Kangas et al. Forest Ecosystems (2020) 7:20
https://doi.org/10.1186/s40663-020-00231-6

Forest Ecosystems

RESEARCH Open Access

Benefits of past inventory data as prior
information for the current inventory

Annika Kangas'", Terje Gobakken? and Erik Naesset?

Check for
updates

Abstract

predicted with models.

Keywords: Data fusion, Kalman filtering

Background: When auxiliary information in the form of airborne laser scanning (ALS) is used to assist in estimating
the population parameters of interest, the benefits of prior information from previous inventories are not self-
evident. In a simulation study, we compared three different approaches: 1) using only current data, 2) using non-
updated old data and current data in a composite estimator and 3) using updated old data and current data with a
Kalman filter. We also tested three different estimators, namely i) Horwitz-Thompson for a case of no auxiliary
information, ii) model-assisted estimation and iii) model-based estimation. We compared these methods in terms of
bias, precision and accuracy, as estimators utilizing prior information are not guaranteed to be unbiased.

Results: The largest standard errors were obtained when neither prior information nor auxiliary information were
used. If a growth model was not applied to update the old data, the resulting composite estimators were biased.
Largest RMSEs were obtained using non-updated prior information in a composite estimator. Using the ALS data as
auxiliary information produced smaller RMSE than using prior information from the old inventory. The smallest
RMSEs were obtained when both the auxiliary data and updated old data were used. With growth updating the
bias can be substantially reduced, although design-unbiasedness of the estimator cannot be guaranteed.

Conclusions: Prior information from old inventory data can be useful also when combined with highly accurate
auxiliary information, when both data sources are efficiently used. The benefits obtained from using the old data
will increase if the past harvests can be detected without errors from changes in the auxiliary data instead of being

Introduction

In forest inventory, many types of information can be
used in addition to an actual sample of observations.
There are at least two good reasons for using such infor-
mation in forest inventory: 1) we can either improve the
accuracy (mean square error, MSE) of the estimates
while keeping the costs the same level as before, or 2)
we can reduce the costs without reducing the accuracy.
Obviously, this necessitates the auxiliary data to be
cheap or free (i.e. the costs are assumed to be sunk costs
from some previous use of the data). It is possible to use
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remotely sensed data, e.g. from satellite images or air-
borne laser scanning (ALS), as auxiliary information
using stratification, model-assisted or model-based
frameworks (e.g. Gregoire et al. 2011; Stahl et al. 2011).
In addition, it is possible to combine current data from
most recent forest inventory with old data from previous
inventories or existing models constructed from old data
as prior information (e.g. Tomppo and Halme 2004;
McRoberts et al. 2014).

One method for using old data in forest inventory is
sampling with partial replacement (SPR, Ware and
Cunia 1962). For estimating the current population
mean, two independent estimates are combined to form
a single linear unbiased estimator. The weight placed on
the two estimates depends on the correlation between
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the re-measured plots on first and second occasions and
on the estimated variances of the population parameter
estimators on these two occasions.

In the case of three or more successive inventories,
SPR results in quite complicated estimators. However,
Bickford et al. (1963) published estimators based on a
different approach, namely on composites of two estima-
tors, weighted inversely to their variances (Meier 1953).
The first estimator is based on the data from old field
plots updated to the current occasion using the change
observed in re-measured plots through a regression esti-
mator, and the other on the current field plots. Scott
(1984) extended this approach to include also change es-
timation. Scott and Kohl (1994) used a similar approach
to provide composite estimators also for a stratified case,
by which it would be possible to apply auxiliary informa-
tion from both remotely sensed data and from previous
inventories.

When information of growth is available in the form
of a growth model, it can be utilized in a Kalman filter
(Dixon and Howitt 1979). In a Kalman filter approach,
the old data from previous inventories are updated with
growth and harvest information and the updated data
are used as prior information. The growth model used
in Dixon and Howitt (1979) was crude; it simply gave
the proportional change of the state vector over time,
and the harvests were assumed known control actions.
Kangas (1991) used data updated by tree-wise growth
models and stand-level harvest models as prior informa-
tion. However, for estimating the precision of the result-
ing estimates, all changes were described using a single
proportional change of state, which was used in a Kal-
man filter-type of analysis.

