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Abstract

Background: Modern remote sensing methods enable the prediction of tree-level forest resource data. However,
the benefits of using tree-level data in forest or harvest planning is not clear given a relative paucity of research. In
particular, there is a need for tree-level methods that simultaneously account for the spatial distribution of trees and
other objectives. In this study, we developed a spatial tree selection method that considers tree-level (relative value
increment), neighborhood related (proximity of cut trees) and global objectives (total harvest).

Methods: We partitioned the whole surface area of the stand to trees, with the assumption that a large tree
occupies a larger area than a small tree. This was implemented using a power diagram. We also utilized spatially
explicit tree-level growth models that accounted for competition by neighboring trees. Optimization was
conducted with a variant of cellular automata. The proposed method was tested in stone pine (Pinus pinea L.)
stands in Spain where we implemented basic individual tree detection with airborne laser scanning data.

Results: We showed how to mimic four different spatial distributions of cut trees using alternative weightings of
objective variables. The Non-spatial selection did not aim at a particular spatial layout, the Single-tree selection
dispersed the trees to be cut, and the Tree group and Clearcut selections clustered harvested trees at different
magnitudes.

Conclusions: The proposed method can be used to control the spatial layout of trees while extracting trees that
are the most economically mature.
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Background
Forest inventories employing Airborne Laser Scanning
(ALS) data have become common in many countries
(Nilsson et al. 2017). The ALS-based forest inventory
methods (Hyyppä et al. 2008) are typically categorized
into two groups: the area-based approach (ABA) (Means
et al. 2000; Næsset 2002; Magnussen et al. 2013) and
individual tree detection (ITD) (Hyyppä et al. 2001;
Koch et al. 2006; Lähivaara et al. 2014). So far, most op-
erational forest inventories employing ALS data have
been implemented with the ABA (Maltamo et al. 2014).
In ABA, stand attribute models are fitted with sample

plots using metrics calculated from ALS data and then
these models are used to predict stand attributes of the
whole inventory area, typically using square grid cells
(e.g. 16 m × 16m) as inventory units.
In ITD, the inventory unit is an individual tree. The

first step is to detect and delineate the trees. Then ALS
features, such as local maxima mimicking tree height,
are extracted on a tree-by-tree basis and used to esti-
mate tree-level attributes, such as tree height and diam-
eter. Tree locations are also an intrinsic output of ITD.
The disadvantage of ITD is that tree detection fails when
tree crowns overlap, or if there are many small trees
under the dominant tree layer (Falkowski et al. 2008;
Lindberg et al. 2010). Failures in tree detection and er-
rors in the prediction of tree attributes make ITD more
sensitive to bias than ABA at the aggregated (e.g. forest
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stand) level (Vauhkonen 2010). However, the advantage
of ITD is that it produces a more detailed description of
forest: tree level attributes, including tree locations.
Forest plans are typically composed of homogenous

regions for which inventory data are available. Most
commonly, this region or inventory unit is a forest stand.
In the ALS era, stand-level data are usually derived from
ABA predictions in grid cells. In spatial forest planning,
the inventory unit has been a stand (Öhman 2000),
microstand (Pascual et al. 2019), hexagon (Packalen
et al. 2011) or pixel/cell (Lu and Eriksson 2000). To date,
the use of tree-level data in forest or harvest planning
has received limited attention. For example, Martín-Fer-
nández and García-Abril (2005) developed a tree-level
optimization method following an approach based on
close-to-nature forestry, and Bettinger and Tang (2015)
maximized the tree-level species mingling value in order
to intersperse tree species across a forest. Algorithms
have also been proposed for tree cut selection using a
distance-dependent growth model (e.g. Pukkala and
Miina 1998). Vauhkonen and Pukkala (2016) selected
trees based on their value growth rate, and Pukkala et al.
(2015) optimized the tree selection rule in thinning
treatments when the profitability of forest management
is maximized. These studies accounted for the location
of trees when deciding the order in which to cut the
trees. However, the spatial distribution of harvested trees
was not controlled in optimization although it may be of
great importance from ecological and practical view-
points (Heinonen et al. 2018). Wing et al. (2019) imple-
mented a method for group-selection silviculture that
accounts for spatial aggregation, and utilized manually
corrected stem map data that was derived by ITD.
Controlling the spatial distribution of individual har-

