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Abstract

Background: The universal occurrence of randomly distributed dark holes (i.e., data pits appearing within the tree
crown) in LiIDAR-derived canopy height models (CHMs) negatively affects the accuracy of extracted forest inventory
parameters.

Methods: We develop an algorithm based on cloth simulation for constructing a pit-free CHM.

Results: The proposed algorithm effectively fills data pits of various sizes whilst preserving canopy details. Our pit-
free CHMs derived from point clouds at different proportions of data pits are remarkably better than those
constructed using other algorithms, as evidenced by the lowest average root mean square error (04981 m)
between the reference CHMs and the constructed pit-free CHMs. Moreover, our pit-free CHMs show the best
performance overall in terms of maximum tree height estimation (average bias = 0.9674 m).

Conclusion: The proposed algorithm can be adopted when working with different quality LIDAR data and shows

high potential in forestry applications.

Keywords: Data pits, Tree crown, Canopy height models, Cloth simulation, Pit-free

Background

In the last two decades, airborne light detection and ran-
ging (LiDAR) has become a reliable remote sensing tech-
nique for forest inventory given its capability to provide
precise and detailed three-dimensional (3D) information
on forest structures directly (Lim et al. 2003; Popescu
2007; Hyyppa et al. 2008; Yu et al. 2011; Huang and Lian
2015; Coomes et al. 2018; Stereniczak et al. 2018). The
construction of a canopy height model (CHM) from
LiDAR data is an effective means of increasing data usabil-
ity (Mielcarek et al. 2018). The CHM represents an abso-
lute canopy height above the terrain surface and is usually
constructed by subtracting the digital terrain model
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(DTM) from the digital surface model (DSM) (Khosravi-
pour et al. 2014). The CHM quality significantly affects
the estimation accuracy of forest inventories and subse-
quent biophysical parameters (Shamsoddini et al. 2013).

A common problem in the LiDAR-derived CHM is
the occurrence of unnatural black holes (i.e., data pits
appearing within the tree crown) (Mielcarek et al. 2018).
Data pits exhibit irregular height variations, and their
heights are lower than those of their neighbours in raster
CHM (Khosravipour et al. 2014; Mielcarek et al. 2018).
In a CHM with a certain resolution (< 2 m), data pits are
usually single or several pixel(s) clumping together, that
is, the data pit size is irregular (Zhao et al. 2013). Exist-
ing literature has indicated no specific causes of data
pits. However, many researchers have inferred various
possible causes. Data pits exist due to the combination
of multiple factors, from data collection to post-
processing. Shamsoddini et al. (2013) reported that the
positioning error of the Global Positioning System (GPS)
is a key cause of data pits. A significant GPS vertical
error causes data pits when flight heights are <3000 m
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above ground and scan angles are outside 9° (Latypov
2005; Goulden and Hopkinson 2010). Leckie et al.
(2003) found that data pits exist because of the integra-
tion of different flight line datasets, the penetration of
laser beams through canopy branches and foliage into
the ground and the unevenly distributed spatial reso-
lution of LiDAR point clouds caused by a scanning
mechanism, variation in aircraft attitude and deflection
of lost returns. Ben-Arie et al. (2009) inferred that, when
the points are binned to a grid, many grid cells will re-
main empty because some information from points with
similar x—y coordinates but different z values are lost.
After being interpolated to a raster, pits may be gener-
ated in empty cells (Axelsson 1999). Khosravipour et al.
(2014) concluded that data pits may be formed during
ground filtering when generating a DSM or a DTM, de-
pending on filtering technique and LiDAR point density
(Kraus and Pfeifer 1998). Previous studies have asserted
that such pits have a seriously negative effect on forest
parameter estimation because these pits disrupt the
CHMs. Gaveau and Hill (2003) indicated that data pits
cause the underestimation of tree height for LIiDAR data
with a mean point density of 0.21 points - m~2. Shamsod-
dini et al. (2013) found that data pits negatively affect
the estimation of basal area and stand volume for LiDAR
data with a mean point density of 2 pulses - m~2, Khosra-
vipour et al. (2014) demonstrated that data pits lead to
large omission errors (undetected trees) and commission
errors (falsely detected trees) in treetop detection for
LiDAR data with mean point densities of 7 and 160
points - m~2. Thus, data pits must be filled to ensure that
the uppermost layer of the forest canopy is realistically
represented by the LiDAR-derived CHM.

Many algorithms have been proposed to construct pit-
free CHMs. These algorithms can be divided into two
categories, namely, raster- and point cloud-based
methods. Raster-based methods are achieved by inter-
polating point clouds into raster images. The data pits
are then filled by the classical image processing methods,
such as mean and median filters. These filters are simple
and fast, but the result is sensitive to the optimal kernel
size given the pit size irregularity (Shamsoddini et al.
2013; Mielcarek et al. 2018).

Kernel size selection is critical to the success of many
image processing methods. For example, when using
morphological-based ground filtering algorithm, only
small non-ground objects, such as trees, will be effect-
ively removed by small kernels; however, this algorithm
tends to over-remove the ground points when using
large kernels (Zhang et al. 2003). Similarly, for mean
and median filters, only data pits with a small size will
be effectively filled by small kernels; however, these fil-
ters tend to over-smooth the CHM when using large
kernels (Ben-Arie et al. 2009).
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These filters negatively affect the accuracy of measure-
ments, such as underestimation of tree heights and crown
radius, deriving from the CHM. Such a phenomenon oc-
curs because the elevation values of other pixels in CHM,
except for the pitted pixels, are also changed, leading to
treetop omission and crown shoulder reduction (Khosravi-
pour et al. 2014). Accordingly, several solutions have been
proposed to fill data pits without affecting other CHM
values. Shamsoddini et al. (2013) detected data pits by com-
puting a similarity index in a 3 x 3 kernel and then used a
mean filter with a 5x 5 kernel to fill such pits. Ben-Arie
et al. (2009) used a Laplacian operator with a 3 x 3 kernel
to detect data pits and then utilised a median filter with a
3 x 3 kernel to fill such pits. These improved algorithms
only fill the pitted pixels without affecting other pixel values
in CHM. However, they cannot solve the kernel size selec-
tion problem. Therefore, these algorithms may be ineffect-
ive for large pits because they use a fixed kernel size.

