on the above three aspects together indicated that future climate change will
generally have an adverse impact on all ecosystems in Southwestern China, with non-vulnerable areas account for
only about 3% of the study area under both RCPs. However, compared with RCP 4.5, the areas with mid- and high-
vulnerability under RCP 8.5 scenario increased by 13% and 16%, respectively.

Conclusion: Analyses of future climate exposure and projected vegetation distribution indicate widespread
vulnerability of ecosystems in Southwestern China, while vegetation productivity in most areas will show an
increasing trend to the end of twenty-first century. Based on new climate indicators and improved vulnerability
assessment rules, our method provides an extra option for a more comprehensive evaluation of ecosystem
vulnerability, and should be further tested at larger spatial scales in order to provide references for regional, or even
global, ecosystem conservation works.
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Background

Recent climate changes have caused widespread negative
impacts on global ecosystems (Allen et al. 2010; Allen
et al. 2015). Continued emission of greenhouse gases will
cause further warming and long-lasting changes in all
components of the climate system, increasing the likeli-
hood of severe, pervasive and irreversible impacts on
various human and natural systems (IPCC 2014). There-
fore, assessing the vulnerability of ecosystems in the con-
text of global climate change is one of the major
components of current global change study. According
to IPCC’s definition, vulnerability to climate change is
the degree to which a system is susceptible to, or unable
to cope with, the adverse effects of climate change, in-
cluding climate variability and extremes. It is a function
of the character, magnitude, and rate of climate variation
to which a system is exposed (exposure), its sensitivity,
and its adaptive capacity (IPCC 2001). The complexity of
ecosystems makes the relevant vulnerability assessment
studies have no uniform method (Turner et al. 2003; Fiis-
sel and Klein 2006), and researchers have worked on this
issue from multiple perspectives and spatial scales. For in-
stance, Wu et al. (2007) and Zhao & Wu et al. (2014) used
the temporal variation of net primary productivity (NPP)
as the indicator of ecosystem vulnerability. Gonzalez et al.
(2010) used vegetation change to assess ecosystem vulner-
ability. Watson et al. (2013) proposed an assessment based
on a spatial analysis of the ecoregion’s natural integrity
(vegetation intactness) with its relative exposure to future
climate change, which was adopted by subsequent studies
(e.g. Segan et al. 2016). Eigenbrod et al. (2015) further in-
troduced relative species richness to improve the assess-
ment of ecosystem vulnerability.

The main shortcoming in present ecosystem vulnerability as-
sessment works is that researchers tend to focus on one specific
aspect of the ecosystem such as biome shift (Gonzalez et al.
2010), vegetation intactness (Watson et al. 2013) or vegetation
productivity (Wu et al. 2007), while less attention has been paid
on a method that can provide comprehensive assessment for
these critical aspects of ecosystem. Here we recommend a vul-
nerability assessing methodology that integrates ecosystem’s net
primary productivity, vegetation stability (a new indicator that
combines vegetation intactness and vegetation change) and its
exposure to climate change. In our analysis, the degree of ‘ex-
posure’ was indicated by climate changes, while NPP, vegetation
intactness and its temporal change together represent the ‘sensi-
tivity’ and ‘adaptive capacity’ of ecosystems. Our method is in
part an inheritance and integration of existing methods, and im-
provements have also been made in order to make a better as-
sessment of ecosystem vulnerability.

In the study of Gonzalez et al. (2010), ecosystem expos-
ure was quantified as the probabilities of climate change
(temperature and precipitation), and its value was actually
determined by the one that has larger magnitude of
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change. However, ecosystem was not affected by
temperature or precipitation alone but by the combined
effects of the two, thus their method may not fully
characterize the degree of exposure of ecosystems to cli-
mate change. In addition, their analysis did not consider
whether the trend of climate change is positive or nega-
tive, which should have contrasting effects on ecosystems.
It is well known that climate change has both negative
and positive impacts on ecosystems. For instance, studies
have found increased productivity as a result of increased
temperature and atmosphere CO,, when water is not lim-
iting (Fang et al. 2014). In this situation, ecosystem should
not be considered as exposed to the adverse effects of cli-
mate change. Moisture and temperature work together in
determining terrestrial ecosystem dynamics (Heimann and
Reichstein 2008), thus a more suitable way to depict expos-
ure is to use indicators that can simultaneously reflect the
changes of both. In this study, a moisture index (MI) was
used to estimate exposure, which has been shown by a var-
iety of studies that can well reflect the integrate effects of
temperature and precipitation on long-term vegetation dy-
namics (Yang et al. 2005; Grundstein 2009; Fensham et al.
2015a; Fensham et al. 2015b).