vested trees or other harvest units, such as micro-stands
or stands, is possible both in mathematical programming
(Öhman 2002) and in heuristic planning methods
(Heinonen et al. 2007). Heuristic methods are more flex-
ible and may be easier to use in large and complicated
spatial problems (Bettinger et al. 2002; Heinonen et al.
2018). Two lines of heuristics have been developed for
spatial forest planning problems: global and local
methods (also called centralized and decentralized
methods) (Heinonen and Pukkala 2007; Pukkala et al.
2014). Common examples of centralized heuristics are
simulated annealing, tabu search and genetic algorithms
(Bettinger et al. 2002). Of the two categories of heuris-
tics, decentralized methods may be faster and more feas-
ible when the number of calculation units is very large,
which is often the case in tree-level planning (Heinonen
and Pukkala 2007).
Examples of decentralized heuristics are cellular au-

tomata (CA) (Strange et al. 2001, 2002; Mathey et al.
2007) and the spatial version of the reduced cost method

(Hoganson and Rose 1984; Pukkala et al. 2008). The aim
of decentralized heuristics is to maximize or minimize a
local objective function, which in tree-level planning is a
tree-level function. This function is modified with a part
that takes into account the global objectives or con-
straints of the planning problem. In the reduced costs
method, global objectives are dealt with the dual prices
of global constraints, whereas the applications of CA
employ a global priority function that is added to the
local function.
Cellular automata, which were used in the current

study, are self-organizing algorithms based on the as-
sumption that the interaction between cells decreases
rapidly with increasing distance (Von Neumann 1966;
Strange et al. 2001; Wolfram 2002). Although the name
of the method refers to (square-shaped) cells, the
method can also be used with other types of calculation
units. Each unit takes one of a limited number of states,
which can be management schedules, land uses or, as in
the current study, the cut vs. uncut status of an individ-
ual tree. The purpose of CA is to find the optimal status
for each cell, by considering the variables of the cell itself
and the local neighborhood of the cell. The cell states
evolve in discrete time steps according to a set of rules.
Spatial relationships can be included in CA and other
heuristic methods in various ways, for instance by
considering only spatially adjacent calculation units
(similar vs. different prescription), by also including
the neighbors of adjacent units (Kurttila et al. 2002)
or using distance as the criterion of neighborhood
(Heinonen et al. 2018).
The aim of the study is to present a tree selection

method that removes economically mature trees from
the stand while also considering the spatial distribution
of the harvested trees. A user controls whether the pat-
tern of harvested trees is clustered or dispersed. We
present a solution as to how tree-level data can be used
in the spatial formulation of the optimization model
common in forest and harvesting planning. The pro-
posed method was tested in Central Spain on a stone
pine (Pinus pinea L.) forest area with two different
spatial distributions of trees. For this purpose, we imple-
mented a simple ITD inventory, although the focus is on
the tree selection algorithm.

Study area and materials
The study area is the public forest MUP50 owned by the
municipality of Portillo in the province of Valladolid
(366658–371652 Easting, 4590001–4586476 Northing,
711–862m a.s.l.) located in Castilla y León (Central
Spain). The study area of 1100 ha consists of pure stone
pine stands at different stages of development. The area
is part of the Northern Plateau (Calama et al. 2008)
where the stone pine forests are managed using even-
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aged forestry with the aim of providing a constant flow
of revenue (timber, firewood and nut production) and
other ecosystem services, such as erosion control
(Calama et al. 2011).
We selected two sub-areas in a 78-year old stone pine

forest. These two areas differed in average tree size and
the spatial distribution of the trees (Fig. 1). In Area #1
(106.4 ha), the spatial distribution of the trees was more
or less regular, i.e., tree spacing was somewhat constant.
In Area #2 (47.9 ha), the trees grow more in groups and
stand density and tree spacing was variable.

