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Abstract

Background: The LiBackpack is a recently developed backpack light detection and ranging (LIDAR) system that
combines the flexibility of human walking with the nearby measurement in all directions to provide a novel and
efficient approach to LiDAR remote sensing, especially useful for forest structure inventory. However, the
measurement accuracy and error sources have not been systematically explored for this system.

Method: In this study, we used the LiBackpack D-50 system to measure the diameter at breast height (DBH) for a
Pinus sylvestris tree population in the Saihanba National Forest Park of China, and estimated the accuracy of
LiBackpack measurements of DBH based on comparisons with manually measured DBH values in the field. We
determined the optimal vertical slice thickness of the point cloud sample for achieving the most stable and
accurate LiBackpack measurements of DBH for this tree species, and explored the effects of different factors on the
measurement error.

Result: 1) A vertical thickness of 30 cm for the point cloud sample slice provided the highest fitting accuracy
(adjusted R? =0.89, Root Mean Squared Error (RMSE) = 20.85 mm); 2) the point cloud density had a significant
negative, logarithmic relationship with measurement error of DBH and it explained 35.1% of the measurement
error; 3) the LiBackpack measurements of DBH were generally smaller than the manually measured values, and the
corresponding measurement errors increased for larger trees; and 4) by considering the effect of the point cloud
density correction, a transitional model can be fitted to approximate field measured DBH using LiBackpack-
scanned value with satisfactory accuracy (adjusted R? =0.920: RMSE = 14.77 mm), and decrease the predicting error
by 29.2%. Our study confirmed the reliability of the novel LiBackpack system in accurate forestry inventory, set up a
useful transitional model between scanning data and the traditional manual-measured data specifically for P.
sylvestris, and implied the applicable substitution of this new approach for more species, with necessary parameter
calibration.

Keywords: Adaptive cylinder fitting, Diameter at breast height, LiBackpack, Point cloud slice, Point density,
Transitional model
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Background

Forest structures are generally characterized using
metrics such as diameter at breast height (DBH), tree
height, and tree density (Dubayah and Drake 2000).
The features of Forest structure is normally quantified
to reflect the community dynamics and effects of dis-
turbances (Dubayah et al. 2010; Filippelli et al. 2019),
to estimate the community biomass and carbon pool
(Fang et al. 2001; Ni-Meister et al. 2010), and to indi-
cate the mechanism of community assembly (Allié
et al. 2015). Forest structure is also the critical infor-
mation used in forest management and planning
(Wulder et al. 2009).

DBH is one of the most important metrics of forest
structure, generally used to indicate age structure or
to reflect the radial growth of trees (Muller-Landau
et al. 2006). The traditional forestry inventory uses a
ruler and rangefinder to measure structural indices
such as the DBH and height stem by stem at the for-
est stand scale (Liu et al. 2018a, 2018b), and predict-
ive models are fitted for regional estimates of forest
metrics such as the timber volume or biomass (le
Maire et al. 2011). This approach is always limited by
the available labor force and operating time. Since the
1980s, vegetation coverage information has been ob-
tained by satellite remote sensing and vegetation indi-
cators such as the normalized difference vegetation
index (NDVI) have been designed for estimating the
forest vegetation biomass across space with much
higher efficiency (Raynolds et al. 2006). However, the
traditional remote sensing approach cannot directly
obtain forest structure information, so global dynamic
vegetation models (DGVMs) generally apply plant
functional types as spatial units in simulations (Sato
2009; Bachelet et al. 2018). A lack of vegetation struc-
ture information leads to large uncertainty in the
vegetation inversion (Meir et al. 2017), and supple-
menting forest structure information substantially im-
proves the accuracy of DGVMs when predicting the
vegetation productivity and estimating the responses
of vegetation to climate change (Zhu et al. 2016;
Garcia-Gonzalo et al. 2017). In recent years, the rapid
development of light detection and ranging (LiDAR)
has improved the spatial resolution of remote sensing
data to the centimeter level. Compared with trad-
itional spectral remote sensing technology, LiDAR is
better at extracting the three-dimensional (3D) struc-
tural characteristics of vegetation, and thus it is in-
creasingly used in forestry inventory and forest
ecology research (Lim et al. 2003; Davies and Asner
2014; Alonzo et al. 2015).