In the study of Watson et al. (2013), vegetation intact-
ness was defined as the proportion of natural vegetation
that was not subject to human disturbance in a region.
However, as the authors stated themselves, this metric
did not take into account the influence of vegetation
degradation or change of vegetation type. This means
that, the vegetation intactness cannot reflect the change
of vegetation type or productivity under changing cli-
mate. Therefore, in our method, vegetation (or biome)
shift due to climate and vegetation intactness were com-
bined into one new indicator (hereafter referred to as
‘vegetation stability’), and then overlapped with the dy-
namics of vegetation productivity as a measure of eco-
system sensitivity and adaptation ability.

In recent decades, varies of ecosystem process models
have emerged, which has greatly facilitated researchers
in various fields, especially in the study of global climate
change (Rosenzweig et al. 2014; Pacifici et al. 2015).
Among these models, ‘MC’ is a dynamic global vegeta-
tion model (DGVM) that was developed around the year
2000. The first version of MC model (MC1) has long
been proven that can provide reasonable predictions for
ecosystem carbon dynamics and potential vegetation
cover (Bachelet et al. 2000; Lenihan et al. 2008), and
more importantly, the model also has been increasingly
used in recent ecosystem vulnerability assessments
(Gonzalez et al. 2010; Eigenbrod et al. 2015). In this
study, an updated version of MC model ‘MC2’ was used,
which is more efficient and user-friendly compared to its
ancestor. We utilized the model to predict the spatial
and temporal variation of vegetation productivity and
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potential vegetation distribution in Southwestern China,
a region with the most complex topography and the
most diverse ecosystem but also suffered from severe
human disturbance in China. We analyzed the future
(2017-2100) vulnerability of ecosystems for the study
area under two representative concentration pathways
(RCP 4.5 and RCP 8.5) with our assessing method, and
hopefully provided references for regional, or even glo-
bal, ecosystem conservation and assessment works.

Methods

Study site

Our study region was located in the Southwestern part of
China, including four provinces (Sichuan, Guizhou, Yun-
nan, and Guangxi), Chongqing municipality and the south-
eastern part of the Tibetan plateau, with a total area of 2.33
million square kilometers (Fig. 1). The topography and cli-
matic conditions of the region are complex and have a var-
iety of vegetation and species, including two of the world’s
important biodiversity hotspots: the Hengduan Mountains
(at the junction of Tibetan Plateau, Sichuan and Yunnan)
and the southern part of Yunnan (Myers et al. 2000;
Mittermeier et al. 2011). However, long-term human
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disturbances and dramatic climate changes in recent decades
have severely threatened ecosystems in the study area. In
addition, due to the combined influence of the East Asian,
the South Asian and the plateau monsoon (Bao et al. 2018),
the impact of future climate change on ecological security of
this region is highly uncertain. However, systematic assess-
ment of climate change vulnerability for ecosystems across
Southwestern China has seldom been conducted.

MC2 model simulation and validation

MC2 (short for MC version 2) is a new implementation of
the MC1 dynamic global vegetation model (Daly et al. 2000;
Bachelet et al. 2001a), which has been proved to provide rea-
sonable vegetation dynamics for many studies from regional
(Bachelet et al. 2000; Kim et al. 2018), national (Bachelet
et al. 2003; Mills et al. 2015) to global scales (Daly et al. 2000;
Kim et al. 2017). MC2 can simulate potential vegetation dis-
tributions, and the movement of carbon, nitrogen, and water
through ecosystems (Lenihan et al. 2008). The model re-
quires five climate variables (monthly mean, maximum and
minimum temperature; precipitation; vapor pressure) and
five soil variables (soil depth; bulk density; clay, sand and
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Fig. 1 Map of the study area and its location in China
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rock fractions) to run three interacting modules of biogeog-
raphy, biogeochemistry and wildfire.