More advanced types of Kalman filters can be applied
by allowing for non-linear growth models (e.g. Ehlers
et al. 2013). However, when accurate auxiliary informa-
tion such as that provided by ALS or digital aerial
photogrammetry data is available, utilizing prior infor-
mation from old data may produce only marginally
smaller MSE than using only the most recent data
(Nystrom et al. 2015).

Even if we have accurate current data, there is still
merit to see if the overall performance can be improved
by using old data. The aim of this study was to assess if
prior information from old inventory enhances the ac-
curacy of the results in a case where auxiliary informa-
tion from ALS is available. We compared three different
approaches: 1) using only current data, 2) using non-
updated old data and current data in a composite esti-
mator and 3) using updated old data and current data
with a Kalman filter. We tested three different estima-
tors, namely i) Horwitz-Thompson for a case of no aux-
iliary information, ii) model-assisted estimation and iii)
model-based estimation. We compared these methods in
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terms of bias, precision and accuracy, as estimators util-
izing prior information are not guaranteed to be
unbiased.

Materials

The field data

The empirical part of this study was based on data from
Véler Municipality in south-eastern Norway. The study
area (altogether 853 ha) is located in a boreal forest re-
gion. The forest is actively managed, with Norway
spruce (Picea abies (L.) Karst.) and Scots pine (Pinus syl-
vestris L.) as the dominant species.

Prior to the field inventory, photo interpretation was
adopted to delineate the study area into forest stands,
each belonging to one of four classes related to stand
age and species dominance: 1) recently regenerated for-
ests, 2) young forests, 3) mature, spruce-dominated for-
ests, and 4) mature, pine-dominated forests. Only the
strata 2—4 were included in this study due to deficient
data collected for stratum one in 1999. As part of the
plots were harvested during 1999-2010, recently regen-
erated stands were, however, also included in the ana-
lysis. A sample survey was conducted according to a
systematic design with random start with sampling in-
tensities approximately equal for the first three strata,
but for the fourth stratum the intensity was only one
third of that of the other three strata (Nesset 2002;
Naesset et al. 2013, 2015).

Measurements were obtained for 178 systematically dis-
tributed, circular, 200-m* (radius 7.98 m) forest inventory
plots measured in 1999 and 2010. Four plots were dis-
carded from the analysis due to missing values. Tree-level
aboveground biomass (AGB) was predicted using allomet-
ric models based on field observations of species and mea-
surements of diameter at-breast-height (1.3 m) and height
(Marklund 1988). Plot-level AGB was then predicted as
the sums of individual tree AGB predictions, scaled to
per-hectare values, and used as ground reference.

Wall-to-wall ALS data were acquired for the study area
in 1999 and 2010. Pulse density was approximately 1.2
pulses per m? in 1999 and 7.3 pulses per m* in 2010. Em-
pirical distributions of first and single echo heights were
constructed for the 200-m? circular plots. The entire study
area was tessellated into 200 m® regular squares (cells)
and similar ALS echo distributions were constructed for
each cell. A threshold of 1.3 m above the ground surface
was used to remove the effects of echoes from ground
vegetation whose biomass is not included in tree-level bio-
mass. For each plot and cell, heights corresponding to the
Oth, 10th, 20th, ..., 90th percentiles (p0, p10, p20, ..., p90)
of the ALS height distributions were calculated. Further-
more, several measures of canopy density were derived.
The range between 1.3 m above ground and the 95 per-
centile was divided into 10 vertical fractions of equal
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height. Canopy densities were then calculated as the pro-
portions of echoes with heights above fraction 0 (> 1.3 m),

., 9 to total number of echoes (d0, d1, ..., d9). Max-
imum value (hmax), mean value (hmean), and coefficient
of variation (/cv) were also computed. Thus, 23 ALS met-
rics were available as explanatory variables. Neesset et al.
(2013) provide more details for the study area and the
dataset.

The copula population

We used the data from Valer to construct a simulated
copula population. In the C vine copula, a multivariate
distribution of the variables is formed. This is based on
pair copulas that describe dependencies between each
pair of the variables when the marginal distributions of
these variables are transformed to uniform distributions
(see Aas et al. 2009). The pairs are formed using a spe-
cific tree structure of the variables depicting the strength
of the dependencies. For construction of the copula, we
used the same approach as Myllymiki et al. (2017) and
Kangas et al. (2016). That is, we calculated the empirical
marginal distributions for the variables AGB, p0, p20,
p40, p60, p80, d2, d4, dé6 and d8 from the data using the
logspline package in R (Kooperberg 2015, R Core team
2014) and estimated the C vine copula using the Vine-
Copula package in R (Schepsmeier et al. 2015). In the
current study, we included the AGB and the ALS met-
rics from both occasions to be able to analyse the case
of using prior information. To our knowledge, this is the
first simulation study involving also change.