LiDAR can be divided into three categories compris-
ing space-borne LiDAR, airborne LiDAR, e.g, un-
manned aerial vehicle (UAV)-borne LiDAR and
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airborne laser scanning (ALS), and ground-based
LiDAR, e.g., backpack- or vehicle-based LiDAR and ter-
restrial laser scanner (TLS), according to the loading
platform. Space-borne and airborne LiDAR are more
efficient at measuring the 3D structure of the vegeta-
tion canopy at a larger scale, but less effective at obtain-
ing information regarding the understory structure
because of the obstructive effect of the forest canopy
(Wu et al. 2015; Fu et al. 2018). In contrast, ground-
based LiDAR is better at providing detailed information
about the understory vegetation (Moskal and Zheng
2012). For example, Liu et al. (2016) measured the
DBH increases for trees in forest communities using
fixed ground-based LiDAR and achieved a tree identifi-
cation accuracy of about 81% in natural forest stands.
Among the various categories of ground-based LiDAR,
TLS was developed first and it has a high measurement
accuracy but the fixed measurement method limits its
spatial flexibility, while the capacity of vehicle-based
LiDAR is often limited by complex terrain and available
roads (Yu et al. 2015). Backpack LiDAR (e.g., LiBack-
pack) is a novel type of portable LiDAR for which the
surveyor is the loading platform, and thus it has a high
capacity in terms of accessibility and route choice.
Compared with TLS, backpack LiDAR is generally
much lighter and more portable, and it can obtain
much higher quality 3D point clouds in forest with
different vegetation structures (Su et al. 2018).
However, the LiBackpack is loaded on the walking
surveyors during the operating process, which may
significantly reduce the system stability and increase
the uncertainty of the measurements.

Studies have assessed the accuracy of the DBH
measurements obtained with backpack LiDAR (Holmgren
et al. 2017; Oveland et al. 2017, 2018), but the factors
that might influence these measurements and their
contributions to the error of backpack LiDAR measure-
ments have not been explored. According to our field
experience using backpack LiDAR for measuring forest
structures, the uncertainty in the results may have the
following sources: 1) the effects of irregular LiDAR
movements on the variation of the point cloud density;
2) the effects of 3D point cloud sampling method on
parameter estimates; and 3) the geometric features of
the measured objects, such as size, shape and dip angle
of a tree trunk. In order to quantify the potential
impacts of these factors on the uncertainty of the forest
measurements obtained with this novel instrument, we
investigated a Pinus sylvestris var. mongolica plantation
containing trees of different ages in the Saihanba
Natural Forest Park, Hebei Province in northern China,
where we focused on the accuracy and uncertainty of
the DBH measurements, the most important forest
structure parameter.
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Materials and methods

Study area

The study was conducted in the Qiancengban Forest Dis-
trict (42.38°-42.48° N, 117.08°- 117.43° E, 1431 m ass.l.) of
Saihanba National Forest Farm, Hebei Province, China.
This forest district is located in a mountainous area at the
southeastern edge of the Inner Mongolia Plateau, and it
has a semiarid temperate climate (Xing et al. 2017). Ac-
cording to the observational data acquired by the local
meteorological station in this region from 1960 to 2017,
the annual average temperature was —1.03°C and the
average annual precipitation was 456.87 mm. The main
vegetation types comprise artificial coniferous forests
planted from the 1960s to the 1980s. The dominant tree
species include Pinus sylvestris var. mongolica, Larix gme-
linii, and Picea meyeri, as well as scattered natural second-
ary deciduous broad-leaved forests of Betula platyphylla,
and Ulmus pumila woodland. Herbs and shrubs are sparse
under the forest canopy.

Data collection

The LiBackpack LiDAR system used in this study was
developed in 2018 by the Beijing Green Valley Technol-
ogy Co. Ltd. The core parts of the LiBackpack system
comprise the VLP-16 Lidar sensor and LiDAR360 soft-
ware. The VLP-16 Lidar sensor was produced by Velo-
dyne Lidar, Inc., and the technique parameters for the
LiBackpack are given in Table S1. A spatial analysis
module is embedded in the LiIDAR360 software that pro-
vides a set of functions on LiDAR point cloud data pro-
cessing and analyses.

