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Abstract

Background: Predictive models shed light on aboveground fungal yield dynamics and can assist decision-making
in forestry by integrating this valuable non-wood forest product into forest management planning. However, the
currently existing models are based on rather local data and, thus, there is a lack of predictive tools to monitor
mushroom yields on larger scales.

Results: This work presents the first empirical models for predicting the annual yields of ectomycorrhizal
mushrooms and related ecosystem services in Pinus sylvestris and Pinus pinaster stands in northern Spain, using a
long-term dataset suitable to account for the combined effect of meteorological conditions and stand structure.
Models were fitted for the following groups of fungi separately: all ectomycorrhizal mushrooms, edible mushrooms
and marketed mushrooms. Our results show the influence of the weather variables (mainly precipitation) on
mushroom yields as well as the relevance of the basal area of the forest stand that follows a right-skewed unimodal
curve with maximum predicted yields at stand basal areas of 30–40 m2∙ha− 1.

Conclusion: These models are the first empirical models for predicting the annual yields of ectomycorrhizal
mushrooms in Pinus sylvestris and Pinus pinaster stands in northern Spain, being of the highest resolution
developed to date and enable predictions of mushrooms productivity by taking into account weather conditions
and forests’ location, composition and structure.
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Background
The importance of wild forest fungi as a key component of
both ecosystem processes and services at scales ranging
from local to global have been widely reported (Boa 2004).
Among them, ectomycorrhizal fungi are especially relevant
because of their ecological and socioeconomic importance
(Smith and Read 2008; Bonet et al. 2014). Mycorrhizal spe-
cies form symbiotic associations with their host plants that
directly influence nutrient and water availability for trees

(Brunner 2001; Hartnett and Wilson 2002; Guidot et al.
2003; Smith and Read 2008), facilitating seedling establish-
ment and supplying and recycling soil nutrients (Egli 2011;
van der Heijden et al. 2015), protecting plant hosts from soil
pathogens and environmental extremes (Smith and Read
2008), and playing an important role in the sequestration of
C in soil and trees (Treseder and Allen 2000; Egli 2011).
From a socioeconomic point of view, the commercialization
of the fruitbodies of ectomycorrhizal fungi provides import-
ant economic benefits to collectors and rural communities
(Samils et al. 2008; Martínez de Aragón et al. 2011; Bonet
et al. 2014). In fact, the value of edible epigeous fungi may
surpass the value of timber in certain regions such as the
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Mediterranean (Palahí et al. 2009) or the northwest part of
Turkey under some restrictive conditions based on forest
management (Mumcu Küçüker and Başkent 2017b), and
emerging activities such as mycotourism can further con-
tribute to increasing this value (Büntgen et al. 2017).
Within this context, it is important to have accurate es-

timations of ectomycorrhizal fungal production at national
level, not only for forest and land managers to integrate
them into forest management planning or for the indus-
trial sector to establish business strategies, but also to
comply with international reporting requirements for For-
est Europe (Forest Europe 2015) and FAO (Forest Re-
source Assessment-FRA) (MacDicken 2015). Empirical
models can contribute directly to these tasks by providing
both qualitative understanding and quantitative predic-
tions of the impact of various management practices and
climatic scenarios on forest ecosystem behavior over dif-
ferent spatio-temporal scales, allowing to integrate the
production of different type of products in existing man-
agement planning systems such as stand simulators and
Decision Support Systems (DSS) tools (Sánchez-González
et al. 2015; Mumcu Küçüker and Başkent 2017a, 2017b).
In Spain, different edible mushroom yield models at