Another type of pit-free CHM construction methods
(ie., point cloud-based methods) directly works on height-
normalised point clouds rather than raw CHMs. Khosravi-
pour et al. (2014) constructed a stack of partial CHMs
from different height intervals of the canopy; subse-
quently, these CHMs were combined into one CHM on
the basis of the highest value across all CHMs for each x
and y raster position. However, this algorithm must care-
fully determine a series of complicated parameters for fill-
ing pits at different heights. Chen et al. (2017) used locally
weighted regression and z-scores to construct a pit-free
CHM. This algorithm is highly automatic but may not
work for pits in sparse density data because this algorithm
requires calculation in the neighbourhood. The results
were related to neighbourhood size.

The use of the aforementioned algorithms has proven
to be successful. However, the prominent limitations of
existing algorithms are presented as follows: (a) having
applicability only to LiDAR data with regular-sized pits,
(b) changing the values of not only the pitted pixels but
also other CHM ones or (c) requiring numerous compli-
cated parameters. To cope with these problems, we
propose a novel algorithm based on cloth simulation for
constructing a pit-free CHM. The specific objectives of
this study are to (a) evaluate the applicability of the pro-
posed algorithm to different proportions of data pits, (b)
assess cloth simulation-based CHMSs through visual
comparison of the mean- and median-filtered CHMs,
and (c) evaluate and compare the accuracy of the max-
imum tree height estimation using cloth simulation-
based, mean-filtered and median-filtered CHMs.

Materials

Real data

The study area is located in the Genhe Forestry Reserve
(120°112°'-120°55'E, 50°20°'-52°30'N), Greater Khingan
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of Inner Mongolia, Northeastern China (Fig. 1a). The area
size is approximately 33 km® The elevations range from
approximately 775 to 1300 m above sea level, and the
slopes are less than 15° in 80% of the area. The area is
characterised by monsoon-influenced subarctic climate
with an annual average temperature of — 5.3 °C. The forest
types are mainly composed of Dahurian Larch (Larix gme-
linii) and White Birch (Betula platyphylla Suk.).

The LiDAR data for the study area were collected
from August to September 2012 using a Leica ALS60
system on a Yun-5 aircraft. The system wavelength was
1064 nm, and the beam divergence was 0.22 mrad. In
our datasets, this system operated at a 166 kHz pulse
rate at 1800 m above ground level with a field of view of
approximately 30° and recorded up to four returns for
each laser pulse. The scan angle statistics indicate that
97% and 99% of the pulses fall within the 0°~12° and 0°—
15° zenith angles. The average point density was 8.24
points - m~2 with an average spacing of 0.41 m.

Nine test plots (called L1-L9) with an area of 45 m x
45 m were established in the study area in August 2013
(Fig. 1b). The positions of the four corners of each plot
were measured using a differential GPS device. The
maximum tree height of each plot was measured using a
hand-held laser rangefinder. The collection time be-
tween field-measured and LiDAR data was not abso-
lutely consistent (the time interval is 1year).
Considering that the height growth rate of the tree spe-
cies in the study area is relatively slow, field-measured
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data could be acceptable for validating the proposed al-
gorithm (Tang 2013).

Simulated data

Two landscapes, namely, discrete floating hemisphere
and cone canopies, were simulated. The hemisphere and
cone models are expressed in accordance with the idea
developed by Dong (2009).

Hemisphere :  z = \/r?-x?-y?, (x2 +y*<r? 2> 0),
(1)
/% 12
Cone: z=rx cotf- Y +y . (PPt 0<0<90),

tanf

(2)

where (x, y, z) represents the simulated point coordi-
nates, r is the base radius and 6 is the angle between
slant and cone heights.

Figure 2 demonstrates that the hemisphere canopy
scene is a 50 m x 50 m square scene containing 60 hemi-
sphere canopies. The radius and tree height values are
set to 3—-6 and 7-10 m, respectively. The cone canopy
scene is a 50 m x 50 m square scene containing 60 cone
canopies. The radius and tree height values are set to 3—
6 and 18-55m, correspondingly. The ground point
height and point space of both simulated scene data are
0 and 0.05 m, respectively.

& Test Plots
Contour Lines
Study Area

(a)

Fig. 1 Study area and test plots. a Location of the study area in China. b DTM of the study area and location of test plots
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Fig. 2 Constructed 50 m x 50 m forest scene. a Hemisphere canopy scene. b Cone canopy scene
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Different proportions of data pits (10%—60%) were
randomly created in canopies, and their heights were
randomly reduced from their original elevations. Such
data pit proportions reflect the degree of irregularity in
pit size. For example, high proportions of data pits in
canopies typically reflect a large area of clustered dark
pixels in raster CHM. Figure 3 depicts the point clouds
of hemisphere and cone canopies, in which 10%, 20%
and 50% of the data pits are created.

Methodology

We present a cloth simulation-based framework to con-
struct pit-free CHMs from point clouds and compare
the results with those of other common algorithms using
a comprehensive accuracy assessment procedure. The
flowchart of this study is illustrated in Fig. 4. The meth-
odology used in this study includes five main parts,
namely, pre-processing, cloth simulation-based pit-free
CHM construction, post-processing, comparison of dif-
ferent algorithms and accuracy assessment.