Field sample plots
Systematic sampling was used to establish a network of
35 circular sample plots in the area and used to model
the relationship between tree height and diameter.
Sample plots were collected in 2010. The size of each
plot was 706.86 m2, i.e. circular plots with a radius of 15
m. The sample plots contained a total of 344 trees. The
locations of the plot centers were determined by a sub-
meter precision GNSS equipment (Garmin International
Inc., Missouri, USA). On each plot, all trees with a

diameter at breast height (DBH) over 7.5 cm were calli-
pered and their heights were measured using a Vertex
IV hypsometer (Haglöf, Sweden). In addition, the dis-
tance and heading with respect to the plot center were
determined with the distance meter and a Vertex IV
compass (Haglöf, Sweden). All the measured trees were
stone pines. A summary of tree- and plot-level attributes
is provided in Table 1.

Airborne laser scanning data
The ALS data were collected in 2010 using an ALS60
laser scanning system. The study area was scanned from
an altitude of 2000m above ground level with a scan
angle of ±10 degrees. The average density of first echoes
per square meter was 0.5. A digital terrain model (DTM)
was constructed by first classifying echoes as ground and
non-ground hits according to the approach described by
Axelsson (2000). Then, a raster DTM of 1 m spatial
resolution was interpolated from ground hits using
Delaunay triangulation. Heights above ground level
(AGL) were calculated by subtracting the DTM from the
elevation of ALS echoes.

Fig. 1 Sample plots and sub-areas (Area #1 in blue and Area #2 in red) overlaid with the canopy height model (CHM) based on airborne
laser scanning
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Methods
Individual tree detection and tree attribute prediction
The canopy height model (CHM) of 1 m spatial reso-
lution was interpolated by searching the highest ALS
echo at AGL within each cell. If there were no ALS
echoes within a cell, the value was interpolated from the
neighboring cells. Individual trees were detected by
searching treetops from the CHM. This was imple-
mented with a local maximum filter (Hyyppä et al.
2001). The CHM was slightly smoothed before searching
local maxima to remove false positives (Koch et al.
2006). Local maxima located < 3m (AGL) were removed
in order to exclude local maxima on the ground and
very small trees. Tree height was considered the same as
the height (AGL) of the local maxima in the un-
smoothed CHM. Tree detection worked quite well in
the study area even though the ALS data had low echo
density. The reason for this is that the crowns of individ-
ual stone pine trees do not usually touch each other.
The trees measured in the field plots and ALS-

detected trees were linked to each other if treetops were
located within a 3-m Euclidean distance in three-
dimensional space (see details in Vauhkonen et al. 2011).
Then a tree diameter model was fitted using successfully
linked trees as follows:

DBH ¼ β0 � ln HALSð Þβ1 ð1Þ

where DBH is the diameter at breast height in the field-
measured tree, HALS is the ALS detected tree height, and
β0 and β1 are coefficients estimated from the data. We
fitted the model with the least squares method using the
nls function available in the R environment (R Develop-
ment Core Team 2011). The estimated model coeffi-
cients (β0 = 5.3602, β1 = 2.2675) were statistically
significant with both p-values less than 0.001. The coeffi-
cient of determination (R2) of the model was 0.66 and
the RMSE was 5.26 cm. Finally, the model was used to
predict DBH for all detected trees in the study area. The

outputs of the ITD inventory were tree coordinates
(XY), height and DBH for all detected trees.