local and regional levels have been developed so far,
mainly for pine forest ecosystems. Bonet et al. (2008) de-
veloped a model for predicting ectomycorrhizal mush-
room yield and species richness as a function of site and
forest stand variables in Scots pine forests of north-
eastern Spain. Later on, Bonet et al. (2010) developed
similar models for pine forests (Pinus sylvestris L., Pinus
halepensis Mill., Pinus nigra J.F.Arnold) in south-central
Pyrenees. Martínez-Peña et al. (2012) developed models
for predicting the productions of ectomycorrhizal mush-
room in P. sylvestris forests located in north-central
Spain with a special focus on the most valuable species.
De-Miguel et al. (2014) developed a model-based sce-
nario analysis for predicting the effect of forest manage-
ment intensity on mushrooms productivity in pine
forests (P. sylvestris, P. halepensis, P. pinaster and P.
nigra) in Catalonia region (north-eastern Spain). More
recently, Taye et al. (2016) predicted edible mushroom
yield in Pinus pinaster forests of central Spain under dif-
ferent meteorological and site conditions. However,
there is a lack of models enabling accurate enough pre-
diction of mushroom yield on a larger scale. The reason
behind this lack of national-level models is the difficulty
to obtain large quantities of data over several years, es-
pecially if the models are intended to account for the ef-
fect of changing meteorological conditions (Taye et al.
2016; Alday et al. 2017a). In Spain, these kind of data
are only available in the northern part of the country,
which represents one of the largest existing spatio-
temporal data series on aboveground fungal yield world-
wide. All the aforementioned mushrooms yield models

already used part of the data used in the present study,
but none have used the whole dataset.
In this study, we have used data from P. sylvestris and

P. pinaster stands because these pine species are moni-
tored for mushroom yield from permanent plots estab-
lished in different locations of northern Spain, which is a
consequence of the importance of both pine species in
terms of their wide distribution range and mushroom
production in the Iberian Peninsula. Previous works
have shown that climatic factors are key for controlling
the yields of mushrooms (Kauserud et al. 2008; Ágreda
et al. 2016; Alday et al. 2017b; Karavani et al. 2018). Wet
and warm autumns seem to promote ectomycorrhizal
fungi yields in Spanish pine forests (Martínez-Peña et al.
2012; Taye et al. 2016; Alday et al. 2017a;). However, cli-
matic factors alone do not fully explain the emergence
of fungal sporocarps: topographical factors such as slope,
aspect or altitude (Egli 2011), soil characteristics (i.e.,
pH, texture) (Martínez-Peña et al. 2012) and stand struc-
ture variables (Tahvanainen et al. 2016) seems to be also
influential in mushroom fructifications (Tomao et al.
2017). Among the latter group of variables, stand basal
area has been reported to be correlated with mushroom
production (Bonet et al. 2008; Bonet et al. 2010; Martí-
nez-Peña et al. 2012; de-Miguel et al. 2014; Tahvanainen
2014). Those studies shown that forest stands with too
low or too high basal areas can be less productive in
terms of mushroom yield than stands with intermediate
values of stand basal area.
The main aim of this study is to develop yield models

for predicting the annual productivity of ectomycorrhizal
mushroom in P. sylvestris and P. pinaster stands in
northern Spain, taking into account temperature, pre-
cipitation, stand basal area and local site characteristics
as explanatory variables. Models were fitted for the fol-
lowing groups of fungi separately: all ectomycorrhizal
mushrooms, edible mushrooms and marketed mush-
rooms, based on data from 90 sample plots from differ-
ent locations in northern Spain. We hypothesized that
mushroom production will follow certain biogeographic
patterns and, therefore, the variability among plots in re-
lation to mushroom production, climate and site condi-
tions was also studied.

Methods
Sampling design and data collection
The study area is located in three different regions of
Northern Spain. In total, seven monitoring sites amount-
ing 90 sampling plots (100 m2 each plot) have been con-
sidered in this study. Of those plots, 39 plots correspond
to pure P. sylvestris forest stands whilst 51 plots repre-
sent pure P. pinaster forest stands.
The P. sylvestris plots are located in Catalonia region

(North-eastern Spain, 19 plots measured between 1997 and
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2015), in Soria Province, Eastern Castilla y León region
(North-Central Spain, 17 plots measured between 1995 and
2015) and in Palencia Province, Western Castilla y León re-
gion (North Western Spain, 3 plots measured between 2008
and 2015). The P. pinaster plots are located in Catalonia re-
gion (North-eastern Spain, 28 plots measured between 2008
and 2015), in Soria Province, Eastern Castilla y León region
(North-Central Spain, 14 plots measured between 1997 and
2015) in Palencia Province, Western Castilla y León region
(North Western Spain, 3 plots measured between 2003 and
2015) and in Valladolid Province, Western Castilla y León
region (North Western Spain, 6 plots measured between
2006 and 2015).
All the considered plots have been weekly monitored