The copula model was used to simulate 10,000 uni-
formly distributed observations with the modelled (pair-
wise) dependencies. These 10,000 observations can be
interpreted as 200 m? grid cells mimicking similar cells
in actual ALS data acquisition in an area of 200 ha. The
copula population was then obtained by calculating the
quantiles of the empirical distributions at those simu-
lated uniformly distributed values. Figure 1 shows the
dependency between the simulated AGBs on the two oc-
casions in time. It reflects both the growth of the plots
between the two points in time (dots above the red line)
and the cuttings (dots below the red line).

estimator of the meanMethods

Estimators to be compared

First, it is possible to use the field sample from both
time points with a Horwitz-Thompson (HT) estimator,
and make a composite of these two estimates. The HT
estimator of total AGB is (e.g. Sdrndal et al. 1992, p 42)

b =2, (1)
i=1 """t

where y; is the AGB of cell i and m; is the inclusion
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Fig. 1 The simulated values from the Copula population for the
aboveground biomass (AGB) for 1999 and 2010

probability of cell i. Assuming simple random sampling
without replacement this inclusion probability is n/N.
The estimator of the mean is

S =~ 2)
yHT_A HT,

where A is the total area. Its variance estimator is (e.g.
Séarndal et al. 1992, p. 43)

I Y Yy
Var( J’HT Az Z Z g m (3)

i=1 j=1

where 77 is the joint inclusion probability of cells i and j.
In the case of simple random sampling, when i =}, this
joint probability is 7;, otherwise it is n(n - 1)/N(N - 1).
These formulas can be extended also to stratified
sampling.

Another option is to utilize auxiliary information and
adopt a model-assisted estimator. Then, the difference
estimator for the mean AGB is (e.g. Sdrndal et al. 1992,
p 222)

. 1 N . n ;
d=;<2y+Z;> (4)

where 7; is the model prediction for AGB in cell i and
e; = y;,-¥;. Its variance estimator (the simplified estimator
assuming g-weights to be 1 for all i, Sirndal et al. 1992,
p 362) is
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Var( yd

Zzﬂ,, minj e ej (5)
A i T n,'

Yet another option is to use a model-based estimator
for the mean, i.e.,,

s :% (2&:) :% (Lﬁ;f(xh/}>>’ (6)

This is equal to the first part of the estimator in Eq. 4,
meaning that the model predictions are used without
calibrating with the sample data. Its variance can be esti-
mated with (Stahl et al. 2011, Eq. 7)

r_ N
Var(iyg) = ZZ COV(ﬁk7.Bl)f/( I
k

iyt
(7)

where f ’”3 ) is the partial derivative of the model f

with respect to parameter f; and Cov(ﬁk,/)’l) is covari-
ance of the model parameters k and /. When the model
is linear, the means of partial derivatives are equal to
means of the independent variables leading to

p

p ~ A - —
=33 cov (ﬁk, ﬁ,)xm = X" cov()X

k=1 I=1

Var(ityg)

(Kangas 2006). The residual errors of the model are
assumed to have a negligible effect on the variance,
meaning that the population model mean instead of a
finite population mean is estimated (Stahl et al. 2011,
p. 99). If the residual errors are spatially correlated,
that would introduce an additional term (McRoberts
et al. 2018). In the current case, in the context of a
relatively small area, the spatial correlation is likely to have
a significant effect. It was, however, assumed negligible, as
no mechanism to produce a specific spatial structure to
the simulated data was available.

When two HT estimators (or model-assisted or
model-based estimators) from two time points are avail-
able, a composite estimator can be formulated as

(1-a)y,, 8)

where subscripts ¢, 1 and 2 denote the composite esti-
mator, the estimator for the first time point and the esti-
mator for the second time point, respectively. a is
calculated from the variances of the two estimates as

.ji/c:o'/jll+

Wi
a=—,
w
where
~ -1 ~ -1 ~ -1
wy = var(y,) andw= var(y,) + var(y,) ,
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to obtain a composite where the individual estimators
have the larger weight, the smaller the variance (e.g.
Meier 1953; Scott and Kohl 1994). The variance for
this composite estimator is (Shahar 2017)

Var yc

=S wvars) —1 )
"Var (yt)
where ¢ denotes the time points 1 and 2. When the vari-

ances are estimated, an unbiased estimator is (Meier
1953; Scott and Kohl 1994)

4 2 wi(w-w)
(e e

Var (yc) = ” ,

(10)

where m, denotes the degrees of freedom for ;t. In the
studies case, the two samples were independent of each
other, and also the estimates were therefore independ-
ent. If the estimators were correlated, the weights would
be more complicated (Grafstrom et al. 2019).