Our simulation included two phases. First, MC2 was
run under historical climate for validation purpose. His-
torical climate inputs required by the model were ex-
tracted from the CRU TS 4.01 dataset (Harris et al. 2014;
University of East Anglia Climatic Research Unit (CRU)
et al. 2017), which provides 1901-2016 monthly global
land data for multiple climate variables in 0.5° grids. Simu-
lated vegetation distribution was compared to the Vegeta-
tion Regionalization Map of China (The Editorial
Committee of Vegetation Map of China 2007), which was
the best available vegetation map in China. To validate
modeled vegetation NPP, we used the MOD17A3 NPP
product (1-km resolution) from NASA (Zhao et al. 2005),
which has been used in many studies for validation of
carbon-cycling models (Tang et al. 2010; Zhang et al
2005; Buddenbaum et al. 2015; Slevin et al. 2017). Average
annual NPP of the study area from 2000 to 2015 was ex-
tracted and calculated from the dataset and regridded to
0.5° resolution, which was then compared with the mean
annual NPP of the same period simulated by MC2.

Second, future vegetation distribution and vegetation
productivity were simulated for the year of 2017-2100
under the two RCPs (RCP 4.5 and RCP 8.5). Future cli-
mate inputs came from the BCSD-CMIP5 Climate
Monthly Projections dataset produced by the “Down-
scaled CMIP3 and CMIP5 Climate and Hydrology Pro-
jections” (Brekke et al. 2013; Maurer et al. 2014). This
dataset provided downscaled 0.5° global “Bias-Correction
Spatial Disaggregation (BCSD)” climate projections for 37
major global circulation models (GCMs) from the IPCC
Fifth Assessment Report, from which we selected the outputs
of BCC_CSM 1.1(m). The BCC_CSM 1.1(m) model was de-
veloped by the Beijing Climate Center, and has been proven
to be able to provide preferable projections for climate
change study in China (Wu et al. 2014). Since the model did
not provide vapor pressure projections required by MC2, fu-
ture monthly vapor pressure was estimated using the
method of Harris et al. (2014), which was also adopted by
the CRU dataset to calculate vapor pressure:

17.27% Tinin

VAP = 6.108 X €75 Tmn (1)

where VAP is vapor pressure (hPa), T, is monthly
average daily minimum temperature (°C).

These 0.5°-grid climate data were used to simulate the
future vegetation productivity of study area. However,
for vegetation distribution, we first interpolated the data
to a resolution of 0.05° and then performed the simula-
tion. The reason is that the calculation of vegetation sta-
bility requires a finer scale vegetation map to calculate
the proportion of changes in vegetation types within
each 0.5° grid (see details below).
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Future climate exposures

As mentioned above, we used MI to indicate the future
exposure of ecosystems to climate change, which was
defined as:

MI = P-PET (2)

where MI is the moisture index (mm), P is annual pre-
cipitation (mm) and PET is annual potential evapotrans-
piration (mm). A negative MI value indicated a dry
climate where precipitation was not sufficient to meet
climatic water demands while positive values indicated
precipitation supplies were in excess of water demands
(Grundstein 2009).

By adding up monthly precipitation of each year (using
the same data for MC2 inputs), we calculated 2017—
2100 annual precipitation for the study area under RCP
4.5 and RCP 8.5 scenarios. Since the BCC_CSM 1.1(m)
model did not provided projections for future PET, we
used annual PET calculated by MC2 model.