during the autumn season, with data recorded for at
least 9 consecutive years or even more. The permanent
mushroom plots are representative of the heterogeneity
of the forest areas of both pine species in northern
Spain, being located in a wide range of ecological condi-
tions and subjected to different forest management
treatments (mainly forest thinning). The data were char-
acterized by high interannual variability in mushroom
occurrence and yield associated with differences in wea-
ther conditions between years and between plots, and
representing different past forest management practices
Additional file 1: Table S1). Weather data was obtained
from the nearest weather station to each study area.
More detailed descriptions of the study areas as well as
sampling methodology can be found in Vásquez-Gassibe
et al. (2016) and Hernández-Rodríguez et al. (2015) for
Western-Castilla y León (Palencia and Valladolid prov-
inces), Martínez-Peña et al. (2012) and Taye et al. (2016)
for Eastern-Castilla y León, and de-Miguel et al. (2014)
and Alday et al. (2017b) for Catalonia.

Preliminary analysis
An exploratory principal component analysis (PCA, Le-
gendre and Legendre 1998) was performed to explore
the variability among plots with respect to mushroom
production and climate variables. The PCA were run
with PRINCOMP procedure available in SAS version
9.4. (SAS Institute Inc. 2016).
Next, we clustered the plots based on mushroom

production, climatic and site conditions. Hierarchical
clustering is a method of forming clusters iteratively,
starting with each object in its own cluster and then
proceeding by combining the most similar pairs of
clusters step by step, thus forming a hierarchy of
clusters (e.g. Everitt et al. 2011). We performed hier-
archical clustering on the mean values of the yields
over a study period, using Euclidean distance as a
measure of similarity and Ward’s minimum variance
method as the clustering method. The number of
clusters was selected based on the dendrogram and

the cubic clustering criterion (CCC) (Milligan and
Cooper 1983; Yeo and Truxillo 2005). The cluster
analysis was run with CLUSTER procedure available
in SAS version 9.4. (SAS Institute Inc. 2016).

Modeling mushroom production
The annual mushroom yields were modelled for the follow-
ing groups of fungi separately: all ectomycorrhizal mush-
rooms, edible mushrooms (those ectomycorrhizal fungi
considered as edible in the available fungal literature) and
marketed mushrooms (ectomycorrhizal edible fungi usually
sold in markets) (de-Miguel et al. 2014; Alday et al. 2017a),
as a function of location and variables representing different
meteorological conditions (i.e., monthly total rainfall and
mean temperature), stand characteristics (i.e., stand basal
area) and thinning treatment. Since, in Spain, wild edible
mushrooms are usually commercialized on a fresh weight
basis, fresh mushroom biomass in kg∙ha− 1∙yr− 1 was selected
as the response variable by pooling the yield data of all fun-
gal species according to the three levels of grouping. Differ-
ent combinations and transformations of predictors were
tested. Weather variables were aggregated in different ways,
e.g., the accumulated precipitation during August and/or
September (late summer) or during September and/or Oc-
tober (early autumn), to further test their combined effect
on the response variables in addition to testing the influ-
ence of the disaggregated monthly rainfall and temperature.
The different combinations of meteorological variables also
aimed at testing hypothetical delayed responses of mush-
room yield to the combined effect of different predictors
(e.g., previous research has reported a delay of several
weeks in the combined effect between rainfall events and
favorable temperatures) (Martínez de Aragón et al. 2007;
Martínez-Peña et al. 2012).
Since the available data are based on repeated mea-

surements of the same sampling plots during several
years, measurements taken on a given plot are likely to
be more correlated than measurements taken from dif-
ferent plots. Similarly, measurements taken closer in
time on the same plot (i.e., in a given year) are likely to
be more correlated than measurements taken further
apart in time. Such autocorrelation patterns implies that
assumptions about error variance being independent are
no longer valid (Wolfinger 1996; Littell et al. 2000). The
analysis of repeated measurements requires that correla-
tions between the observations made on the same sam-
pling unit must be taken into account as well as possible
heterogeneous variances among observations on the
same plot over time. Second, data are unbalanced be-
cause the number of sample plots varied among groups
and each plot there were no available data for the same
years. Third, mushroom yield has a stochastic nature
that coupled with the rather small size of sample plots
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results in the occurrence of “zero” production in many
sample plots.
To deal with these characteristics of the data, hurdle