Pre-processing
The pre-processing of LiDAR data consists of three
steps, namely, noise removal, height normalisation and

grid. In practice, the real and simulated data were
pre-processed using the LAStools (point cloud pro-
cessing software, Rapidlasso Company, Gilching,
Germany) modules which include lasnoise, lasground
and lasgrid (Isenburg 2017). The first step in the real
data was to remove high or low noise points using
the lasnoise module. Secondly, the lasground module
was used to extract the ground points and then cal-
culated the relative height above the ground for each
point (i.e, z coordinate). Each point was height-
normalised by replacing the height of each point with
its relative height above the ground. Consequently,
the height of all points classified as the ground is
zero. Finally, the lasgrid module was used to grid the
height-normalised points, only retaining the maximum
point in each grid cell. Considering that the simulated
data have no noise, and the ground height is set to
zero, these data were assigned to a grid, and only the
maximum point in each grid cell was retained using
the lasgrid module.

Theoretical basis: cloth simulation
This algorithm is based on the physical process simula-
tion of cloth-touching objects (Zhang et al. 2016; Zhang

(@)

Fig. 3 Canopy samples with 10%, 20% and 50% of data pits. a Hemisphere canopy. b Cone canopy

10% 20% 50%

B Tree
] Ground
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Fig. 4 Flowchart of this study

The pre-processing of LIDAR data consists of three
steps, i.e., noise removal, height normalization and grid

Construct pit-free CHM from the height-normalized
LiDAR point clouds through a cloth simulation process

Rectify CHM values at the edge of tree crowns

e Comparison algorithms, including the mean and
median filters

e Accuracy assessment of CHM application
e Accuracy assessment of CHM construction

et al. 2019; Cai et al. 2019; Wan et al. 2019). Imagine
that a piece of cloth is placed above a height-normalised
forest landscape, and then this cloth progressively drops
because of gravity. When touching the uppermost layer
of the forest canopy, the corresponding particles of the
cloth will stop dropping and be fixed. The movement of
cloth particles near the pits will be constrained by forces
produced by adjacent fixed cloth particles. The final
shape of the cloth can be confirmed and regarded as a
pit-free CHM (Fig. 5).

Cloth modelling is a term of 3D computer graphics.
Typically, the cloth is modelled as a grid consisting of
particles and springs. Both components control the
shape of the cloth (Fig. 6).

The positions of the cloth particles in the 3D space are
calculated to confirm the shape of the cloth at a specific
time. The position of each particle is determined by an
external force operation followed by an internal one. On
the basis of Newton’s second law, the relationship
between position and forces is calculated using Eq. (3).

Position of cloth at time i

Initial position of cloth

Fig. 5 Overview of the cloth simulation algorithm

Position of cloth at time j Final position of cloth
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Actual cloth

Fig. 6 Schematic of the simulated cloth

e Particle

— Spring

Spring configuration

0Z(t)
ot?

= Fext(Z,t) + Fine(Z, 2), (3)

where m stands for the mass of the cloth particle (m is
typically set to 1), Z indicates the position of a particle
at time £, Fe(Z, t) represents the external force and
Fi.«(Z,t) denotes the internal force produced by inter-
connections between particles. Figure 7 illustrates such a
process.

For simplicity, the external force is set to zero, that is,
each particle drops to measurements at a constant vel-

_
ocity. The displacement vector Z(At),,, of each particle
after one time step At is determined only under the ex-
ternal force:

-

Z(At) oy = VAL T ext (4)

ext

where v is the velocity, and 7 ¢, represents a normal-
ised vector that points to the movement direction,
et = (O,O,—l)T. If the cloth particle collides with
the measurement surface, then this particle will stop
falling and be labelled unmovable. Displacement dis-
tance is the height difference (HD) between the old
position of this particle and the measurement surface,

—
that is, Z(At),,, = HD-7 ext.

After dropping the cloth particles, an internal force is
exerted to movable particles to restrict the particles’
displacement in the void areas, such as data pits, of the
surface. In Fig. 8, the neighbouring particle and the
current one are moved by the same distance in the
opposite direction when the neighbouring particle is
movable; when the neighbouring particle is unmovable,
the current one is moved towards the neighbouring
particle by half of the HD between the two particles.

—_—

The displacement vector Z(At)
is computed using (5).

e Of the current particle

— g 1
Z(At)int = Zi:l Eb(ZPi_Zpo).Wint’ (5)

where b is 0 when the current particle is unmovable,
otherwise it is equal to 1, Z, represents the height value
of the current particle py, Z, (i=1, 2, ..., 8) stands for
the height values of the eight neighbouring particles p;
that connect with p,, and Wit represents a normalised
vector that points to the movement direction, Wint
= (0,0,1)". The final displacement vector T(AB of each
particle after one time step At is calculated as follows:

Z(88) = Z(88) gy + Z(A8) (6)

ext

Post-processing

At the edge of tree crowns, this algorithm may yield
relatively large errors because the cloth poorly fit with
ground measurements given the internal constraints
amongst particles (Fig. 9). A post-processing method
is proposed to solve this problem. This method
searches an unmovable particle in the eight adjacent
neighbourhoods of each movable particle. If the
height value of unmovable particle and that of the
nearest LIDAR point for the movable particle in the
x-y plane equal to zero, then the movable particle is
moved to the ground and set as unmovable. The
example exhibited in Fig. 9 displays that P, is the un-
movable particle from the eight adjacent neighbour-
hoods of P;. The height values of P, and P,, which
are the nearest LiDAR points of P; and P, corres-
pondingly, are both zero, then P; is moved to P; and
is set as unmovable. This procedure is repeated until
all the movable particles are properly handled.