We then calculated the probabilities of MI change for
both RCP 4.5 and RCP 8.5 using a method modified
from that of Gonzalez et al. (2010):

P (03@) (3)

where erf(x) is the error function, Cyy is the projected
MI change of 2017-2100, and o is the 2017-2100 stand-
ard deviation, thus Py is the probability that Cyy falls
within a calculated number of standard deviations of the
mean. However, in the study of Gonzalez et al. (2010),
climate exposure was considered to be vulnerable as
long as temperature (or precipitation) changes, no mat-
ter the trend of climate change is positive or negative,
thus the value of C was actually the absolute value of the
climate change rate. In our calculation, the value of Cyy
was directly used without taking the absolute value, and
thus the value of Py ranged from -1 to 1, with the sign
(positive or negative) indicating the direction of MI
change. The exposure of future climate was considered
vulnerable only when MI showed a decreasing trend (see
Introduction). We classified Pyy into five vulnerability
classes based on IPCC treatment of uncertainty (IPCC
2007): very low (Pyg > —0.05), low (- 0.2 < Py < - 0.05),
medium (- 0.8 < Py < -0.2), high (-0.95< Py <-0.8)
and very high (Pyg < - 0.95).

Future ecosystem sensitivity and adaptation ability

We used vegetation stability (S,) and ecosystem productiv-
ity as the measure of ‘sensitivity’ and ‘adaptation ability’ of
ecosystems to future climate change. Vegetation stability
is defined here as the proportion of intact natural vegeta-
tion that remains unchanged in an area over a period. This
index integrates two previous indices that are important
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in assessing ecosystem vulnerability: (1) vegetation change
under climate change (Gonzalez et al. 2010), (2) vegetation
intactness (Watson et al. 2013).

As shown in Appendix S1, the calculation of vegeta-
tion stability had two steps. In each 0.5° grid, we first ex-
cluded the area that is not covered by natural vegetation
due to human disturbances from the remaining area.
We extracted the land cover map of the study area from
the GlobCover 2009 version 2.3, which had a spatial
resolution of 300 m (Arino et al. 2008), and regridded to
0.05° resolution to be consistent with the MC2 modeled
map of vegetation in the next step. Then we excluded all
sub-grids that were subject to human disturbances in
each 0.5° grid, including Cultivated Terrestrial Areas and
Managed Lands, and Artificial Surfaces and Associated
Areas (Watson et al. 2013).

The second step required further excluded the area
that the vegetation type has changed due to climate
change for the remain area in each 0.5° grid. To achieve
this, a more detailed vegetation map was required to
identify the proportion of areas where vegetation type
changed in each 0.5° grid. Therefore, future (2017-2100)
potential vegetation map was simulated by MC2 model
at a resolution of 0.05° (thus there were a hundred 0.05°
sub-grids in each 0.5° grid). For each 0.05° sub-grid, we
used the majority of vegetation types during each of the
two periods (2017-2027 and 2090-2100) as the begin
and end state of the future vegetation distribution, re-
spectively. By comparing the vegetation types of the two
states, all sub-grids changed in vegetation type in each
0.5° grid were then excluded. Thus, the remaining part
in each 0.5° grid will be the proportion of intact natural
vegetation that remains unchanged in the future, namely
vegetation stability. The value of vegetation stability (S,)
ranged from 0 to 100% and was negatively related with
the vulnerability of ecosystems. We also classified S, into
five vulnerability classes: very low (S, > 80%), low (60% <
S, < 80%), medium (40% < S, <60%), high (20%<S, <
40%) and very high (S, <20%). By integrating present
land use (vegetation intactness) and future potential
vegetation change, this approach could provide a more
comprehensive assessment of the vegetation dynamics.

To evaluate the vulnerability of vegetation productivity
under future climate change, we used the annual NPP of
2017-2100 simulated by MC2 model to calculate the
probability of NPP changes (Pypp) for each 0.5° grid
under the RCP 4.5 and RCP 8.5 scenarios, with the same
method as for Py (Eq. 3), and also classified into five
vulnerability classes.

Assessment of future ecosystem vulnerability

For each of the two future climate scenarios (RCP 4.5
and RCP 8.5), we determined the overlap of the vulner-
ability classes that derived separately from future climate
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(Py), vegetation dynamics (S,) and productivity (Pnpp)-
As the flowchart showed (Fig. 2), S, and Pypp were first
overlapped following the rules as shown in Fig. 3, which
could prevent from under- or overestimation of the vul-
nerability of certain grids of very high or very low S, or
Pypp. Then the result was further overlapped with the
vulnerability classes for Pygy.