It is also possible to use a Kalman filter to update the
previous sample data using a growth model and combine
it with the new sample data information. The growth
model can be written using notation from (Ehlers et al.
2013; Nystrom et al. 2015) as

X1 = aAXy + but + &, (11)

where e, is an error term normally distributed with
zero mean and variance g7, x; is the vector of the (ran-
dom) state variables at time ¢, a is a coefficient describ-
ing the growth, u, describes control actions and the
coefficient b their impact. Instead of using fixed coeffi-
cients a and b to describe the growth and harvests, the
changes can also be described with a (possibly non-
linear) model g

Kepr =% + g%, B) + e (12)

The model of the sampling system can be written as

Ve =%+ U

The error term, v, is also normally distributed with
zero mean and variance 2. The residual error term can
be interpreted as descrlblng the sampling error for the
new data in the model-based framework (see e.g. Cassel
et al. 1977).

The Kalman estimator of the state vector can be calcu-
lated by the following procedure. The Kalman filter has
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a prediction step and an update step that follow each
other in sequence. The predicted conditional mean given
all the data through time ¢ is

K1) = axe; + buy (13)
and the conditional variance p? 1) I8
p?+1\t = azpat + q? (14)

where p? = r2. A sample is then taken to obtain y;, ;.
The predicted value will almost never be the same as the
observed value, so a residual vector #,,; can be defined
as

Nev1 = Vo1 = Xe+1)t - (15)

The prior information, %, . 1|;, and the sample informa-
tion, #,,1, are then combined in the update cycle to
yield

K1)+l = K1)t + Kepn, = (1—Kt+1)xt+1\z + K1Y 41
(16)

where

2
Piiag

K=~
Pioe T

is the Kalman gain, and the variance of the assimilated
value is

2 2
Py = (I=Kepn)pp g

Models used

In this study, we estimated the external models (i.e.
models estimated from a dataset independent of the sam-
ple at hand) to be used in model-assisted estimation from
the Véler plot data. As the copula population is simulated
based on the same data, the models are not truly inde-
pendent from the simulated data. However, the external
model is fixed across the simulated samples. All the
models were estimated using weighted regression to ac-
count for heteroscedasticity. This was carried out itera-
tively: the weights were estimated from the OLS model
residuals, and the inverses of squared residuals were then
used as weight in WLS.

For 1999, the estimated external model for AGB (tha™ 1) was
AGBi999 = o+ P1P20_1999 + BoPso_1999 + Pads 1999 + E1909 (see
Table 1). The residual standard error RSE = 32.77, R* = 0.7827
and adjusted R* = 0.7784. The residuals of this model are pre-
sented in Fig. 2.
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Table 1 The coefficients for a model of AGB in 1999

Estimate Std. Error t value
Intercept —55.18647 7.561298 —7.298545
P20 1999 9555293 139298 6.859605
Pso_1999 6.014979 0.7931157 7.583987
dg_1999 82.058 21.02881 3.902171

For 2010, the estimated external model for AGB (tha™ %) was
AGByo10 = o+ BiP20_2010 + PaPeo_2010 + P> 2010+ Ex010 (€€
Table 2). The residual standard error RSE =41.81, R* = 0.2044
and adjusted R* = 0.8010. The residuals of this model are pre-
sented in Fig. 3. The effect of cuttings after 1999 can be de-
tected from the zero biomass measured in 2010, and also from
the greater residual error than that observed in 1999.

The changes between 1999 and 2010 include both
growth of the plots and the effect of harvests. Especially
the effect of harvests is difficult to predict with a model,
but unless the harvests cannot be assumed as known
control actions, a model capable for predicting both is
necessary for the Kalman filter approach.