Growth and yield models
The models presented in Calama and Montero (2006)
were used to calculate the stem volume using predicted
tree height and DBH for all trees. For each detected tree,
the number of trees per hectare, basal area and domin-
ant height (mean height of 100 largest trees per hectare)
were computed using a buffer of 20 m around the tree.
Site index was calculated using the existing model of
Calama et al. (2003). The stand age in the study area
was 78 years. The taper model (Calama and Montero
2006) was used to calculate the value of the stem. The
following assortments, top diameters (dtop), minimum
log lengths (hmin) and unit prices were assumed (Pasalo-
dos-Tato et al. 2016): grade 1 (dtop ≥ 40 cm, hmin 2.4 m,
30 €·m− 3), grade 2 (dtop ≥ 30 cm, hmin 2.4 m, 18 €·m− 3),
grade 3 (dtop ≥ 20 cm, hmin 2.4 m, 13 €·m− 3), grade 4 tim-
ber (dtop ≥ 5 cm, hmin 1.0 m, 5 €·m− 3). The models from
Calama and Montero (2004, 2005) were used to predict
the 5-year increment in DBH and tree height, and the
taper model was again used to compute the volume and
the value of the trees 5 years later. Value increment was
obtained as the difference of stem value at two time
points. The relative value increment over a period of 5
years was calculated by dividing value increment by the
value of the stem in the beginning of the 5-year period.
See Pasalodos-Tato et al. (2016) for more details.

A power diagram to create tree regions
Tree-level forest data consist of detached tree regions
(i.e. tree crowns) or points (i.e. stem locations), but not
adjacent regions (e.g. grid cells or stands). Here we con-
sider trees as point type objects. Then, we partition the
space to trees with the assumption that a large tree oc-
cupies a larger area than a small tree. We refer to these
partitions as tree regions. The partitioning is based on a
power diagram, which is a type of weighted Voronoi dia-
gram (Aurenhammer 1987). The power diagram is de-
fined from a set of circles. Circle center is called a site.
In this study, detected tree locations are sites and pre-
dicted DBH multiplied by 50 defines the radius of each
circle. The power diagram consists of the points with
the smallest power distance for a particular circle. In the
case where all the circle radii are equal, the power dia-
gram coincides with the Voronoi diagram. An example
of the power diagram is given in Fig. 2. Tree regions en-
able the use of adjacency relationships that take into ac-
count tree size, and the spatial optimization can be
performed in a similar way as employed with traditional
regions (e.g. grid cell or stand).

Table 1 Minimum, mean, and maximum of tree and plot
attributes

Variable Min Mean Max

Tree level

Diameter at breast height (DBH, cm) 9.0 33.0 68.0

Height (H, m) 3.5 9.7 13.8

Plot level

Stem number (N, trees·ha−1) 64.0 129.2 292.0

Basal area (G, m2·ha−1) 5.2 11.9 18.4

Quadratic mean diameter (D, cm) 23.6 28.7 35.6

Dominant height (Hdom, m) 8.9 11.2 13.8
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Spatial optimization
The cellular automaton developed for this study follows
the ideas presented in Heinonen and Pukkala (2007) in
which both local and global objectives are included in
the priority function. In this study, the following priority
function P was maximized for each tree:

P ¼ VTree

VTotal
w1p1 RelValIncð Þ þ w2p2 CCð Þ þ w3p3 CuCð Þ½ �

þ w4p4 TotCutð Þ
ð2Þ

where VTree is the volume of the subject tree (m3), VTotal

is the volume of all trees within the optimization area,
RelValInc is the relative value increment of the tree (%
in 5 years), CC is the proportion of the cut-cut border
(of the total border length with adjacent tree regions;
Fig. 3); CuC is the proportion of the cut-uncut border;
w1, w2 and w3 are the weights of the “local” tree-level
objectives RelValInc, CC and CuC, respectively; p1, p2
and p3 are sub-priority functions of the local objective
variables (Fig. 4); w4 is the initial weight of the “global”
objective TotCut (total volume of cut trees) and p4 is a
priority function for the global objective. In this study,
the proposed target volume to be harvested was 20% of
the initial standing volume. The target harvest was
654.6 m3 for Area #1 and 459.3 m3 for Area #2.