Results

Model validation

According to the Vegetation Regionalization Map of
China, there were five major vegetation types in our
study region (Fig. 4a), including alpine grassland and
shrubland, subalpine forest and tropical monsoon forest
in the west, and subtropical evergreen broadleaf forest,
subtropical and tropical monsoon forest in the east part
of our study region. This geographic pattern of vegeta-
tion distribution was largely similar to the current vege-
tation map predicted by the MC2 model (Fig. 4b),
suggesting that MC2 was qualified to model vegetation
patterns in Southwestern China.

MC2 also well simulated the spatial pattern of ecosys-
tem productivity for the study area, Fig. 5 showed that,
modeled NPP was well correlated with MODIS NPP
(Slope = 0.89, R*=0.79). These tests suggest that MC2
can be well used to evaluate ecosystem vulnerability to
future climate change in Southwestern China.

Future climate exposures

The exposure of ecosystems to the adverse effects of fu-
ture climate change, as assessed by Pyy (Eq. 1), was
shown in Fig. 6a and b. Under the RCP 4.5 scenario, the
exposure in the study area was relatively moderate by
the end of the century, with only 7.4% of the total area
classified as ‘high vulnerability’, and no area revealed
‘very high’ vulnerability (Table 1). Medially vulnerable
areas accounted for the largest area (58.95%), and the
remaining 35% were occupied by areas with low or very
low vulnerability. While under the RCP 8.5 scenario,
more than half of the study area (57.47%) revealed high
or very high vulnerability, with less than 7% of the area
showed low or very low vulnerability. In addition, future
climate exposure under both RCP 4.5 and RCP 8.5
showed a clear latitudinal pattern, climate vulnerability
generally increased with latitude, indicating that the im-
pacts of climate change were more drastic at high lati-
tude and altitude areas.

Future ecosystem sensitivity and adaptation ability

The MC2 simulations showed that, future climate
change will have contrasting impacts on potential vege-
tation distribution in Southwestern China between the
RCP 4.5 and RCP 8.5 scenarios. Under RCP 4.5, each
major vegetation types showed a significant northward
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shift in the future (Figs. 4c), when compared with
current vegetation distribution (Fig. 4a and b). For in-
stance, the south edge of alpine grassland on the Tibetan
Plateau will move from the current 30° N to about 32°
N, and the reduced distribution area will be occupied by
subalpine forests. The subtropical evergreen broadleaf
and monsoon forest zone will also move northwardly for
about 1°. However, all vegetation types under RCP 8.5
will move southward significantly (Fig. 4d). Almost all
area north of 29° N on the Tibetan Plateau will be cov-
ered by alpine grassland and shrubland. Current tropical
monsoon forests in the southwest part of the study area
will disappear and be replaced by the subtropical ever-
green broadleaf forest zone in the future.

The vegetation stability in most areas of Southwestern
China will decline to varying degrees (Fig. 6e and f), with
nearly half of the area classified into high or very high

VH
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b
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)
o
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gM M
o
)
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VL L M H VH
Vulnerability classes

Fig. 3 Rules for overlapping the vulnerability classes of two different
vulnerability indicators, modified from the figure in Gonzalez et al.
(2010). Abbreviation: VL, very low; L, low; M, medium; H, high; VH,
very high

vulnerability under both pathways (45.61% and 42.76%,
respectively), especially in low altitude areas. However,
the northwestern part of the Tibetan Plateau will keep
being a region with high natural vegetation intactness
and moderate vegetation shift (very low vulnerability).
As for the vulnerability of vegetation productivity
(2017-2100), about 92% of the study area showed very
low or low vulnerability under the RCP 4.5 scenario,
with the remaining area classified into medium vulner-
ability (Fig. 6e). Under RCP 8.5, about 16% of the study
area revealed medium vulnerability, which were mostly
located in the areas east of 105° E. The rest west regions
generally showed low or very low vulnerability (Fig. 6f).