Five plots of Pinus sylvestris var. mongolica forest
measuring 30m x 30m area were selected. First, we
used lining ropes to enclose a square of 30 m x 30 m
in the forest, then measured the x and y coordinates
of each tree with a DBH >2.5cm using a laser range
finder (DISTO X3), and manually measured the tree
DBH (i.e. DBHgqq) using a measuring tape. Mean-
while, an investigator carried a LiBackpack to measure
the trees within the sample plots on foot according to
the route shown in Fig. S1. From a corner of the plot,
the investigator walked along a zigzag line with a row
distance of about 5m, and passed two sides of each
tree in the sample plot. During data acquisition, the
equipment was carried on the investigator’s back,
where the sensor was higher than the top of the in-
vestigator’s head and 3D data were scanned automat-
ically. The built-in microcomputer system integrated
the relative position and inertial navigation system in-
formation to produce 3D point cloud data. Mean-
while, the DBH values were measured for the trees
with a measuring tape as field reference data
(DBHge1q). Basic information of the plots is listed in
Table 1.
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LiBackpack data processing

Ground points extraction and tree point cloud
normalization

For the data file of the scanned point cloud of each sam-
pling plot, the first step of processing was to clean the
data and separate the point cloud of the ground from
that of the trees, since all objects refluxed the lasers gen-
erate groups of points in the 3D point cloud. Ground
points were extracted by applying an improved progres-
sive triangulated irregular network densification algo-
rithm (Zhao et al. 2016), and the elevations of ground
points were then subtracted from the elevations of the
nearest non-ground points. Thus, the locations of all
trees were transformed onto a horizontal plane of the
same elevation in a data normalization process. The
ground points were extracted and gridded to generate a
file of digital elevation model (DEM) using an inverse
distance weighted interpolation method, with a reso-
lution of 0.5m. These processes were implemented
using the LiDAR 360 V2.2 software (https://greenval-
leyintl.com/software/lidar360/).

Point cloud slicing processing

DBH fitting was implemented based on a specific height
of the tree stem (Mendez et al. 2014), where the normal-
ized point cloud was sliced horizontally with a specific
vertical thickness (recorded as ST; Fig. S2) and the point
cloud slices with elevations between 1.3+0.5 H were
intercepted subsequently. In order to analyze the effect
of the slice thickness on the DBH fitting accuracy, 16 H-
values ranging from 5 to 80 cm were specified at inter-
vals of 5 cm. The slicing process was implemented using
the LiDAR 360 V2.2 software.

Tree branches can interfere with the effectiveness of
the DBH fitting algorithm used for stem recognition
(Liu et al. 2018a, 2018b), so it is necessary to cut off the
point cloud of branches and leaves so as to obtain a
point cloud slices of mere stems. For this purpose, we
designed a mask extraction procedure to slice the point
clouds (see Supplementary Methods 1 and Fig. S3) using
ArcGIS 10.2 and a Python (v.2.7.3) script (Supplemen-
tary Method 2).

DBH fitting

An adaptive cylindrical fitting method was used to calcu-
late the DBH for slices of the point clouds with different
thicknesses. First, we used a density clustering algorithm
called density-based spatial clustering of applications
with noise (DBSCAN) to automatically divide the suffi-
ciently dense point clouds into different clusters to ob-
tain single tree stem segmentation (Tao et al. 2015). For
each cluster, a cylindrical fitting method was applied on
the base of 3D Ordinary Least Square (OLS) to obtain
the LiDAR DBH values (DBH;j; values) and the relative
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Table 1 Basic situation of the studied forests
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Plot Species Average slope (°) Area (m?) Number of trees Mean DBH (mm) Maximum DBH (mm) Minimum DBH (mm)
1 P. sylvestris 19 2627.3 25 1513 179.2 100.3

2 P. sylvestris 103 38305 29 1639 2874 100.6

3 P. sylvestris 1.8 1125.0 36 193.9 3250 102.5

4 P. sylvestris 13.7 66385 37 165.2 305.6 73.7

5 P. sylvestris 28 10238 31 167.3 2852 51.6

coordinates of each tree stem. Then we used artificial rA; y = 1-rRMSE; , (3)

visual interpretation to remove the error fitting. This
procedure was conducted using LiDAR 360 V2.2 soft-
ware. After that, we acquired points in shape file format
with DBH and relative coordinates information of each
stem. By visual check of point patterns of the scanned
data and the field measured data and ranking them by
the same order, it was easy to match the records of two
DBH data by each stem.