The priority function of Eq. 2 can be interpreted as a
removal score for a tree. Low relative value increment
(high economic maturity) and presence (aggregation
problem) or absence (dispersion problem) of cut neigh-
bors increases the probability of removal. Maximizing
CC leads to the aggregation of cut trees and a large total
area of cut trees, while the minimization of CuC contrib-
utes to compact aggregations on cut trees (Heinonen
and Pukkala 2004).
In the CA developed in this study, two options

were inspected for every tree for several iterations:
cutting the tree or letting it continue to grow. The
option that maximizes the priority function was se-
lected. All trees were inspected during each iteration
in random order. After a certain number of iterations,
the weighting of the global objective variable (w4) was
progressively incremented using a certain step. Itera-
tions with gradually increasing value for w4 were re-
peated until the total volume of harvested trees was
sufficiently close to the target value of harvested vol-
ume. In this study, the initial value of w4 in the opti-
mizations was always 0.01. Three iterations were
conducted with the initial value, after which the value
of w4 was incremented by 0.01 after every additional
iteration. Iterations were stopped when the difference
between the achieved harvested volume and the target
volume was less than 5% of the target removal.
The CA described above is a simplified version of

the automaton proposed by Strange et al. (2002) and
Heinonen and Pukkala (2007). The first simplification
is that the innovation probability is constant (one),
implying that all trees are inspected at every iteration.

Fig. 2 An example power diagram that shows how the space
around different tree sizes is partitioned to the trees (polygons with
red borders). The circle’s radius (CR) is the diameter at breast height
(DBH) multiplied by 50

Fig. 3 Definition of cut-cut and cut-uncut border. The cut-cut
border is marked with a thick line and the thin line represents the
cut-uncut border. Full circles are cut trees and open circles are
uncut trees
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The second simplification is that there are no muta-
tions (mutation probability is constantly zero). Previ-
ous studies have shown that a high innovation
probability and a low mutation probability work well
in forest management problems (e.g., Heinonen and
Pukkala 2007).
The CA described above leads to aggregations of cut

trees. If the aim is to disperse cut trees, CC needs to be
minimized and CuC maximized. In that case, the priority
functions for CC and CuC need to be replaced by a 1–0
and 0–1 sub-utility functions, respectively, as shown
with dashed lines in Fig. 4. The following weights were
used to mimic the various silvicultural tree selection
methods in optimization:

� Non-spatial: RelValInc (w1 = 0.99), CC (w2 = 0.00),
CuC (w3 = 0.00), TotCut (w4 = 0.01 initially)

� Single tree: RelValInc (w1 = 0.84), CC (w2 = 0.05),
CuC (w3 = 0.10), TotCut (w4 = 0.01 initially)

� Tree group: RelValInc (w1 = 0.79), CC (w2 = 0.05),
CuC (w3 = 0.15), TotCut (w4 = 0.01 initially)

� Clearcut: RelValInc (w1 = 0.69), CC (w2 = 0.10),
CuC (w3 = 0.20), TotCut (w4 = 0.01 initially)

In the Single tree selection, the aim was to disperse trees,
which was achieved by using the sub-priority functions for
CC and CuC shown as dashed lines in Fig. 4. In the Tree
group and Clearcut selections, the aim was to aggregate
trees, which was achieved by using the sub-priority func-
tions for CC and CuC shown as continuous lines in Fig. 4.

Results
Initial tree regions
The number of tree regions in Area #1 and Area #2 was 13,
438 and 4296, respectively. The tree regions, together with
tree volume and relative value increment of the tree, are
shown in Fig. 5. Tree spacing and consequently the size of
tree regions differed between areas. The size of tree regions
was smaller in Area #1 (mean 73, range 6–279m2) than in
Area #2 (mean 98, range 10–938m2). In general, trees were
much larger in Area #2 (mean 0.49m3, max 1.70m3 per
tree) than in Area #1 (mean 0.26m3, max 0.72m3 per tree).
The relative value increment (% in 5 years) was almost
equal in both areas but due to larger trees the value incre-
ment (€ in 5 years) was substantially higher in Area #2.
There was a clear east-west gradient in relative value

increment in Area #2. This was partly due to small trees

Fig. 4 Sub-priority functions for the objective variables of Eq. 2. In the diagrams for cut-cut and cut-uncut border, dashed lines show the sub-
priority functions when the aim is to disperse cut trees, and continuous lines show the sub-priority functions when cut trees are aggregated
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that rapidly increased their value but was also due to the
higher site index (data not shown here) in the western
part of Area #2. The relationship between tree volume
and relative value increment was apparent: low tree vol-
ume indicated high relative value increment, which is lo-
gical due to the rapidly increasing proportion of valuable
timber assortments in small trees.