Future ecosystem vulnerability

By overlapping the vulnerability layers of future climate
exposure, vegetation stability and productivity vulner-
ability, we obtained a comprehensive assessment of eco-
system vulnerability for the study area (Fig. 6g and h).
Under the RCP 4.5 scenario, the majority of our study
region showed varying degrees of vulnerability, with
39.5% of areas classified as low vulnerability and 57% as
medium vulnerability. Only 0.5% of areas were marked
as highly vulnerable and no ‘very high’ vulnerable areas
exist (Table 1). Under the RCP 8.5 scenario, low and
medium vulnerable ecosystems still accounted for the
vast majority of the study area (10.4% and 70%, respect-
ively). There was still no area been classified as “very
high” vulnerable, but the proportion of highly vulnerable
areas has increased significantly to 16% when compared
with RCP 4.5 scenario.

Discussion

Future ecosystem vulnerability in southwestern China

In this study, we conducted a comprehensive analysis of
ecosystem vulnerability of Southwestern China based on
future climate exposure, vegetation stability, and vegeta-
tion productivity under two representative concentration
pathways (RCP 4.5 and RCP 8.5). The results showed
that, future climate change has different degrees of im-
pact on water availability, vegetation distribution and
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productivity of ecosystems, and increased climate warm-
ing will lead to more areas with high or very high vul-
nerability (Fig. 6g and h).

Vegetation stability is an index that integrates vegeta-
tion intactness and climate change induced vegetation
change. Since vegetation intactness is the same under
both future scenarios (RCP 4.5 and RCP 8.5), then the
differences in vegetation stability (Fig. 6¢c and d) is

-
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Fig. 5 Comparison of MC2 simulated mean annual NPP with MODIS
NPP in the 0.5° grids across the study area between 2000 and 2015

actually determined by the changes of potential vegeta-
tion distribution. Future climate will drive significant
latitudinal shift in vegetation distribution, but the direc-
tions of movements can be different under different cli-
mate change scenarios (Fig. 4c and d). We found that all
vegetation types will significantly move northward under
RCP 4.5, which was consistent with many studies that global
warming will lead species and biomes to expand their ranges
towards high latitudes (Bachelet et al. 2001b; Hickling et al.
2005; Lucht et al. 2006) or high altitudes (Kelly and Goulden
2008; Moritz et al. 2008). In addition, studies have also
shown that climate warming and its impact on ecosystems
were greater at higher latitudes and altitudes (Deutsch et al.
2008; Qin et al. 2009; Mountain Research Initiative EDW
Working Group 2015). Thus it can be predicted that the
magnitude of biome shift at higher latitudes should be larger
than that at lower latitudes. As the results showed, the alpine
grassland and shrubland on the Tibetan Plateau moved
northward by more than 2° (about 220 km) under RCP 4.5,
but the subtropical evergreen broadleaf and monsoon forest
at relatively lower latitudes only moved by about 1° (Fig. 4c).
Under the RCP 8.5 scenario, however, the biomes in South-
western China did not move northward but all shifted south-
ward (Fig. 4d). In recent years, increasing studies have shown
that warm-induced drought is a major limiting factor for the
growth and distribution of natural vegetation during global
warming, and the distribution of vegetation are closely re-
lated to water availability (Crimmins et al. 2011; Huber et al.
2011; Xie et al. 2019). In our analysis, water availability was
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well quantified by the moisture index (MI). As the results
showed, for most of the study area, a relatively moderate
warming (RCP 4.5) will not laid severe impact on water
availability (Fig. 6a). Consequently, it is natural that the bi-
omes shift northward as a result of climate warming, as com-

monly reported. However, a drastic and continuous warming
(RCP 8.5) will lead more than half of the study area under

serious water deficit (Fig. 6b). In this case, water will be the
limiting factor for vegetation distribution and lead the vege-
tation to move to southern areas with relative better water
availability.