Factor extraction

According to the measurement process, we defined
four possible sources of error in the LiBackpack mea-
surements: two characteristics of the measured objects
comprising 1) DBHgq and 2) the tangent of the stem
angle (TSA); 3) an environmental factor comprising
the topographic slope (TS); and 4) a data factor com-
prising the point density (PD). Based on the DEM, we
obtained TS using the surface slope tool in ArcGIS
10.2. OLS circle fitting (Thomas and Chan 1989),
which was used to locate the centers of top and bot-
tom surfaces of the stem slices, before deriving the
axes of the stem cylinders to calculate TSA. PD was
calculated as the points on the unit horizontal projec-
tion area using Eq. (1):

N; st

PD; y = , (1)
i, ST

where N denotes the number of points, i is the order of
individual trees, ST is the slice thickness, and S is the
horizontal projection area of the stem point cloud.

Data analysis

The DBHj; values were compared with the DBHgeq
values. The accuracies of the measurements in different
slice thicknesses were evaluated based on adjusted R?
root Mean Squared Error (RMSE), relative root mean
squared error (rRMSE) using Eq. (2), and the relative ac-
curacy (rA) with Eq. (3):

RMSE; st

RMSE, y =———
r »H meanDBHﬁeldi

(2)

where H is the slice thickness and j denotes the DBH
class. We divided all of the trees into five size classes ac-
cording to the DBHgyq values. We ensured that the
sample size in each class was roughly equal and com-
pared rA in each class in different slice thicknesses using
analysis of variance (ANOVA).

According to the steps described above, we defined
the optimum slice thickness H, that could obtain the
highest rA for each size class, and we analyzed the
causes of the measurement errors (ADBH) based on
H,, where we defined ADBH as the dependent
variable in Eq. (4) and the four factors as independent
variables.

ADBHl} H, = DBHy;, ST, —~DBHjielq, STy (4)

We conducted partial correlation analysis to determine
the factors that had significant correlations with ADBH,
and used these factors to build a multivariate prediction
model for correcting the accuracy of the LiBackpack
measurements.

Results

Measured versus scanned DBH values for different slice
thickness classes

We obtained the DBHgoq and DBHj; values for 158
Pinus sylvestris var. mongolica trees. In general, the
DBH;; values (157.8+51.0mm) were significantly
smaller than the DBHg.q values (169.7 +51.2 mm)
(t=-8.3949, p<0.001). Accord to linear models in
Fig. 1, the adjusted R? RMSE, and fitted slope values
varied among different slice thickness classes for the
point cloud, where the mean values were 0.85, 2.31
mm, and 0.95, respectively. However, the maximum
adjusted R*> and minimum RMSE values were ob-
tained at a slice thickness of 30 cm (Fig. 2). Thus, we
selected 30cm as the optimal slice thickness for
DBHy; fitting in the following analyses.

rA values of DBH; in different tree size classes
For all of the sampled trees pooled into five diameter
classes, the rA values for DBH;; varied with the slice
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Fig. 1 Scatter plot and linear regression models for the estimated LiBackpack values versus the field measurements of Diameter at Breast Height
(DBH) in point slices with different thicknesses. The blue solid lines are the fitted lines, the grey areas are the 95% confidence intervals, and the
black dotted lines represent y = x

thickness. According to the standard deviation of DBHp;
for the samples in each diameter class (Fig. 3a), rA was
more variable in the smaller than the larger class of
DBHyelq values. Thus for larger trees, the DBHy; values
were more stable with respect to the variation in the slice
thickness. ANOVA indicated that rA differed significantly
among the DBH classes (p <0.001), and the mean rA in-
creased as the DBHj 4 class increased (Fig. 3b).