Effect of tree selection method on stem number, tree size
and value increment
In the absence of spatial objectives (Non-spatial), the
proportion of cut trees (Table 2) and the relative value
increment of those trees (Table 3) were less than in
cases where spatial objective variables were included.

Fig. 5 Maps of tree regions. a Commercial tree volume (Volume, m3·tree− 1) in Area #1, b relative value increment (RelValInc, % in 5 years) in Area
#1, c commercial tree volume (Volume, m3·tree− 1) in Area #2, and d relative value increment (RelValInc, % in 5 years) in Area #2

Table 2 Effect of tree selection method on the number of trees
and mean diameter at breast height (DBH) for cut and uncut
trees

Tree
selection
method

Number of trees Mean DBH

Area #1 Area #2 Area #1 Area #2

cut uncut cut uncut cut uncut cut uncut

Non-spatial 1762 11,676 527 3769 31.03 24.98 42.32 33.18

Single tree 2332 11,106 709 3587 27.32 25.44 37.04 33.76

Tree group 2017 11,421 584 3712 29.21 25.31 40.38 33.34

Clearcut 2122 11,316 596 3700 28.61 25.24 39.88 33.40
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The difference between Non-spatial and Single tree se-
lections was clearly evident: aiming for dispersed loca-
tions of cut trees increased the average relative value
increment of cut trees by almost 70%. This means that
the dispersion objective led to the removal of trees that
were not among the most economically mature. In both
areas, the inclusion of spatial objective variables slightly
decreased the average DBH of the cut trees.
In Tree group and Clearcut the purpose was to aggre-

gate cut trees. The relative value increment of cut trees in-
creased more (compared to Non-spatial) when more
weighting was given to aggregating harvested trees, mean-
ing that large cutting aggregations led to the removal of
many economically productive trees. Logically, the differ-
ence in relative value increment between cut and uncut
trees decreased with increasing importance of creating
cutting aggregations. In Area #2, the relative value incre-
ment of cut trees was greatest with Clearcut, whereas the
Single tree method in Area #1 clearly resulted in the great-
est relative value increment of cut trees. This suggests that
Clearcut in Area #2 and Single tree in Area #1 were most
in conflict with the economic objective.
The relative value increment was also computed after

simulating the removal of the selected trees. The relative
value increments were calculated with the assumption that
the cut trees no longer existed in the stand. We call this the
"post-cut" stage (Table 3). In general, the post-cut values
were slightly greater than the uncut values. The difference
in uncut and post-cut values was greatest in Single-tree se-
lection and smallest in Clearcut selection, because Single
tree selection decreased the competition of almost all trees,
whereas the competition in Clearcut was decreased only for
trees that were growing near the edges of the cut areas.

Size and spatial distribution of harvest blocks
The number of harvest blocks (continuous tree regions
selected for cutting) was 4–5 times greater in Single tree
than in the Non-spatial tree selection method (Table 4).
Correspondingly, the mean size of the harvest blocks
was about three times smaller in Single tree than in the
Non-spatial selection method. Moving from the Non-
spatial to the Tree group method increased the mean
size of harvest blocks 8- or 9-fold. The Clearcut selec-
tion, which had a higher weighting on spatial objectives,
clearly provided the largest harvest block size and the
smallest number of harvest blocks.
On average, the distance from a cut tree to the

nearest cut tree was longest with the Single-tree se-
lection method (Table 5). This proves that Single-tree
selection performed as desired (the purpose was to
disperse cut trees). In the Non-spatial selection, the
mean distance between cut trees was shorter than
with the Single-tree selection and the standard devi-
ation of distances was greatest. This is a logical out-
come because Non-spatial selection does not attempt
to generate a particular spatial distribution of trees.
In the Tree group and Clearcut selections, the dis-
tances of cut trees were shortest because the aim was
to cluster cut trees. The mean distances from uncut
trees to their nearest neighbors were also shortest in
the Tree group and Clearcut where most of the area
was not thinned at all. Compared to cut trees, how-
ever, the mean distances did not vary much between
tree selection methods.
Maps showing the spatial pattern of harvest blocks