Comparison between different pit-free CHM construction
algorithms

We compared our algorithm with two other pit-free CHM
construction algorithms, namely, mean and median filters,
to test the performance of the proposed algorithm. Firstly,
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Initial state (a)
Displacement by b)
external force
.
.
Displacement by (c)
internal force
°
.
Final state (d)

® Movable cloth particle = Old position of particle ® Unmovable particle Spring

® Crown measurements @ Pits ® Ground measurements

Fig. 7 Cloth simulation process. a Initial state. A piece of cloth is placed above the height-normalised forest LIDAR measurements. b Each particle
drops to the LIDAR measurements under the influence of external force, and their displacement is calculated. If the cloth particles collide with
the measurements, then these particles will stop falling and be labelled unmovable. ¢ Each movable particle is moved under the influence of
internal force produced by the neighbouring particles. Steps (b) and (c) are repeated until the maximum height variation of all particles is
sufficiently small. d Final state. The shape of the cloth is regarded as the pit-free CHM

the raw CHM was constructed using the las2dem modules  processed using the mean and median filters for pit filling.
of LAStools. The LiDAR points were triangulated into a  The following derivative products were generated:
triangulated irregular network on the basis of Delaunay

triangulation and then rasterised onto a raster through — Mean-filtered CHM: the raw CHM was filtered
standard linear interpolation. Secondly, the raw CHM was using a mean filter (3 x 3 kernel).
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P P
PY Movable particle Movable particle Unmovable Constraint vector — Spring
(new position) (old position) ® particle
Fig. 8 Constraint between particles

— Median-filtered CHM: the raw CHM was filtered
using a median filter (3 x 3 kernel).

Accuracy assessment

Considering that the accuracy of the CHMs influences
that of the tree height estimation in the raster-based
method, the height of the tallest tree in each plot was
obtained from the CHMs and compared with a field-
measured height to evaluate the performance of the pit
filling algorithms. This approach indirectly provides a
comparison between the proposed algorithm and the
other algorithms. The accuracy of the tree height mea-
surements was assessed by computing the bias in ac-
cordance with the following mathematical formulation:

. 1 n
bias = ;Zi:l(hm_hc)’ (7)

where 7 is the number of plots, 4, is the field-measured

plot-level maximum tree height and /. is the plot-level
maximum tree height derived from the CHM.

We constructed a reference CHM using the simulated
data without data pits to validate the accuracy of the
constructed pit-free CHM. Based on the index for evalu-
ating the accuracy of DTM, the root mean square error
(RMSE) was used to measure the HD between each pixel
of the reference CHM and the corresponding pixel of
the constructed pit-free CHM. This index is expressed
as follows:

RMSE = ,/%Z;(z,-—é,-)z, ®)

where z; and z; are the true and predicted values at the
i-th pixel in the CHM, respectively. # is the number of
pixels in the CHM.

|
|
|
|
|
|
|
|
|
|
|

e Movable cloth particles

e Crown measurements e Pits © Ground measurements

Fig. 9 Post-processing of the edge of tree crowns

Post-processing

Old position of particles ® Unmovable particles

Spring
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Result

Evaluation of real data

Visual performance

The performance of the proposed algorithm was visually
compared with the result of the mean and median filters.
With an average spacing of 0.41 m, the CHMs were gen-
erated with a resolution of 0.5m. The data pits are
clearly visible in the raw CHM (Fig. 10 (first row)). The
mean filter fills the data pits, but the constructed CHM
is heavily blurred (Fig. 10 (second row)). The median fil-
ter and our algorithm have a good ability of filling data
pits (Fig. 10 (third and last rows)). The elevation values
of other pixels, except the pitted ones, in the cloth
simulation-based CHM are effectively maintained. The
proposed algorithm performs better than the other algo-
rithms in terms of data pit filling and appearance preser-
vation of the uppermost layer of the forest canopy.

Assessment of the CHM application accuracy

Figure 10 and Table 1 present the position and estimated
tree heights of the nine tallest trees derived from the three
algorithms, respectively. Significant biases are observed
between the field measurements and the maximum tree
heights extracted from the CHMs constructed through
different algorithms. Our algorithm is more accurate than
the other algorithms. Specifically, the biases of the mean
and median filters are 4.4894 and 4.4414 m, but that of
the proposed algorithm is 0.9674 m (Table 2).
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The CHM resolution plays an important role in esti-
mating forest structure attributes (Chen et al. 2006;
Khosravipour et al. 2014). Some optimal resolution set-
ting principles have been proposed. For example,
Nyquist sampling theory stipulates that the resolution
must not be larger than half the size of the minimum
object of interest (e.g., the minimum tree crown) and
overly smaller than the average pulse spacing (Nyquist
1928; Chow and Hodgson 2009; Mielcarek et al. 2018).
Raster CHMs with resolutions of 0.2, 0.5, 0.8, 1 and 1.5
m are constructed from the real data. This task is per-
formed to test the robustness of the proposed algorithm
for deriving a plot-level maximum tree height from
CHMs under different resolutions. Table 2 shows biases
between the field measurements and the maximum tree
heights extracted from the CHMs constructed by differ-
ent algorithms. In the mean and median filters, the reso-
lution significantly affects the estimation accuracy of the
tree height. However, our algorithm is unaffected and
achieves the maximum accuracy at all resolutions.

Evaluation of simulated data

On the basis of the point spacing of simulated data, the
CHMs were constructed with a resolution of 0.5 m. Tak-
ing hemisphere canopy scene as an example, Fig. 11
shows the CHMs constructed by different algorithms
using the data with 10% pits. The raw CHM has some
data pits randomly distributed in the image, and the pit

% Position of the tallest tree of each plot

median-filtered and cloth simulation-based CHMs

Fig. 10 Comparison of the visual results for the nine plots. Subfigures (a)-(i): L1-L9. From the first row to the last row: Raw, mean-filtered,
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Table 1 Maximum tree height estimation results for the three algorithms in the nine plots (unit: m)

L1 L2 L3 L4 L5 L6 L7 L8 L9 Avg.
Mean 26.899 174509 184181 15.2007 28.1978 26.066 23.2291 33.336 16.0481 22.7606
Median 27.751 17451 18412 15.2685 26.051 26.238 24,002 33.932 16.172 22.8086
Ours 28.275 17.984 18.924 16498 5159 27.166 25277 34.163 16.666 26.2826
size is small and usually a single pixel (Fig. 11b). The Discussion

mean filter fills data pits, but the constructed CHM is
seriously smoothed, especially for edges of tree crowns
(Fig. 11c). The median filter and our algorithm exhibit
optimal performance (Fig. 11d and e).