Factor analysis
For the point cloud samples with a slice thickness of 30
cm, the absolute error ADBH was negatively correlated
with DBHgeq (r=-0.178, p=0.025), the point cloud
density (PD) (r=-0.496, p <0.001), and tangent of the
stem angle (TSA) (r=-0.189, p=0.017). Among the
independent variables, PD had a significant positive
correlation with DBHgeq (r=0.188, p =0.029) and TSA
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Fig. 2 Adjusted R” and RMSE values for the linear regression models based on the LiBackpack estimates versus field DBH measurements in the

(r=0.349, p<0.001), and there were no significant cor-
relations among the other variables. A log-transformed
linear model fitted for the relationship best between
ADBH and PD, and predicted a positive ADBH only
when PD < 4 points-cm™ > (p < 0.0001). DBH,; was gener-
ally smaller than DBHyg)q at higher PD values (Fig. 4). In
addition, a linear decreasing trend was fitted between
ADBH and DBHgyg, thereby indicating that when the
tree was larger, the DBH tended to be underestimated to
a greater extent by LiBackpack. However, partial

correlation tests only found a significant correlation be-
tween ADBH and PD (r = - 0.466, p < 0.001).

Therefore, based on the point cloud samples with a
slice thickness of 30 cm, an OLS transition model was
fitted for trees using the DBHg.q values and DBHp;
values by considering (or not) the point cloud density as
a covariate in Egs. (5) and (6), as follows:

DBHLiDAR = 0.940 x DBHﬁeld—1.789 + U (5)

(b)

0.92 0.92
0.90
3
0.88 % 088 __ -
D 0.86 8 - P
S 0.84 £ .
[0} © 084 I
2 0.82 o
© c q
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-+ 130-160 mm s 0.80
< 160-180 mm R
0.78 180-210 mm
<+ >210 mm
0.76 —
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 <130 130-160 160-180 180-210 >210
ST (cm) DBHﬁeld (mm)

Fig. 3 Variations in the relative accuracy (rA) among tree size classes. a variations in rA of DBH; with different slice thicknesses in the points
cloud for five DBHgeg Classes. b mean and standard deviation of rA for each DBHgeq class
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DBHipar = 0.969 x DBHgeiq—16.845 x In (PD) + 28.635 + 4 (6)

The goodness-of-fit and prediction accuracy were bet-
ter for model (5), i.e., adjusted R* = 0.920, RMSE = 14.77
mm, and rRMSE =0.087, than model (4), i.e., adjusted
R*=0.890, RMSE =20.85 mm, and rRMSE =0.123. The
AIC =1297.7 of model (5) was also much lower than
AIC =1346.4 in model (4). In particular, the RMSE was
reduced by 29.2%, which suggested that the model’s pre-
dicting capacity could be improved greatly by consider-
ing the effect of the point cloud density.

Discussion

Comparison of DBH measurement among different LiDAR
systems

Comparing with the traditional 3D measurement system
based on Global Navigation Satellite System and Inertial
Navigation System (GNSS+INS) technology, the cost of
LiBackpack is lower. Moreover, LiBackpack can imple-
ment accurate scanning during its movement and real
time data integration, thereby providing the greatest
flexibility and high data acquisition efficiency, com-
pared with other forms of LiDAR systems, such as
Airborne LiDAR, UAV LiDAR, TLS and Vehicle-
based LiDAR (Anderson et al. 2018; Herrero-Huerta
et al. 2018; Paris and Bruzzone 2019; Polewski et al.
2019). However, the stability of LiBackpack platform
is probably the lowest among these types of LiDAR
system, thus the reduction of data acquisition accur-
acy should be a sacrifice to the flexibility, and this
function trade-off is critical for the selection of plat-
forms in practical applications.