The change model can be constructed in several differ-
ent ways. The first option is to rely on the variables de-
scribing the growing stock, in this case the AGB from
1999, which is the typical way to make a growth model.
Such a model would allow for predicting changes hap-
pening after either 1999 or 2010 inventory, using the
AGB from the respective inventory. Another option is to
utilize both the growing stock estimate and the ALS
metrics. If only the metrics from 1999 are used in the
model, the model allows for predicting the changes both
after the 1999 or 2010 inventory using the respective
metrics. If both 1999 and 2010 metrics are used in a
model, the model can only be used to estimate the past
changes between 1999 and 2010. However, such model
is likely to be more accurate, as the differences in the
1999 and 2010 metrics enable close to direct detection
of the changes.

In this case, the first option produced large standard
errors, especially with respect to the harvests. Therefore,
change (C) was predicted based on the observed AGB in
1999 and the ALS metrics. The first model using only
1999 ALS metrics for change in AGB (tha ') is CI =
Bo+ B1AGB1999 + BaPeo 1999 + B3Pso_1999 + Pads 1990 +
Bsds 1990 + €c1 (see Table 3).

The residual standard error RSE = 34.50, multiple R =
0.7792, and adjusted R*> = 0.7726. The residuals of this
model are presented in Fig. 4. It is notable that the
standard error of the change model is actually a little bit
greater than that of the model for the AGB in 1999. The
model is to some extent also able to capture the cuttings
in addition to the growth. The predicted AGB in 2010
using the true values of AGB in 1999 and the predicted
change are presented in Fig. 5. In some plots, the
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Fig. 2 The predicted AGB versus ground reference AGB in 1999 (left) and the residual plot (right)
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predicted AGB is negative, but overall the model behaves
logically. Negative predictions can, when the model is
applied, be adjusted to zero, but in this case such correc-
tion was not made.

To analyse the effect of the change model, we estimated an
alternative model for change C using also the 2010 ALS met-
rics as predictors. The model for change in AGB (tha his
C2=Po+ PrAGB1999 + Bopro 2010+ Bada_2010 + Padda 1090 + €2
(see Table 4).

The residual standard error RSE =30.27, R*=0.8218
and adjusted R” = 0.8176. The residuals are presented in
Fig. 6. In this model, the change in the density metric d,
between 1999 and 2010 can be interpreted to describe
the effect of harvests.

Simulations

We present different approaches to utilize data from the old
inventory as prior information and assess their accuracy in a
simulation study. In the copula population a simple random
sample of size n =100 was simulated s=5000 times. Inde-
pendent samples of size n were selected from the 1999 data
and the 2010 data in order to calculate the results utilizing
prior information, ie. no re-measurements were assumed.
The simulated (true) variance was calculated as the variance
among the 5000 realizations of the sample. The bias was cal-
culated as the difference of the true mean and the mean of
the estimates of mean from these 5000 realizations and
RMSE was calculated from them with

RMSE = \/ var(y) + bias(5)>  (17)

Table 2 The coefficients for a model of AGB in 2010

Estimate Std. Error t value
Intercept —65.96272 10.65852 —6.188734
P20_2010 1441628 1528627 9430866
Peo_2010 3469934 1.070011 3242897
d; 2010 35.11362 14.96293 2346708

The estimated variance is a mean of sample variance
estimates over these realizations.

In a case of model assisted inference, an external model
(i.e. a model estimated from independent data previous to
the sampling) is recommended, as using a model esti-
mated from the sample at hand (internal model) has
shown to lead to underestimation of variance (e.g. Kangas
et al. 2016). While it is possible to reduce the underesti-
mation by using a fixed mathematical form of a model,
(i.e. the mathematical form of the model is assumed exter-
nal while the coefficients are internal), we used an external
model for the model-assisted estimation.

In the case of model-based inference, however, the in-
ference is solely based on the model estimated from the
sample. Thus, in model-based estimation, using an ex-
ternal model would mean that the sample at hand does
not have any effect on the variance estimates, as all the
terms in Eq. 7 would be fixed. Therefore, for all occa-
sions, we used a model estimated from the sample for
the model-based approach.

In a case of a change model, either an internal or an
external model is applicable. Here both the change
models (with and without 2010 ALS metrics) were as-
sumed to be external, and the same model was used in
all cases where a change was predicted (i.e. both for the
model-based and the model-assisted approach). This is
justified, as the growth models used for prediction are
typically based on separate experimental data sets rather
than inventory data. Moreover, change models estimated
from the simulated samples proved to be fairly unstable.
Both of the external change models had a mean error
quite close to zero in the Copula population, with the
mean change of 15.79tha™' for the population, and
15.03 tha™! with the first change model and 15.31 tha™*
with the second change model.