Figure 12 illustrates the CHMs constructed through
different algorithms using the data with 50% pits. The
pit size in the raw CHM is irregular (Fig. 12b). The
mean filter yields a relatively good pit filling result than
the median one, but the constructed CHM is signifi-
cantly smoothed (Fig. 12c). The median filter can fill
small pits, but it deteriorates large ones (Fig. 12d). In
comparison with the abovementioned filters, the pro-
posed algorithm has the optimal ability to fill data pits.
The proposed algorithm only fills the pits in the raw
CHM without altering the values of other pixels; accord-
ingly, a CHM with nearly similar features to the refer-
ence CHM is generated (Fig. 12e). In summary, the
proposed algorithm performs better than the other algo-
rithms for the raw CHM exhibiting pits with irregular
size variations.

Table 3 shows that the proposed algorithm generates
optimal accuracy. For example, in the hemisphere can-
opy scene, the proposed algorithm is approximately
2.5718, 1.9461 and 1.6788 times equally accurate as the
raw CHM, mean filter and median filter in terms of
average RMSE, correspondingly. The accuracy of all al-
gorithms deteriorates with the increase in the pit pro-
portion. For example, in the hemisphere canopy scene,
the RMSE of the proposed algorithm increases from
0.2031 m to 0.5209 m when the pit proportion increases
from 10% to 60%. By contrast, the RMSEs of raw CHM,
mean filter and median filter increase from 0.5428 m to
1.2882 m, from 0.4334 m to 1.0299 m and from 0.308 m
to 1.0324 m, respectively.

Table 2 Biases between field-measured and CHM-derived plot-
level maximum tree heights for the three algorithms under
different CHM resolutions (unit: m)

Resolution Mean Median Ours

02 4.0868 34478 0.9674
05 44894 44414 0.9674
08 3.8001 3.3809 0.9674
1 47678 51041 0.9674
15 53144 5.0709 0.9674

One of the challenges in constructing a CHM from
LiDAR point clouds is the existence of data pits. In this
study, we propose a novel algorithm for constructing
pit-free CHMs. In this algorithm, a pit-free raster CHM
is directly constructed through a cloth simulation
process instead of by the combination of various steps
such as pit detection, pit filling and transformation from
the randomly distributed point clouds to the raster
CHM. The real and simulated data are used to validate
the advantages of the proposed algorithm.

The visual comparison results show that the proposed
algorithm is superior to the mean and median filters.
Such filters generate new values for all pixels based on
their neighbourhood values, thus affecting the original
structure of the canopy surface (Ben-Arie et al. 2009;
Shamsoddini et al. 2013). By contrast, our algorithm
only fills data pits without changing the value of any
other pixels, thereby preserving the original structure
of the canopy surface. The proposed algorithm
provides the possibility to minimise the distortion of
the canopy’s uppermost layer efficiently; this layer
plays a critical role in various applications (e.g., eco-
logical, hydrological and meteorological) sensitive to
vegetation evolution at the local and regional scales
(Khosravipour et al. 2014).

We also evaluate the proposed algorithm by compar-
ing the accuracy of the tallest tree height estimation
using the cloth simulation-based CHM versus the mean-
and median-filtered CHMs. The positive biases for all al-
gorithms indicate that the tallest tree height may be
overestimated on the ground; this phenomenon is a pos-
sible error associated with the tree height measurement
in the field (Wang et al. 2019). Our algorithm is signifi-
cantly accurate at tree height estimation. The present
study confirms previously published statements by Chen
et al. (2017); these researchers illustrated that the mean
and median filters struggle with the tallest tree height es-
timation because such filters smoothen the treetops
based on surrounding pixels. The resolution of the cloth
simulation-based CHM has no effect on the estimation
accuracy of the maximum tree height. However, the esti-
mation accuracy of the tallest tree height is sensitive to
the resolutions of the mean- and median-filtered CHMs.
The highest pixel value within a plot may be changed
because the neighbourhood pixel values may vary with
the resolution.
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(a) (b)

Median-filtered CHM. e Cloth simulation-based CHM

Fig. 11 CHMs constructed through different algorithms using the data with 10% pits. a Reference CHM. b Raw CHM. ¢ Mean-filtered CHM. d

Furthermore, we investigate the effects of the different
proportions of data pits on the accuracy of the mean
and median filters and the proposed algorithm. The re-
sults show that our algorithm achieves the optimal visual
performance amongst the data with different propor-
tions of data pits. The quantitative assessment results
show that the mean and median filters reduce the pit
effect based on a predefined window kernel size that
cannot be optimal for all different proportions of data
pits. For example, the median filter can fill small pits but
deteriorates large ones; this result agrees with those of

previous studies (Fig. 12d) (Shamsoddini et al. 2013).
The proposed algorithm accurately represents the height
of the canopy surfaces, especially for point clouds with
high proportions of data pits. On this basis, our algo-
rithm can be potentially applied to process the forest
LiDAR point clouds acquired under leaf-off conditions
given that most points will cluster on branches or trunks
rather than canopy surfaces (i.e., high proportions of
data pits).