models within a generalized linear mixed-effects model-
ing framework (GLMM) were used. Hurdle models
model the zeros and non-zeros as two separate processes
(Hamilton and Brickell 1983) which, as compared with
single-model functions, can also provide further insight
into mushroom dynamics by analyzing those factors
driving mushroom occurrence and abundance separately
(de-Miguel et al. 2014). Therefore, we applied this ap-
proach for the three considered groups of fungi although
the percentage of zeros differs in each one, being 4.25%
in the all ectomycorrhizal mushroom group, while in the
edible and marketed groups the proportion of observa-
tions with zero mushroom production was 8.86% and
31%, respectively. The first part of the hurdle models
aimed at predicting the probability of occurrence of
mushroom production based on binomially distributed
data (i.e., absence or presence) using logistic regression
(Eq. 1) along with a logit link function (Eq. 2). The sec-
ond part of the hurdle models aimed at predicting
mushroom yield conditional on the probability of mush-
room occurrence by means of Gamma regression (Eq. 3)
along with a log link function (Eq. 4). Finally, the ex-
pected mushroom yield was obtained by multiplying the
estimates provided by Eq. 1 and Eqs. 3 and 5.

p yij ¼ 1jx
� �

¼ π xð Þ ¼ 1

1þ e− α0þv1 jð ÞþαX ij1½ � ð1Þ

g xð Þ ¼ log
π xð Þ

1−π xð Þ
� �

¼ α0 þ v1 j
� �þ αX ij1 ð2Þ

yieldcij ¼ eβ0þv2 jX ij2 ð3Þ

g xð Þ ¼ log eβ0þv2 jX ij2
� � ¼ β0 þ v2 j

� �
þ β log X ij2

� � ð4Þ

yieldij ¼ p yij ¼ 1jx
� �

∙yieldcij ð5Þ

where p(yij = 1| x) is the probability of occurrence of all
ectomycorrhizal, edible and marketed mushrooms in
plot i and year j, yieldcij is all ectomycorrhizal, edible and
marketed mushrooms yield conditional on mushroom
occurrence in plot i and year j (kg∙ha− 1∙yr− 1), yieldij is
the predicted all ectomycorrhizal, edible and marketed
mushrooms yield in plot i and year j (kg∙ha− 1∙yr− 1), α0
and β0 denote fixed-effects, v1j and v2j denote year ran-
dom effects which were specified as crossed effects, and
Xij1 and Xij2 denote vectors of predictor variables in plot
i and year j.
The resulting groups of plots from the cluster analysis

were included as fixed dummy variables within the
models. In addition, to test whether differences among

groups and years were statistically significant a repeated
measures ANOVA was performed. The differences were
examined using pairwise comparisons according to the
Tukey method using MIXED procedure available in SAS
9.4 (SAS Institute Inc. 2016).
Several site and climatic variables, as well as their

transformations were included as potential predictors in
the model. Models were fitted adding 2 year random ef-
fects in the intercept of each part of the hurdle model,
v1 and v2. These effects are distributed under a normal
distribution with mean zero σ2b; σ

2
s . The unstructured co-

variance structure was used to describe the variance-
covariance structure of the random effects (Littell et al.
2000). Plot random effect were not included in the
models because the variance of the plot random effects
were practically zero. All the models were fitted using
the NLMIXED procedure available in SAS version 9.4
(SAS Institute Inc. 2016).

Model selection and evaluation
The models were selected and evaluated according to
the following criteria: biological sense, goodness-of-fit
and predictive ability. The biological sense was evaluated
considering whether alternative models behaved logic-
ally, i.e., whether they represented biologically or eco-
logically consistent relationships between predictors and
the response variables according to current scientific
and expert knowledge. Only those models whose coeffi-
cients were statistically significant (p < 0.05) were further
considered in the analysis.
The goodness-of-fit of the models was analyzed ac-

cording to the mean bias, which reflects the deviation
of model predictions against observed values, and the
root mean square error (RMSE), which account for the
precision of the estimates. The relative values of these
statistics (BIAS%, RMSE%) were calculated by dividing
the mean bias and RMSE by the mean of the predicted
mushroom yield. The Akaike’s information criterion
(AIC) and likelihood ratio tests were also used to fur-
ther guide the selection of predictor variables to pre-
vent overfitting by accounting for the trade-offs
between model parsimony and goodness of fit. Fur-
thermore, uncertainty was assessed also using resam-
pling techniques, namely bootstrapping based on 2000
bootstrap samples with replacement, to ensure the
stabilization of the estimates, and by computing
prediction and confidence intervals accounting for the
residual variance, the uncertainty in the fixed coeffi-
cients, and the uncertainty in the variance parameters
of the year random effects. In addition, receiver oper-
ating characteristic (ROC) curves and the correspond-
ing area under the ROC curve (AUC) along with their
bootstrapped confidence intervals were computed for
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the logistic models for the probability of mushroom
occurrence.