Results

The HT estimator using solely the 2010 field data (i.e.
without the ALS data or the old inventory data), pro-
duced the largest estimated and simulated variances
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(Table 5). Both the model-assisted and model-based esti-
mators produced markedly (39%—40%) smaller variances
(simulated and estimated) than the HT estimator. These
results were obtained even though a linear model with a
good fit for AGB in 2010 was difficult to obtain as there
were many plots with near-zero AGB (clear-felled after
1999) in the data. The reduction in variance was slightly
larger for the model-based with respect to the simulated
variances, but the difference was minor. In the case of
linear models used here, the model-assisted estimator
with internal model would actually produce an identical
result to the model-based estimator. Since the mean of
errors within the sample is zero using the internal
model, the estimate (Eq. 4) adjusting the estimate for er-
rors in the model predictions is the same as the model-
based estimate (Eq. 6) not including an adjustment part.
This does not, however, hold for non-linear models.

A composite of 1999 and 2010 HT estimates had
clearly smaller variance than the HT estimate using
solely the 2010 data. Introducing prior information in
the form of old data reduced the variance almost as
much as utilizing the auxiliary information from ALS:
the simulated (true) variance was 5.66 compared to 5.24
in model-assisted. However, as the old sample plots were
not updated, the resulting composite estimator for the
2010 AGB was clearly biased, and if the bias is taken into
account, using purely 2010 data would be a better
choice.

Table 3 The coefficients for a change model using ALS metrics

from 1999

Estimate Std. Error t value
Intercept —105.0843 12.77072 —8.228538
AGB, 999 —0.4174454 0.07490027 —5.57335
Peo_1999 —4218624 3475821 ~1.213706
Pso_1999 5513255 3.006514 183377
d> 1900 158.1842 27.59308 573275
ds 1999 76.81712 33.87098 2267933

When both the prior information and the auxiliary
ALS data were utilized, the variances were further re-
duced. The simulated variance of a composite of two
model-assisted estimates was 3.80, i.e. markedly smaller
than the pure model-assisted (5.24), but the biases were
large. The results clearly show that composite estimators
for which the growth and cuttings are not accounted for
are highly biased.

A Kalman estimate based on HT estimator of AGB in
2010 and updated HT estimator from 1999 reduced both
the bias and the variance, so that the root mean square
error RMSE of the estimate was 6.16 compared to 5.24.
However, even in this case utilizing model-assisted or
model-based estimation instead of utilizing the prior in-
formation from old data is advisable.

The smallest RMSE estimates were obtained when the
model-assisted approach was combined with a Kalman
filter. The estimated variance was 4.23, and the simu-
lated variance 3.73, indicating that the Kalman filter
variance estimate was in this setting conservative. The
Kalman filter with a model-based approach had an esti-
mated variance of 4.12 and the simulated variance was
3.72, i.e. almost identical to the model-assisted results.

When an alternative growth model C2 with also 2010
ALS metrics included was used in the Kalman filter, the
RMSEs were somewhat improved compared to those ob-
tained with model C1 due to the improved accuracy of
the model (Table 6). This means that the usefulness of
the Kalman approach is highly dependent on the accur-
acy of the change models.

Discussion

The results of this study confirm that it is not self-
evident to reduce the RMSE of the population parame-
ters by using prior data from previous inventories, if the
estimation is already enhanced with accurate current re-
motely sensed auxiliary information. It is possible to im-
prove the results by using a Kalman filter type of
approach, but that requires that the auxiliary
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information obtainable from remote sensing is also uti-
lized efficiently in the analysis.

It is clear from the results that a composite estimation
using old and current data is not a feasible approach when
the time interval between the acquisitions of these two
data sets is as large as in the current study (11 years). It is
possible that a composite estimator without the updating
would be useful, if the interval was markedly shorter, and
if the plots influenced by harvest could be correctly de-
tected. If permanent plots were available, a regression esti-
mator proposed by Bickford et al. (1963) could also be
used for updating, but in this study the two samples were
assumed independent. Otherwise, it is clear that updating
the data using a growth model would be highly advisable.
However, even in this case the results are likely to be the
more accurate the shorter the time interval, meaning
smaller variance of the predicted change. In addition, it is
unlikely that an external change model would be correctly

100
1

Predicted AGB in 2010 (t-ha™?)
(o]

@ % og
@

T T T T
100 200 300 400

o - oom® e

Measured AGB in 2010 (t-ha™)

Fig. 5 The predicted AGB in 2010, based on AGB in 1999 and the
change estimate

specified for the target population in a real case. That
would involve considerations as to how large a bias in the
estimators would be acceptable. Depending on the use of
the data, it may not be enough if the RMSEs of the esti-
mates can be reduced when using old data as prior infor-
mation: it is possible that in some applications even a
small bias is unacceptable.