In summary, the results demonstrate that the proposed
algorithm has the following advantages: (a) The

Median-filtered CHM. e Cloth simulation-based CHM

Fig. 12 CHMs constructed through different algorithms using the data with 50% pits. a Reference CHM. b Raw CHM. ¢ Mean-filtered CHM. d

(e)
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Table 3 Accuracy comparison between different algorithms for
filling pits (unit: m)

Landscapes Pit proportion Raw CHM Mean Median Our algorithm

Hemisphere 10% 0.5428 04334 0308  0.2031
20% 0.7562 0.5391 03753 0.2783
30% 0.9329 06652 05098 0.357
40% 1.0685 0.787 06747 0.4248
50% 1.1948 0.9217 08752 0.4648
60% 1.2882 1.0299 1.0324 0.5209
On average 0.9639 0.7294 06292 0.3748

Cone 10% 1.304 0.7299 0.5077 0.4135
20% 1.8507 1.0731 07426 0.4814
30% 22675 14123 1.0503 0.5753
40% 26308 17823 15198 0.6553
50% 29588 21623 20756 0.7523
60% 3.1292 23931 24199 0.8503
On average 2.3568 15922 1386  0.6214

Note: The values in bold are the smallest ones in each line

proposed algorithm can effectively construct pit-free
CHMs in point clouds with different proportions of data
pits; (b) it can accurately fill only the pits without chan-
ging the values of all the CHM pixels, thereby preserving
details of the uppermost layer of the forest canopy; and
(c) it only needs to set up a CHM resolution parameter.

Conclusion

In this study, we presented a new pit-free CHM con-
struction algorithm based on cloth simulation. This al-
gorithm was applied to the LiDAR data to generate
raster CHM directly. The real and simulated datasets
were used to compare the performance of the proposed
algorithm with those of the mean and median filters.
Overall, the proposed algorithm is promising in terms of
robustness and high accuracy. This characteristic is use-
ful for practical applications. Whether our pit-free CHM
can improve the accuracy of extracted tree biophysical
parameters, such as biomass, is interesting to investigate
in the future.

Abbreviations

3D: Three-dimensional; CHM: Canopy Height Model; DSM: Digital Surface
Model; DTM: Digital Terrain Model; GPS: Global Positioning System;

HD: Height Difference; LIDAR: Airborne Light Detection and Ranging;
RMSE: Root Mean Square Error

Acknowledgments

We thank Radiation Modelling and Measurement Laboratory (http://ramm.
bnu.edu.cn/) for data provision. Jianbo Qi is thanked for his help with the
figure preparation.

Authors’ contributions

WZ, SC and XL conceived the study and contributed to the manuscript
writing and editing; JS coordinated the design of the program; RH processed
a part of the data; SY participated the evaluation and figure preparation. GY

Page 12 of 13

contributed to analyses of this study. All authors read and approved the final
manuscript.

Funding

This work was supported by the National Natural Science Foundation of
China (Grant Nos. 41671414, 41971380 and 41171265) and the National Key
Research and Development Program of China (No. 2016YFB0501404).

Availability of data and materials
The data is not owned by the authors and cannot be shared.

Ethics approval and consent to participate
The subject has no ethic risk.

Consent for publication

All the data and relevant processing methods, including the automated
generation of figures of evaluation results, belong to the host institution,
namely, the Beijing Normal University.

Competing interests
The authors declare that they have no competing interests.

Author details

'State Key Laboratory of Remote Sensing Science, Jointly Sponsored by
Beijing Normal University and Institute of Remote Sensing and Digital Earth
of Chinese Academy of Sciences, Beijing Engineering Research Center for
Global Land Remote Sensing Products, Institute of Remote Sensing Science
and Engineering, Faculty of Geographical Science, Beijing Normal University,
Beijing 100875, China. “Department of Remote Sensing and
Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala,
Finland. *College of Resources and Environment, University of Chinese
Academy of Sciences, Beijing 100049, China. “ICube Laboratory, UMR 7357
CNRS-University of Strasbourg, 300 bd Sebastien Brant, CS, 10413, F-67412
lllkirch Cedex, France. ®Institute of Remote Sensing and Digital Earth, Chinese
Academy of Sciences, Beijing 100101, China. ®University of Chinese Academy
of Sciences, Beijing 100049, China.

Received: 23 April 2019 Accepted: 9 December 2019
Published online: 10 January 2020

References

Axelsson P (1999) Processing of laser scanner data—algorithms and applications.
ISPRS J Photogramm Remote Sens 54:138-147 https,//www.sciencedirect.
com/science/article/abs/pii/S0924271699000088. Accessed 20 Apr 2019

Ben-Arie JR, Hay GJ, Powers RP, Castilla G, St-Onge B (2009) Development of a pit
filling algorithm for LIDAR canopy height models. Comput Geosci 35:1940-
1949 https.//www.sciencedirect.com/science/article/pii/S0098300409000624.
Accessed 20 Apr 2019

Cai S, Zhang W, Liang X, Wan P, Qi JYu S, Yan G, Shao J (2019) Filtering airborne
liDAR data through complementary cloth simulation and progressive TIN
densification filters. Remote Sens 11:1037 https://www.mdpi.com/2072-42
92/11/9/1037/htm.