Results
Exploratory analysis of data
The principal component analysis (PCA) applied for ex-
ploring the variability among plots with respect to mush-
room yield, climate and site variables showed that the
differences among groups of plots are related to higher
precipitation levels in summer (Fig. 1). The first two
principal components (PC1 and PC2) accounting for
70.78% of the data variance (PC1 46.83%, PC2 23.95%)
were assumed as the most principal components. The
sum of all remaining (5) PCs accounted for the 29.22%
of the data variance. As an expected result, PCA results
indicated that high water availability in late summer fa-
vored good mushrooms yields while temperature is a
less determining factor for mushrooms production in
the study area. Besides, the score plots (Fig. 1) suggests
some groups of plots which were verified by a cluster
analysis.
The Ward’s hierarchical clustering method was per-

formed for the mushroom yield, climate and site vari-
ables. The number of clusters was determined based on
the cubic clustering criterion (CCC) method. The value
obtained for five clusters was 4.53, which is higher than
2 indicating good clusters (Milligan and Cooper 1983).
The plots formed the following five different clusters ac-
cording to mushroom yield, climate and site characteris-
tics (Fig. 2):

1) CAT1: made up of the 9 plots of Pinus sylvestris in
Catalonia with the highest precipitations in summer
and located at higher altitude.

2) CAT2: made up of 5 plots of P. sylvestris in
Catalonia with higher precipitation levels in
summer but located at lower altitude that the
previous group.

3) CAT3: made up of all the plots of P. pinaster (28)
in Catalonia and 5 plots of P. sylvestris in Catalonia
with higher temperatures than the other plots of
the same species in that region.

4) CyL1: made up of all the plots of P. sylvestris (20) in
Castilla y Leon region (Palencia and Soria
provinces) and three plots of P. pinaster (3) located
in Palencia Province.

5) CyL2: made up of all the plots of P. pinaster (20) in
Castilla y Leon region (Soria and Valladolid
provinces).

When these five groups of plots were considered in
the modelling as a fixed dummy variables, likelihood ra-
tio tests indicated a significant improvement in the fit of
the mushroom yield models.

A summary of the weather variables in each group of
plots is shown in Additional file 1: Table S1. Additional
file 2: Figure S1 and Additional file 3: Figure S2 of show
mushroom yields by each group of plots considered and
years. The average annual yield of all ectomycorrhizal
mushrooms was 117.83 ± 4.53 kg·ha− 1·yr− 1. The highest
yields amounting 500 kg·ha− 1 were obtained in the plots
of the group called CAT2 in 2014. The mean yield of all
ectomycorrhizal mushrooms in 2006 was 330.76 ± 36.71
kg·ha− 1 and in 2014 was 271.93 ± 21.62 kg·ha− 1.
Regarding edible mushrooms, the highest yields, above

396.75 kg·ha− 1, were obtained also in plots belonging to
group CAT2 in 2014. Accordingly, this group of plots
also produced the highest yields of marketed mush-
rooms in that year. In edible and marketed mushrooms,
the average annual yield was 66.83 ± 2.87 and 36.18 ±
2.15 kg·ha− 1·yr− 1 respectively, while in 2014 the produc-
tion was 171.84 ± 16.21 and 78.98 ± 12.78 kg·ha− 1. In
1997 the production of edible mushrooms was 121.17 ±
21.44 kg·ha− 1 and of marketed mushroom was 78.28 ±
16.90 kg·ha− 1.