and the tree regions are displayed in Fig. 6 (Area #1) and
Fig. 7 (Area #2). Visual inspection verifies the conclu-
sions drawn from Tables 4 and 5: (a) the Non-spatial se-
lection does not show any particular spatial layout, (b)
the Single-tree selection disperses trees to be cut, (c) the
Tree group and (d) Clearcut selections cluster cut trees
to various degrees, Clearcut more than Tree group. The
spatial distribution of cut trees is slightly different in the
two areas. In Area #1, where the spatial distribution is
somewhat regular, the Single-tree method selected trees
to be cut more evenly than in Area #2, where trees grow
more in groups and stand density and tree spacing is
variable.

Table 3 Effect of tree selection method on the relative value
increment (% in 5 years) for cut, uncut and post-cut trees

Tree
selection
method

Area #1 Area #2

cut uncut post-cut cut uncut post-cut

Non-spatial 17.40 37.34 38.23 11.84 25.81 26.17

Single tree 29.42 35.84 37.19 18.30 25.25 26.00

Tree group 22.67 36.86 37.23 16.78 25.25 25.39

Clearcut 26.13 36.34 36.58 18.57 24.99 25.11

Table 4 Number of harvest blocks (i.e., continuous tree regions selected for cutting) and mean size (m2) of blocks

Tree
selection
method

Area #1 Area #2

Harvest blocks Mean size (m2) Harvest blocks Mean size (m2)

Non-spatial 470 297 105 361

Single tree 1876 99 501 130

Tree group 61 2322 11 3250

Clearcut 15 9835 5 8022
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Discussion
We presented a new approach for tree-level harvest
planning that considers both the spatial distribution and
the value increment of the trees. The problem is formu-
lated as a multi-objective optimization problem, which is
solved by a tailored CA algorithm. The idea is to bundle
the tree selection method with tree-level inventory data
obtained by means of ITD and ALS data. The ITD in-
ventory is currently a feasible method for certain forest
types in an operational setting. Therefore, there is a need
to develop spatially explicit methods for tree-level har-
vest and forest planning.
Spatial optimization in the forestry context is typic-

ally based on adjacency relationships of region type
objects (Weintraub and Murray 2006). In practice, ad-
jacency is often defined by computing cut-cut and
cut-uncut border lengths of adjacent regions. Because
tree-level data do not form adjacent regions, we parti-
tioned the space to trees with the assumption that a
large tree represents a larger area than a small tree.
This means that both tree size and distance to its
neighbors are included in the definition of adjacency:
for large trees the length of the common border with
adjacent trees is greater than for small trees. How-
ever, it is not apparent how strongly tree size should
affect the size of the tree region. We used a power
diagram to compose the tree regions, wherein the ra-
dius of a circle is the tuning parameter, the value of
which depended on the tree size. We defined the ra-
dius of the circle to be 50 × DBH. This value was se-
lected arbitrarily, and future studies should examine
the best approach to define its value more precisely.
For example, the radius of a circle could be defined
based on the growth potential of a tree.
Tree selection was combined with the use of an indi-

vidual tree-level growth model that takes into account
the neighborhood of the target tree. If tree selection re-
quires the use of growth models, such as the relative
value increment used in this study, it makes sense to use
distance-dependent tree-level growth models or regular
tree-level growth models in a spatial manner. Otherwise,

the growth model predicts similar growth for all spatial
distributions of trees and does not properly react to cut-
tings in the neighborhood of a target tree.
We controlled the spatial distribution of cut trees