Although the future vegetation distribution can differ
significantly from current distribution, the productivity
of future vegetation in most areas is not very vulnerable
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Table 1 Areas of the five vulnerability classes to future climate exposure, vegetation stability, vegetation productivity and the

overlap of the three

Vulnerability RCP 4.5 RCP 85

classes Climate Vegetation Vegetation Ecosystem Climate Vegetation Vegetation Ecosystem
exposure stability productivity vulnerability exposure stability productivity vulnerability
(% of the study area) (% of the study area)

Very Low 21.89% 25.20% 85.29% 3.08% 342% 28.05% 79.25% 331%

Low 11.74% 15.17% 6.39% 39.45% 331% 12.20% 3.65% 10.38%

Medium 58.95% 14.03% 8.32% 57.01% 35.80% 16.99% 15.96% 70.01%

High 741% 1551% 0.00% 0.46% 27.94% 13.57% 0.91% 16.31%

Very High 0.00% 30.10% 0.00% 0.00% 29.535 29.19% 0.23% 0.00%

Abbreviations: RCP representative concentration pathways

under both RCPs (Fig. 6e and f). This indicates that fu-
ture vegetation productivity in the study area may not
decrease significantly but will increase or remain stable
in most areas (especially for alpine grassland and sub-
alpine forest on the Tibetan Plateau). This is consistent
with many reports that climate warming revealed posi-
tive effect on vegetation productivity (Beck et al. 2011;
Hudson and Henry 2009; Miller and Smith 2012). Inter-
estingly, areas with relatively vulnerable productivity
were mostly under the control of the southeast monsoon
(East Asia monsoon) (Jiang et al. 2017), and were also
areas under the most severe drought stress (Fig. 6a and
b). This may suggest that the regions controlled by the
southeast monsoon (e.g. Central and South China) may
suffer from drier and warmer climate in the future, and
a large area of subtropical evergreen broadleaved forest
in eastern China is likely to experience significant prod-
uctivity decline.

Advantages of our method

By comparing with similar studies assessing ecosystem
vulnerability to climate change, our analysis builds on
existing efforts in three important aspects.

First, we used an indicator (moisture index, MI) that
comprehensively reflects the hydrothermal conditions to
calculate future climate exposure. In the study of Gonza-
lez et al. (2010), climate exposure was quantified by sep-
arately calculating the probability of temperature and
precipitation change, and then taking the larger value of
the two to evaluate climate exposure. We also applied
this method to our study area in the preliminary ana-
lysis. As shown in Fig. S1, the vulnerability of future cli-
mate exposure (2017-2100) under RCP 4.5 scenario for
all grids were marked as “very high” without exception
(Fig. Slc), and this result was almost all determined by
temperature alone (Fig. Sla) since the future
temperature of the study area will increase significantly.
However, climate exposures calculated with moisture
index showed different results (Fig. 6a and b). As an in-
tegration of temperature and precipitation, moisture

index has long been used to describe vegetation distribu-
tion (Mather 1978) and has been proved to be aided in
the interpretation of possible mechanisms controlling the
distribution of vegetations (Stephenson 1990), while changes
in temperature alone may be inadequate for understanding
distributional shifts of plant species (Crimmins et al. 2011).
This has also been confirmed in our research that the MI-
based climate exposure could well explain the difference of
the vegetation shift in the study area under different future
climate change scenarios (Fig. 4c and d).

Second, we integrated biome shift due to climate
change into the “vegetation intactness” proposed by
Watson et al. (2013). Although “vegetation intactness”
provided a practical way of identifying potential natural
refugia (Watson et al. 2013; Eigenbrod et al. 2015), it is
still a conservative measure of ecosystem adaptive cap-
acity, because it is purely related with human-induced
land use change but did not consider the climate
change-induced vegetation change. Vegetation change
has long been recognized as a significant consequence of
climate change (Hutyra et al. 2005), and it has therefore
been used in many studies to assess the vulnerability of
ecosystems (Villers-Ruiz and Trejo-Vazquez 1997;
Dlamini 2011; Iglesias et al. 2018). However, since most
studies on vegetation changes use models to simulate po-
tential distributions of vegetation types, it is generally as-
sumed that all areas are covered by natural vegetation,
making it difficult to predict human-induced land use. In
this study, we proposed a method to evaluating biome
shift and vegetation intactness simultaneously (i.e. vegeta-
tion stability), which provides a more robust way for asses-
sing the vulnerability of vegetation to climate change. In
addition, as one of the most important components of
ecosystem function, vegetation productivity has been
added to our assessment framework, which has long been
used for indicating the temporal dynamics of ecosystems
in response to climate change (Beck et al. 2011) but not
often been used for assessing ecosystem vulnerability to-
gether with vegetation intactness, biome shift and climate
exposure (e.g. Watson et al. 2013; Eigenbrod et al. 2015).
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Third, in our calculation, climate exposure and vegeta-
tion productivity were considered to be vulnerable only
when they declined significantly, and otherwise the grids
were classified as “very low” vulnerability. Assessment of
vulnerability should not only focus on the magnitude of
the change itself, but also should consider how ecosys-
tems were affected by these changes. Therefore, when
conducting similar climate vulnerability analysis (espe-
cially for future research), careful consideration should
be given to the indicators used and the method for vul-
nerability classification to avoid over- or under-
estimation.