Models for the probability of mushrooms occurrence
The information about the selected models for predict-
ing the probability of occurrence of all ectomycorrhizal,
edible and marketed mushrooms is presented in Table 1.
The logistic regression analysis showed that the mean
temperature in November had a significant effect on the
probability of occurrence of all ectomycorrhizal mush-
room. The inclusion of this variable in the probability of
occurrence of all ectomycorrhizal model decreased the
random between-year variation. The probability of oc-
currence of mushrooms was different among the five
groups of plots considered.
The bootstrapped values of the area under the ROC

curves (Fig. 3) indicated an excellent performance of the
logistic models for the probability of all ectomycorrhizal
mushroom and edible mushroom, with AUC values ran-
ging between 89%–96%, and 83%–89%, respectively. For
the marketed mushroom, the performance of the logistic
model can be considered acceptable with AUC values
ranging between 76%–82%. Although we recognized that
these values may be overestimate due to having used the
same data for model fitting and for calculating the AUC
values (Copas and Corbett 2002), we think that the three
models can be considered good enough for detecting the
occurrence of the three types of fungi.

Models for mushrooms yield conditional on the
probability of mushrooms occurrence
The information about the selected models for predicting
all ectomycorrhizal, edible and marketed mushrooms yield
conditional on the probability of mushrooms occurrence is
presented in Tables 1 and 2. The yield of ectomycorrhizal,
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edible and marketed mushrooms was significantly different
among all the considered groups of plots. All ectomycorrhi-
zal and edible mushrooms yield conditional on the prob-
ability of mushroom occurrence were also influenced by
stand basal area, the rainfall from August to November,
and the mean temperature of November. The effect of basal

area on the amount of mushrooms production was the
same in the three groups of fungi considered, following a
right-skewed unimodal curve (Fig. 4). Increasing values of
the selected meteorological predictors increases ectomycor-
rhizal mushrooms yields, except for the rainfall in Novem-
ber indicating that high values of precipitation in this

Fig. 1 Scatterplots of the loadings (above) and the scores (below) obtained by PCA applied on plots. In parentheses are shown the percentage
of variability accounted by the two first components. “total” denotes all ectomycorrhizal mushrooms yield, “edible” denotes edible mushrooms
yield, “marketed” denotes marketed mushrooms yield, “altitude” denotes the plot altitude, “latitude” denotes the plot latitude, “longitud” is
denotes the plot longitude, “slope” denotes the main slope of the plot, “aspect” denotes the plot aspect, “slopeasp” is a synthetic variable created
by multiplying slope by aspect, “P_annual” is the annual accumulated precipitation, “P_ag” is the accumulated precipitation of August, “P_set” is
the accumulated precipitation of September, “P_oct” is the accumulated precipitation of October, “P_nov” is the accumulated precipitation of
November, “P_as” is the accumulated precipitation of August and September, “P_aso” is the accumulated precipitation of August, September and
October, “T_annual” is the annual mean temperature, “T_ag” is the mean temperature of August, “Tm_set” is the mean temperature of
September, “T_oct” is the mean temperature of October, “T_nov” is the mean temperature of November, 21 is Pinus sylvestris and 26 is Pinus
pinaster, Cat is Catalonia region, Pal is Palencia province, Sor is Soria province and Val is Valladolid province
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month might cause a decrease in the mushroom yields
when also the previous months had high values of precipi-
tation. Similar effects of these variables were also observed
for the production of edible mushrooms. Regarding the
marketed mushrooms yield, the yield of this type of fungi
was only influenced by the total rainfall of September, indi-
cating that higher precipitations in that period increases the
yield of marketed mushrooms.
The performance of the selected models for mush-

room yield conditional on the probability of mushroom
occurrence for each considered group of fungi is shown
in Fig. 5. The best performance was shown by the
model for marketed mushrooms, in which the expected
relationship between observed and predicted values al-
most overlapped the perfect equality line. A good per-
formance was shown as well by the model for edible
mushrooms whose predictions also practically over-
lapped the equality line through the range of observed
values. The performance of the model for all ectomy-
corrhizal mushrooms was also acceptable along the
range where most observations fall, although tended to
overestimate very low yield and underestimate max-
imum yields.