In our study, the best prediction model for the LiBack-
pack measurements obtained results of R*=0.920,
RMSE = 14.57 mm, and rRMSE = 0.087. Holmgren et al.
(2017) also used backpack LiDAR to measure the DBH
for trees in four plots with sample sizes ranging from 50
to 90 individuals, where the average RMSE =18.5 mm
and rRMSE =0.06. Oveland et al. (2017, 2018) used
backpack LiDAR to measure the DBH for 18 and 199
trees, where the RMSE values were 22 and 15 mm, re-
spectively, and the rRMSE values were 0.075 and 0.091.
We also collected more than 50 LiDAR-based previous
reports on measuring experiments in the past 5 years
(Table 2), and found that the RMSE values were signifi-
cantly higher for ALS measurement than TLS measure-
ments (p<0.0001), but there were no significant
differences between the measurements obtained using
different TLS scanning modes (p = 0.58) (Fig. 5).

Moreover, the results obtained with different DBH fit-
ting methods did not differ significantly (p =0.07). The
average RMSE values for single and multi-station TLS
measurements were 20.1 and 15.5 mm, respectively, with
average rRMSE values of 0.078 and 0.082. The RMSE
values were larger for TLS measurements than LiBack-
pack measurements in the present study, but the rRMSE
values of TLS measurements were smaller. LiBackpack
measurements were clearly better than ALS measure-
ments (RMSE, can = 6.4 mm, rRMSE, .., = 0.251). Thus,
there is an obvious trade-off between the accuracy and
efficiency of LiBackpack DBH measurements, where
moving the LiBackpack under the forest canopy ensures
that more complete and uniform point clouds are

y =-16.7In(x) + 23.59
R?=0.351, p < 0.001

40

ADBH,_, (mm)

-40

-60 PD (points-cm~2)

Fig. 4 Scatter plots and fitted models for (a) absolute error (ADBH) vs. cloud point density (PD), and (b) absolute error (ADBH) vs. DBHfeiq

(b)
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scanning; TLS-M multi-scan terrestrial laser scanning, ALS airborne laser scanning, RANSAC random sample consensus, SVR support

vector reg ression

Reference LiDAR Algorithm Sample size Mean DBH R RMSE (mm) rRMSE
Olofsson et al. 2014 TLS-S RANSAC 148 27.2 - 288 0.106

Wu et al. 2015 ALS SVR 82 352 - 64.1 0.185

Srinivasan et al. 2015 TLS-S Cylinder fitting 145 - 097 183 -

Bu and Wang 2016 TLS-S OLS circle fitting 79 210 - 19.9 0.095

Liu et al. 20183, 2018b TLS-M OLS circle fitting 26 133 0.975 16.9 0.127

Fu et al. 2018 ALS Logistic regression 402 235 0.524 576 0.245

Liu et al. 2018a, 2018b TLS-M Hough transform 46 155 0914 122 0.079

scanned for stems by the equipment, but simplifying the
equipment hardware to improve portability tends to
yield lower rA values compared with the TLS measure-
ments (Su et al. 2018).

Optimal thickness of point cloud slice for DBH estimation
The DBH was estimated for trees based on the scanned
point cloud using the adaptive cylindrical fitting method,
so it was essential to determine the optimal thickness for
the sample slice in the point cloud. Two main factors
could lead to uncertainty in the estimates. First, in order
to correct the effect of the stem dip angle, a sample slice
should be sufficiently thick to achieve satisfactory accur-
acy. Second, the uneven stem surface, especially the
bumps, cracks, and branches could introduce substantial
noise in the estimate, so a sufficiently thick stem sample
is necessary to smooth the unevenness of the trunk.
However, the sample could be more variable when the

slice is thicker. Therefore, the solution involves finding a
balance between the two sources of uncertainty. In our
experiment on the P. sylvestris var. mongolica popula-
tion, a thickness of 30 cm was confirmed as the optimal
sample slice by multiple standards. However, the
generalizability of this value requires further validation
in other working contexts or on other species, and the
parameter calibration of this simple model is still critical
in its application.

Sources of uncertainty in LiBackpack DBH measurements

The estimated DBHy; values were obviously correlated
with the DBHggq values, but our experiment indicated
that the LiBackpack scanned DBH values were generally
smaller than the manually measured values, and the ab-
solute error ADBH increased with the tree size (p=
0.025, Fig. 4b). Moreover, ADBH had a log-transformed
negative correlation with the point cloud density (p <
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0.001), and DBHy; was larger than DBHgq only when
the tree corresponded to a thin point cloud (PD <4
points-cm™ %). In addition, the dip angle of a tree and the
topography slope had weak but significant associations
with ADBH, mainly due to their effects on the scanned
point cloud density. Liu et al. (2018a, 2018b) also ob-
tained the maximum rA when using low density point
clouds. However, why did the DBH tend to be underesti-
mated to a greater extent for a larger tree, or for a tree
estimated using a thicker scanned point cloud? What is
the relationship between tree size and the point cloud
density?