Chen C, Wang Y, Li Y, Yue T, Wang X (2017) Robust and parameter-free
algorithm for constructing pit-free canopy height models. ISPRS Int J Geo-Inf
6:219 https://www.mdpi.com/2220-9964/6/7/219. Accessed 20 Apr 2019

Chen Q, Baldocchi D, Gong P, Kelly M (2006) Isolating individual trees in a
savanna woodland using small-footprint lidar data. Photogramm Eng
Remote Sens 72:923-932 https//www.ingentaconnect.com/content/asprs/
pers/2006/00000072/00000008/art00003. Accessed 20 Apr 2019

Chow TE, Hodgson ME (2009) Effects of lidar post-spacing and DEM resolution to
mean slope estimation. Int J Geogr Inf Sci 23:1277-1295 https.//www.
tandfonline.com/doi/abs/10.1080/13658810802344127. Accessed 20 Apr 2019

Coomes DA, Safka D, Shepherd J, Dalponte M, Holdaway R (2018) Airborne laser
scanning of natural forests in New Zealand reveals the influences of wind on
forest carbon. Forest Ecosyst 5:10. https://doi.org/10.1186/540663-017-0119-6

Dong P (2009) Characterization of individual tree crowns using three-dimensional
shape signatures derived from LIDAR data. Int J Remote Sens 30:6621-6628
https.//www.tandfonline.com/doi/abs/10.1080/01431160903140761. Accessed
20 Apr 2019

Gaveau DLA, Hill RA (2003) Quantifying canopy height underestimation by laser
pulse penetration in small-footprint airborne laser scanning data. Can J


http://ramm.bnu.edu.cn/
http://ramm.bnu.edu.cn/
https://www.sciencedirect.com/science/article/abs/pii/S0924271699000088
https://www.sciencedirect.com/science/article/abs/pii/S0924271699000088
https://www.sciencedirect.com/science/article/pii/S0098300409000624
https://www.mdpi.com/2072-4292/11/9/1037/htm
https://www.mdpi.com/2072-4292/11/9/1037/htm
https://www.mdpi.com/2220-9964/6/7/219
https://www.ingentaconnect.com/content/asprs/pers/2006/00000072/00000008/art00003
https://www.ingentaconnect.com/content/asprs/pers/2006/00000072/00000008/art00003
https://www.tandfonline.com/doi/abs/10.1080/13658810802344127
https://www.tandfonline.com/doi/abs/10.1080/13658810802344127
https://doi.org/10.1186/s40663-017-0119-6
https://www.tandfonline.com/doi/abs/10.1080/01431160903140761

Zhang et al. Forest Ecosystems (2020) 7:1

Remote Sens 29:650-657 https://www.tandfonline.com/doi/abs/10.5589/
m03-023. Accessed 20 Apr 2019

Goulden T, Hopkinson C (2010) The forward propagation of integrated system
component errors within airborne lidar data. Photogramm Eng Remote Sens
76:589-601 https.//www.ingentaconnect.com/content/asprs/pers/2010/
00000076/00000005/art00005. Accessed 20 Apr 2019

Huang HG, Lian J (2015) A 3D approach to reconstruct continuous optical
images using lidar and MODIS. Forest Ecosyst 2:20. https://doi.org/10.1186/
s40663-015-0044-5

Hyyppa J, Hyyppd H, Leckie D, Gougeon F, Yu X, Maltamo M (2008) Review
of methods of small-footprint airborne laser scanning for extracting
forest inventory data in boreal forests. Int J Remote Sens 29:1339-1366
https://www.tandfonline.com/doi/abs/10.1080/01431160701736489.
Accessed 20 Apr 2019

Isenburg M (2017) LAStools—efficient lidar processing software. http://rapidlasso.
com/LAStools.

Khosravipour A, Skidmore AK, Isenburg M, Wang T, Hussin YA (2014) Generating
pit-free canopy height models from airborne lidar. Photogramm Eng Remote
Sens 80:863-872 https;//www.ingentaconnect.com/content/asprs/pers/2014/
00000080/00000009/art00003. Accessed 20 Apr 2019

Kraus K, Pfeifer N (1998) Determination of terrain models in wooded areas with
airborne laser scanner data. ISPRS J Photogramm Remote Sens 53:193-203
https://www sciencedirect.com/science/article/abs/pii/S0924271698000094.
Accessed 20 Apr 2019

Latypov D (2005) Effects of laser beam alignment tolerance on lidar accuracy.
ISPRS J Photogramm Remote Sens 59:361-368 https:.//www.sciencedirect.
com/science/article/abs/pii/S0924271605000584. Accessed 20 Apr 2019

Leckie D, Gougeon F, Hill D, Quinn R, Armstrong L, Shreenan R (2003) Combined
high-density lidar and multispectral imagery for individual tree crown
analysis. Can J Remote Sens 29:633-649 https://www.tandfonline.com/doi/
abs/10.5589/m03-024. Accessed 20 Apr 2019

Lim K, Treitz P, Wulder M, St-Onge B, Flood M (2003) LiDAR remote sensing of
forest. Prog Phys Geogr 27:88-106 https.//journals.sagepub.com/doi/abs/1
0.1191/0309133303pp360ra. Accessed 20 Apr 2019

Mielcarek M, Sterericzak K, Khosravipour A (2018) Testing and evaluating
different LiDAR-derived canopy height model generation methods for
tree height estimation. Int J Appl Earth Obs Geoinf 71:132-143 https://
www.sciencedirect.com/science/article/pii/S0303243418301478. Accessed
20 Apr 2019

Nyquist H (1928) Certain topics in telegraph transmission theory. Trans Am Inst
Electr Eng 47:617-644 https://ieeexplore.ieee.org/abstract/document/5055
024. Accessed 20 Apr 2019

Popescu SC (2007) Estimating biomass of individual pine trees using airborne
lidar. Biomass Bioenergy 31:646-655 https.//www.sciencedirect.com/science/
article/pii/S0961953407001316. Accessed 20 Apr 2019

Shamsoddini A, Turner R, Trinder JC (2013) Improving lidar-based forest
structure mapping with crown-level pit removal. J Spat Sci 58:29-51
https://www.tandfonline.com/doi/abs/10.1080/14498596.2012.759092.
Accessed 20 Apr 2019

Stereficzak K, Lisariczuk M, Erfanifard Y (2018) Delineation of homogeneous forest
patches using combination of field measurements and LIDAR point clouds
as a reliable reference for evaluation of low resolution global satellite data.
Forest Ecosyst 5:1. https://doi.org/10.1186/540663-017-0128-5

Tang X (2013) Estimation of forest aboveground biomass by integrating ICESat/
GLAS waveform and TM data. Doctoral Dissertation, University of Chinese
Academy of Sciences, Beijing http://www.wanfangdata.com.cn/details/detail.
do?_type=degree&id=Y2440193. Accessed 20 Apr 2019

Wan P, Wang T, Zhang W, Liang X, Skidmore A, Yan G (2019) Quantification of
occlusions influencing the tree stem curve retrieving from single-scan
terrestrial laser scanning data. Forest Ecosyst 6:43 https:/link.springer.com/
content/pdf/10.1186/540663-019-0203-1.pdf.