Hurdle models predictions
The estimated variance of year random effect in both
parts of the hurdle model was lower in the marketed
mushrooms models than in the other two groups of
mushrooms (Table 1), where the between-year variation

was very similar. In the three selected models that
between-year variation were higher in the first part of
the hurdle model that predict the probability of occur-
rence of mushrooms production. This is explained by
the fact that none meteorological variable was finally in-
cluded in that part of the model. Although the inclusion
of different precipitation- and temperature- related vari-
ables were tested, no one resulted statistical significant
or the parameter sign was not biologically meaningful.
Table 2 shows fitting statistics along with their boot-

strapped confidence intervals of the hurdle models for
predicting the yield of the three considered groups of
fungi. In terms of the deviation of the models with re-
spect to observed values (bias), the selected models for
each group of fungi were almost unbiased. While in
terms of the precision of the estimates (RMSE), the best
performance was shown by the model for all ectomycor-
rhizal mushrooms yield, followed by the edible mush-
rooms yield model.
For illustrating how the hurdle models behave related

to mushrooms yield predictions, in Table 2 the values of
the fitting statistics of the selected yield models not con-
ditional on the probability of mushroom occurrence are
shown between brackets. As expected, the greatest im-
provement achieved by the hurdle models appeared
when the percentage of observations with zero mush-
room production was higher, which was the case of the
marketed mushrooms group (31%). But even when the
percentage of zeros was rather low, such as for the

Fig. 2 Clustering of 90 plots based on mushrooms yield, weather and site variables. Different colors indicate the five different clusters identified
as follows: dark orangeCAT1, blue CAT2, green CAT3, light orange CyL1, and purple CyL2

Sánchez-González et al. Forest Ecosystems            (2019) 6:52 Page 7 of 13



edible mushrooms group (9%) and all ectomycorrhizal
mushrooms group (4%), the goodness-of-fit was better
or very similar for the hurdle models. Indeed, the hurdle
models tended to enhance model performance especially
in terms of mean bias reduction.

Discussion
Mushrooms production variability
Mushroom yields are characterized by a high temporal
(i.e., interannual) and spatial (i.e., between-location) vari-
ability (Alday et al. 2017a). The interannual variability is
mainly due to changes in the meteorological conditions
between years, while spatial variability can be mainly
due to differences in soil properties, forest management,
stand composition and structure, and site characteristics
(Martínez-Peña et al. 2012; Primicia et al. 2016; Taye
et al. 2016; Collado et al. 2018). The mushroom yield

models developed in this study account for both sources
of variability which will provide forest managers with
further knowledge about the patterns of mushroom pro-
duction in the north of the Iberian Peninsula.
The production of ectomycorrhizal mushrooms were

exceptional high in the plots of the group called CAT2
in year 2014. Alday et al. (2017a) also identified that
same year as exceptionally productive when studying
mushrooms production from 1997 to 2014 in different
forest stands in Spain.

Effect of weather on mushrooms occurrence and
productivity
Our results show a stronger influence of the weather
conditions on mushroom yields than on the appearance
of fungal fruit bodies (Table 1). Although previous stud-
ies have reported that precipitation and temperature are

Table 1 Parameters estimations (Est) for the hurdle models for the three groups of fungi. αi are the parameters of the part of the
hurdle model that predicts the probability of occurrence of mushroom production, βi are the parameters of the part of the hurdle
model that predicts yield conditional on the probability of mushroom occurrence, vi are variance of year random effect in each part
of the hurdle model, Cat1 is a dummy variable set to one for CAT1 group of plots and zero for the rest of the groups, Cat2 is a
dummy variable set to one for CAT2 group of plots and zero for the rest of the groups, Cat3 is a dummy variable set to one for
CAT3 group of plots and zero for the rest of the groups, CyL1 is a dummy variable set to one for CyL1 group of plots and zero for
the rest of the groups, CyL2 is a dummy variable set to one for CyL2 group of plots and zero for the rest of the groups, G is stand
basal area (m2·ha− 1), Pag is the accumulated precipitation of August, Pset is the accumulated precipitation of September, Poct is the
accumulated precipitation of October, Pnov is the accumulated precipitation of November, Tnov is the mean temperature of
November, the term “ln” refers to the natural logarithm. LowB and UpB are the lower and upper bounds of the bootstrapped 95%
confidence intervals

All ectomycorrhizal model Edible model Marketed model

Est p LowB UpB Est p LowB UpB Est p LowB UpB

Cat1 α0 −10.42 0.01 −30,58 −10,08 Cat1 α0 −5,84 0,00 −10,26 −4,28 Cat1 α0 −2,22 0,00 −3,01 −1,68

Cat2 α1 −5.95 0 −14,00 −4,29 Cat2 α1 −3,91 0,00 −11,25 −2,99 Cat2 α1 −1,94 0,00 −2,79 −1,33

Cat3 α2 −6.85 0 −21,37 −5,47 Cat3 α2 −2,47 0,00 −3,40 −2,01 Cat3 α2 −0,86 0,01 −1,27 − 0,54