Typically, in Kalman filtering it has been assumed that
the sample estimate is a random sampling estimate.
However, there is nothing in the method that prevents
using model-assisted or model-based estimator as the
starting point, which is updated as in the Kalman filter.
Then the resulting estimate can be combined with an-
other model-assisted or model-based sampling estimate
to obtain Kalman gains. If the applied growth model is
linear, this is straightforward. If the growth model is
non-linear, it has to be linearized with a Taylor series
approximation (e.g. Ehlers et al. 2013) or by computing
the average change as in Kangas (1991). It would also be
possible to utilize stratification or post-stratification in-
stead of model-assisted or model-based estimation,
which might involve simpler estimators in case of non-
linear change models.

It is often argued that comparing model-assisted and
model-based approaches is not useful, as the underlying
assumptions are very different, thereby causing different
interpretations of uncertainty. However, here we com-
pared the simulated (true) estimates of variance and
RMSE, describing how well these approaches can estimate

Table 4 The coefficients for a change model using ALS metrics
from 1999 and 2010

Estimate Std. Error t value
Intercept —84.02443 8.182435 —-10.26888
AGB999 -04180629 0.0610819 —6.844301
P20_2010 7467099 1.109191 6.732025
d; 2010 —34.96214 16.82324 —2.078205
d; 1999 159.6528 1293541 123423
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the variable of interest, the mean of AGB in 2010. Irre-
spective of the interpretation of the uncertainty, this is the
important issue for the users of the data. Moreover, when
the old inventory data are updated with a growth model,
the end-result is a hybrid estimate involving the sampling
error of the original estimate and the model-based predic-
tion error (e.g. Melo et al. 2018). If the errors in the
within-plot estimations (such as the allometric biomass
models) were included, all the cases considered would be
hybrid estimators (e.g. Stahl et al. 2014, Corona et al
2014, Fortin et al. 2016, Stahl et al. 2016, Holm et al.
2017). In the case of hybrid estimators, the differences in
the theoretical foundations of the design-based and
model-based approach are ignored. In the current case,
these two approaches produced also empirically very simi-
lar results on average.

In this study, we did not include the uncertainties of
the allometric models. In this study, we assumed that
these errors are negligible when compared to the errors
in the change predictions. However, when the interval
between the past and current inventories gets shorter,
the relative importance of the uncertainties due to the
allometric models will increase (see e.g. Chen et al. 2015,

2016). In addition, in this study we ignored the effect of
spatial correlation. It can be assumed that the smaller
the area over which the results are calculated, the larger
is the effect of this spatial correlation (e.g. McRoberts
et al. 2018). Both of these aspects need to be studied in
the future. Furthermore, the possibility that the two esti-
mators are not independent (like if part or all of the
plots are permanent), also needs to be addressed in the
future (Grafstrom et al. 2019).

The most problematic issue in the updating of the data
for the Kalman filtering is the harvests. In this study, a
fairly simple linear model was utilized. However, even
with such a simple model it proved to be possible to also
predict the harvests happening between 1999 and 2010
(i.e. the model also predicted negative changes). In this
study, first a model (C1) based on the 1999 ALS metrics,
and secondly a model (C2) based on both 1999 and 2010
ALS metrics were tested. If the purpose is to estimate
past changes in order to update the old (1999) data to
the current year (2010), it would be possible to utilize
the second type of model. If the purpose would be to
predict also the harvests happening after 2010 (e.g. be-
tween 2010 and time point ¢3, if ALS data from that

Table 5 The results from the simulation using the change model 1 for the Kalman filter. The mean of sample means of AGB (tha™
and sample variance estimates, the simulated variance, the bias and the RMSE