The variations in the PD could be attributed to the
scanning distance, scanning angle, and scanning fre-
quency by sensors (Anderson et al. 2018). In general, a
larger tree has a rougher surface and irregular intersec-
tional shape, with deeper grooves and uneven outer skin.
Manual measurement involves wrapping a tape around
the outermost surface of the tree to determine the max-
imum girth, whereas the LiBackpack scanner may emit
lasers into the grooves and return a point cloud circle
with a particular thickness (Johnson 2009), which is
wider for a larger tree. A fitting algorithm based on mea-
surements of either a circle or a cylinder determines the
DBH based on a circle passing through the locations
with the highest density in the stem point cloud (Liu
et al. 2018a, 2018b), which are generally in the middle.
In contrast, smaller trees usually have more branches,
which tend to obscure the access by the laser, thereby
resulting in a thinner point cloud circle. Therefore, the
differences in the surface structure of larger and smaller
trees may explain the negative correlations between
ADBH and tree size, and with PD.

The negative correlations between ADBH and tree size
as well as PD can also be due to the shelter and overlap
among trees in a community. When scanning a forest of
trees with different DBHs, the walking route should be
designed to move through the plot as uniformly as pos-
sible (Fig. S1), but a larger tree will always be more ex-
posed to the lasers, whereas a smaller tree is more likely
to be partially or completely blocked by neighboring
trees. Thus, the average laser exposure time will be
lower for a smaller tree than a larger tree. Moreover, the
tangent of the stem dip was positively correlated with
the point cloud density, although the correlation was
weak (p =0.05), and thus a larger angle for a tree might
lead to more laser returns per unit area.

In this study, we used DBH measurement obtained
with a measuring tape as the field reference data, and
these data have been used in most forestry surveys and
plant community studies (Srinivasan et al. 2015; Pole-
wski et al. 2019; Yun et al. 2019). In order to integrate
new LiDAR-scanned forest structure measurements with
the huge amounts of existing historical data, it would be
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useful to develop a transition model to link these two
data sources. In the present study, we quantified and ex-
amined the effects of point cloud features on the quality
of the data transition, and proposed a suitable multivari-
ate model with substantially improved accuracy. Further
experiments will be needed to explore the uncertainty
related to trees of different shapes (or species), different
measuring environment and different types of LiDAR
scanners. The PD at a low and more stable level is crit-
ical for obtaining more accurate measurements, so the
experimental design needs to be considered, such as the
movement path and speed, scanning time, and the effect
of the understory structure of trees on the quality of the
scanned data. This test should also apply to the confirm-
ing test of the optimal slice thickness, although 30 cm
thick here for P. sylvestris var. mongolica, for variable
measuring situations.

Conclusions

The application of LiDAR in forestry investigations is
expected to substantially improve their efficiency, but
assessing the accuracy and sources of uncertainty are es-
sential for LiDAR data. In this study, we measured the
DBH for 158 Pinus sylvestris var. mongolica trees using
the manual method and a backpack LiDAR system
called LiBackpack. Compared with samples from all
other thickness classes, a slice of the stem point cloud
with a vertical thickness of 30 cm obtained the optimal
match between DBH;; and DBHp;.q. The DBH;; values
were generally smaller than the DBHE;.q values, and the
difference was primarily determined by the point cloud
density used to the estimate DBHj;. The branches of
small trees and the rough surfaces of large trees were
the major sources of the uncertainty in the PD. After
correction based on PD, the accuracy of the DBH esti-
mates obtained using LiBackpack measurements was
similar to that of the TLS measurements. The reasonable
data accuracy and high access capacity make LiBackpack
an efficient approach for mapping and estimating the
structure of forests and woodlands at broad scales.
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