by modifying the weights and sub-priority functions
of spatial objective variables CC and CuC. The weight
of the global objective (total volume of cut trees) was
fixed to a small initial value (0.01) in every case. The
economic criteria (relative value increment) always
received the remainder of the weights (1 – TotCut –
CC – CuC). In the Non-spatial selection, the weights
of CC and CuC were set to zero, thus the spatial
aspect was ignored entirely (Figs. 5a and 6a). It
provided a reference to other selections that took the
spatial distribution of the trees into account. In the
Single tree selection, CC was minimized and CuC was
maximized. This clearly dispersed trees to be cut
(Figs. 6b and 7b). In the Tree group selection, cutting
aggregations were targeted with low weights for CC
and CuC. This led to tree groups of different sizes
(Figs. 6c and 7c). In the Clearcut selection, the spatial
weights of CC and CuC were larger, which led to big-
ger tree groups resampling traditional clearcut areas
(Figs. 6d and 7d). We deliberately used a rather sim-
ple priority function; there could be more objective
variables and sub-priority functions. For instance, a
constraint type sub-priority function could be used to
force a certain size of tree groups.
Modifying the sub-priority functions and the weights

of the spatial objective variables (CC and CuC) offers a
means to enable the CA to mimic different disturbance
regimes (Kuuluvainen 2016; Kulakowski et al. 2017),
while always aiming at economically profitable forestry.
For example, dispersion of cut trees (Single tree) mimics
the damage caused by some insects that kill individual
weak trees, the Tree group selection produces a land-
scape similar to wind damage (Kulakowski et al. 2017)
and the Clearcut selection might correspond to damage
caused by forest fire. Therefore, varying the weightings
and sub-priority functions of spatial objective variables
makes it possible to produce forested landscapes resem-
bling those that result from different natural disturbance
regimes.
In addition to disturbance regimes, it is also pos-

sible to mimic alternative silvicultural systems, ran-
ging from continuous cover selection forestry (Single
tree) via group selection (Wing et al. 2019) to even-
aged forestry where clear-fellings are conducted in
mature stands. The degree to which a certain disturb-
ance regime or silvicultural system is pursued can be
closely controlled. If low weights are given to the
spatial objectives, the outcome of CA mainly depends
on the heterogeneity of the forest. Large disturbances
are created in forests where economically mature

Table 5 Mean distance between trees and their nearest
neighbors.

Tree
selection
method

Area #1 Area #2

cut-cut uncut-uncut cut-cut uncut-uncut

Non-spatial 10.03 (6.44) 6.46 (1.57) 9.04 (10.7) 6.74 (1.99)

Single tree 13.70 (4.25) 6.62 (1.62) 13.91 (7.25) 6.86 (2.1)

Tree group 6.49 (4.56) 6.40 (1.52) 5.66 (1.46) 6.67 (1.97)

Clearcut 6.15 (3.10) 6.38 (1.47) 5.88 (3.43) 6.64 (1.96)

The distances are presented separately for cut trees (cut-cut) and uncut trees
(uncut-uncut). The standard deviation of the computed distances is presented
in brackets
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trees form large aggregations and tree groups are har-
vested when mature trees occur in groups. In this
way, it is possible to mimic different disturbance re-
gimes at minimal loss in profitability of timber pro-
duction. A greater need to control the spatial

aggregation of cut trees would increase economic
losses.
In this study, we present and evaluate the proposed

tree selection method as a tool for tree-level harvest
planning. However, the method can be used as a part of

Fig. 6 Harvest block maps in Area #1 by tree selection method: a Non-spatial, b Single-tree, c Tree group, and d Clearcut. Cut trees are shaded in
brown. Tree regions surrounding the green point are shown as insets next to the Area #1 maps
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a multi-objective forest planning system, in which dy-
namic treatment units are composed from trees by
means of spatial optimization. This means that the trees
to be cut are selected in each planning period, and sub-
sequent periods must take into consideration the silvi-
cultural operations implemented in earlier periods. The
use of the proposed tree selection method as a part of
multi-objective forest planning needs to be examined in
subsequent studies.

Conclusions
The proposed tree selection method considers the
spatial distribution of harvested trees and economic
goals. It can be used to simulate cuttings in different
type of silvicultural systems and mimic various dis-
turbance regimes. It is easy to control by adjusting
the sub-priority functions and the weightings of the
spatial objectives. The method is utilized here as a
tool in tree-level harvest planning but it can also be
used in longer term forest management planning.
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