Limitations and suggestions for future research

MC2 model (and its ancestor MC1) has been used in
many ecosystem vulnerability studies in recent years
from regional to global scales (Gonzalez et al. 2010; Choi
et al. 2011; Zhao and Wu 2014; Eigenbrod et al. 2015).
Here we also showed that the model can provide a good
simulation of vegetation distribution and productivity
for Southwestern China (Figs. 4 and 5). However, the
commonly used DGVMs such as LPJ (Sitch et al. 2003),
IBIS (Foley et al. 1996), SEIB (Sato et al. 2007) and CLM
(Levis et al. 2004) simulate potential but not realized
vegetation distributions, as well as MC2. These models
generally use climate variables as main inputs for deter-
mining the potential vegetation type and generally are
difficult to simulate the influences of harvesting, man-
agement, pests and diseases (Peng 2000), as well as com-
petition at individual level (Fisher et al. 2010; Quillet
et al. 2010). Therefore, the simulated results of DGVMs
must be verified using reliable data. In our results, a
small number of grids were classified with high (0.91%)
or very high (0.23%) productivity vulnerability under
RCP 8.5, and these grids was irregularly distributed on
the Tibetan Plateau (Fig. 6f). We think this is likely to be
related to the soil inputs of the MC2 model. The study
of Peterman et al. (2014) has showed that MC2 model is
very sensitive to soil depth in simulations of carbon and
hydrological variables. The soil data we used indeed had
a small number of grids on the Tibetan Plateau where
the soil depth was very shallow or even zero (for ex-
ample, bare land), which may cause the model to pro-
duce unpredictable results in simulating the productivity
of these grids.

When calculating the vegetation stability, we use vege-
tation intactness to reflect the impact of human activities
on ecosystems. However, so far there still lacks a reliable
method to predict land use and cover change (LUCC)
under future climate change. Consequently, we followed
the method of Watson et al. (2013) and assumed that
vegetation intactness will remain unchanged in the fu-
ture. Although many studies have proposed LUCC pre-
diction models, most of them focused on urbanization
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(Hepinstall et al. 2008; Halmy et al. 2015), and so far
there have been few cases applied to natural ecosystems
at a large scale. At present, it is still very difficult to
make a reasonable prediction of land use change on
dozens or even hundreds of years, further studies are
still required (Verburg et al. 2019).

Conclusions

In this study, we built on recent works and carried out
an ecosystem vulnerability assessment method based on
climate exposure, vegetation stability and vegetation
productivity. We applied the method for Southwestern
China and assessed the vulnerability of ecosystems under
two future climate change scenarios (RCP 4.5 and RCP
8.5). As the climate continues to warm, over 95% of the
ecosystems in the study area will be vulnerable to vary-
ing degrees. Current vegetation distribution will show
significant latitudinal shift, but the direction of move-
ment will be different due to the difference in water
availability under the two scenarios. While in the mean-
time, the productivity of future vegetation will generally
show an increasing trend in most areas under both
RCPs. Compared with similar studies, we used a mois-
ture index (MI) that integrates the effects of temperature
and precipitation to calculate future climate exposure,
and put forward “vegetation stability” by integrating
vegetation distribution shift into the “vegetation intact-
ness” proposed by Watson et al. (2013). Based on these
improvements, our research provided an extra option
for a more comprehensive assessment of ecosystem vul-
nerability, and have the potential to be used on lager
spatial scales such as national or even global scales.
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