Wang Y, Lehtomaki M, Liang X, Py¢réld J, Kukko A, Jaakkola A, Liu J, Feng Z, Chen
R, Hyyppd J (2019) Is field-measured tree height as reliable as believed—a
comparison study of tree height estimates from field measurement, airborne
laser scanning and terrestrial laser scanning in a boreal forest. ISPRS J
Photogramm Remote Sens 147:132-145 https.//www.sciencedirect.com/
science/article/pii/S0924271618303046. Accessed 20 Apr 2019

Yu X, Hyyppd J, Vastaranta M, Holopainen M, Viitala R (2011) Predicting
individual tree attributes from airborne laser point clouds based on the
random forests technique. ISPRS J Photogramm Remote Sens 66:28-37

Page 13 of 13

https://www.sciencedirect.com/science/article/abs/pii/S0924271610000651.
Accessed 20 Apr 2019

Zhang K, Chen SC, Whitman D, Shyu ML, Yan J, Zhang C (2003) A progressive
morphological filter for removing nonground measurements from airborne
lidar data. IEEE Trans Geosci Remote Sens 41:872-882 https://ieeexplore.ieee.
org/abstract/document/1202973. Accessed 20 Apr 2019

Zhang W, Qi J, Wan P, Wang H, Xie D, Wang X, Yan G (2016) An easy-to-use
airborne LiDAR data filtering method based on cloth simulation. Remote
Sens 8501 https://www.mdpi.com/2072-4292/8/6/501. Accessed 20 Apr 2019

Zhang W, Wan P, Wang T, Cai S, Chen Y, Jin X, Yan G (2019) A novel approach
for the detection of standing tree stems from plot-level terrestrial laser
scanning data. Remote Sens 11:211 https.//www.mdpi.com/2072-42
92/11/2/211.

Zhao D, Pang Y, Li Z, Sun G (2013) Filling invalid values in a lidar-derived canopy
height model with morphological crown control. Int J Remote Sens 34:4636—
4654 https.//www.tandfonline.com/doi/abs/10.1080/01431161.2013.779398.
Accessed 20 Apr 2019

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



https://www.tandfonline.com/doi/abs/10.5589/m03-023
https://www.tandfonline.com/doi/abs/10.5589/m03-023
https://www.ingentaconnect.com/content/asprs/pers/2010/00000076/00000005/art00005
https://www.ingentaconnect.com/content/asprs/pers/2010/00000076/00000005/art00005
https://doi.org/10.1186/s40663-015-0044-5
https://doi.org/10.1186/s40663-015-0044-5
https://www.tandfonline.com/doi/abs/10.1080/01431160701736489
http://rapidlasso.com/LAStools
http://rapidlasso.com/LAStools
https://www.ingentaconnect.com/content/asprs/pers/2014/00000080/00000009/art00003
https://www.ingentaconnect.com/content/asprs/pers/2014/00000080/00000009/art00003
https://www.sciencedirect.com/science/article/abs/pii/S0924271698000094
https://www.sciencedirect.com/science/article/abs/pii/S0924271605000584
https://www.sciencedirect.com/science/article/abs/pii/S0924271605000584
https://www.tandfonline.com/doi/abs/10.5589/m03-024
https://www.tandfonline.com/doi/abs/10.5589/m03-024
https://journals.sagepub.com/doi/abs/10.1191/0309133303pp360ra
https://journals.sagepub.com/doi/abs/10.1191/0309133303pp360ra
https://www.sciencedirect.com/science/article/pii/S0303243418301478
https://www.sciencedirect.com/science/article/pii/S0303243418301478
https://ieeexplore.ieee.org/abstract/document/5055024
https://ieeexplore.ieee.org/abstract/document/5055024
https://www.sciencedirect.com/science/article/pii/S0961953407001316
https://www.sciencedirect.com/science/article/pii/S0961953407001316
https://www.tandfonline.com/doi/abs/10.1080/14498596.2012.759092
https://doi.org/10.1186/s40663-017-0128-5
http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2440193
http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2440193
https://link.springer.com/content/pdf/10.1186/s40663-019-0203-1.pdf
https://link.springer.com/content/pdf/10.1186/s40663-019-0203-1.pdf
https://www.sciencedirect.com/science/article/pii/S0924271618303046
https://www.sciencedirect.com/science/article/pii/S0924271618303046
https://www.sciencedirect.com/science/article/abs/pii/S0924271610000651
https://ieeexplore.ieee.org/abstract/document/1202973
https://ieeexplore.ieee.org/abstract/document/1202973
https://www.mdpi.com/2072-4292/8/6/501
https://www.mdpi.com/2072-4292/11/2/211
https://www.mdpi.com/2072-4292/11/2/211
https://www.tandfonline.com/doi/abs/10.1080/01431161.2013.779398

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Materials
	Real data
	Simulated data

	Methodology
	Pre-processing
	Theoretical basis: cloth simulation
	Post-processing
	Comparison between different pit-free CHM construction algorithms
	Accuracy assessment

	Result
	Evaluation of real data
	Visual performance

	Assessment of the CHM application accuracy
	Evaluation of simulated data

	Discussion
	Conclusion
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References