Mean Estimated std Simulated std Bias RMSE
True 128.93
Current occasion HT 128.87 872 8.60 0 8.60
Model-assisted 12890 531 524 0 524
Model-based 12839 5.12 513 -0.54 5.16
Composite of two occasions HT 11897 5.39 5.66 -9.96 1145
Model-assisted 11945 328 3.80 —9.48 10.22
Model-based 119.54 3.24 3.86 -9.59 10.34
Kalman filter HT 128.42 6.23 5.86 -0.51 5.88
Model-assisted 12880 4.50 4.00 -0.13 4.00
Model-based 12832 437 3.98 -0.61 4.03
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Table 6 The Kalman filter results from the simulation using the
change model 2. The mean of sample means of AGB (tha™
and sample variance estimates, the simulated variance, the bias
and the RMSE

Mean  Estimated std  Simulated std  Bias ~ RMSE
HT 12853 566 6.16 -040 6.17
Model-assisted 12885 4.23 373 -0.08 3.73
Model-based 12837 4.2 3.72 -051 376

time point are unavailable), only the first type of model
is applicable. In this case, the latter model produced
more accurate change estimates, as the differences in the
density metrics (d2) between the two time points were
able to describe the harvests. This model consequently
produced more accurate estimates for the current (2010)
AGB. It means that all the information available for the
updating should be included in the analysis.

The prediction of the harvests is also likely to increase
the error variance of the change estimates, so that im-
proved accuracy would be obtained if the harvests were
directly observed from the differences between remote
sensing materials and used as known control actions ra-
ther than predicted using a model as was done here.
This is possible for clearcuts, which can be accurately
delineated from differences between two satellite images
(Pitkdnen et al. 2020). Moreover, if the change model
would reflect purely growth, it would be possible to
utilize relative errors (as in Ehlers et al. 2013) rather
than absolute errors. This is important, as the errors in
predicted growth are often heteroskedastic. Then, rela-
tive error may reflect the true situation better. Such an
approach was not feasible to adopt in the current study,
as the model also predicted harvests, and part of the
change estimates were negative.

In the Kalman filtering approach, the errors in the
growth model are an important source of error. The
simulated variances for both model-assisted and model-
based with a composite model were smaller than those
of the Kalman filter counterparts, as the Kalman filter
variance estimates also include the error of the growth
model. Optimal weight for the composite estimator
would be obtained, if the bias (and therefore also RMSE)
was known, but this is normally not the case. On the
other hand, as the bias was mostly removed in the Kal-
man filter approach, the RMSEs of Kalman filter esti-
mates were clearly smaller than those of the composite
estimates. While using the variances provides optimal
weights, they also can complicate estimation if the
weights vary across the domains (Scott and Kohl 1994).
Therefore, non-optimal weights based on simply the
number of plots might be useful (Scott personal commu-
nication 2019).
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In the current study, the Kalman filtering approach
was used to estimate the mean AGB in the whole popu-
lation. If this approach was to be used in a real NFI set-
ting (Tomppo et al. 2010), it would require that all
variables of interest can be updated to the date of the
current inventory. This generally requires a growth and
yield simulator with a tree-level growth models (e.g.
Kangas 1991). If this requirement can be fulfilled, then
the approach is applicable in NFI with the same prem-
ises than model-based estimation in general is applicable
in NFL

However, this kind of approach might be more useful
for results calculated for smaller domains/categories, for
instance for a small area or for a rare tree species. In
that kind of situation, it might be useful to use plots
measured from a longer period of years than normally in
a case of continuous panel inventory. In NFIs, often a
continuous panel inventory with 5-year interval is used,
but using plots from a 10-year period would be possible.
Plots measured during the 5-year interval might not be
updated, but if a longer period is used, updating the data
would be advisable. In some countries, the inventories
are separate campaigns like in this study, and in such a
case it might be useful to use data from two or more
campaigns for the smaller domains/categories. The use-
fulness of old inventory data for small area estimation
remains to be studied in the future.

In previous studies concerning the Kalman filter,
utilization of prior information has mostly been tested in
a setting where the interest has been in the individual
plot or pixel level results (e.g. Ehlers et al. 2013). It is
likely that in such a setting improving the accuracy using
the old data is markedly more difficult than in the stud-
ied case. This is because in a sampling setting, the prior
information can be interpreted as increasing the number
of plots in the analysis, which improves the estimates for
the population mean and total. In a pixel level analysis
such interpretation cannot be made.

Conclusion

Prior information from old inventory data can be useful
also when combined with highly accurate auxiliary infor-
mation, when both data sources are efficiently used.
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