CyL1 α3 −4.96 0 −9,25 −4,20 CyL1 α3 −2,94 0,00 −3,91 − 2,60 CyL1 α3 −0,92 0,00 −1,26 −0,68

CyL2 α4 −5.88 0 −11,68 −4,46 CyL2 α4 −2,90 0,00 −3,88 −2,55 CyL2 α4 −0,54 0,04 − 0,86 − 0,28

ln (Tnov) α9 0.99 0.04 0,34 2,44 year var(v1) 3,09 0,05 2,30 6,51 year var(v1) 1,37 0,01 1,15 2,40

year var(v1) 3.09 0.09 2,68 16,96

Cat1 β0 2.60 0 0,82 3,95 Cat1 β0 3,10 0,00 1,21 4,46 Cat1 β0 3,01 0,00 1,55 4,35

Cat2 β1 2.63 0 0,81 4,01 Cat2 β1 3,10 0,00 1,13 4,53 Cat2 β1 3,75 0,00 2,22 5,09

Cat3 β2 2.26 0.01 0,45 3,65 Cat3 β2 2,95 0,00 1,14 4,32 Cat3 β2 2,91 0,00 1,41 4,26

CyL1 β3 3.23 0 1,46 4,57 CyL1 β3 3,64 0,00 1,89 5,02 CyL1 β3 3,95 0,00 2,55 5,19

CyL2 β4 2.91 0 1,23 4,13 CyL2 β4 2,70 0,00 1,02 3,99 CyL2 β4 2,62 0,00 1,23 3,87

ln(G/10) β6 0.97 0.02 0,08 1,57 ln(G/10) β6 1,15 0,01 0,42 1,69 ln(G/10) β6 1,42 0,04 0,14 2,61
ffiffiffiffiffiffiffiffiffiffi
G=10

p
β7 −1.21 0.01 −1,88 −0,22

ffiffiffiffiffiffiffiffiffiffi
G=10

p
β7 −1,23 0,01 −1,85 −0,40

ffiffiffiffiffiffiffiffiffiffi
G=10

p
β7 −1,66 0,04 −2,96 −0,22

ln (Pag) β9 0.18 0 0,07 0,31 ln (Pag) β9 0,14 0,04 0,02 0,29 ln (Pset) β8 0,45 0,00 0,26 0,64

ln (Pset) β10 0.22 0 0,04 0,41 ln (Pset) β10 0,24 0,01 0,06 0,40 year var(v2) 0,36 0,02 0,26 0,65

ln (Poct) β11 0.43 0 0,29 0,61 ln (Poct) β11 0,23 0,01 0,08 0,42

ln (Pnov) β12 −0.25 0 −0,43 −0,07 ln (Pnov) β12 −0,27 0,00 −0,45 − 0,08

ln (Tnov) β13 0.36 0 0,19 0,53 ln (Tnov) β13 0,30 0,01 0,14 0,45

year var(v2) 0.60 0.01 0,49 0,94 year var(v2) 0,60 0,01 0,48 0,98
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important drivers for both mushroom occurrence and
yield (Martínez-Peña et al. 2012; Hernández-Rodríguez
et al. 2015; Mumcu Küçüker and Başkent 2015; Tahva-
nainen et al. 2016; Karavani et al. 2018), in our models
for predicting the probability of occurrence of all ecto-
mycorrhizal mushrooms only the mean temperature in
November appeared as a significant predictor and no
precipitation variable appeared as a significant predictor
in the probability of occurrence of any group of fungi
considered. This result can be explained by the introduc-
tion of dummy variables related to the group of plots
and the year random effects considered in model fitting.
Both of them contributed to explaining part of the
between-year variation arising from annual changes on
the meteorological conditions of each considered

regions, and this effect is more patent in occurrence
models than when predicting the yield.
As already reported by Karavani et al. (2018), total

and edible mushrooms were related to the same set
of climate predictors, which is an expected result be-
cause most of the annual ectomycorrhizal mushroom
yields can be considered as edible. The cumulated
precipitation in late summer and early autumn, from
August to October, was an important predictor of
total and edible mushroom productivity, while for
marketed mushrooms the precipitation of September
was the main meteorological predictor. These results
agree with previous studies (Tahvanainen et al. 2016;
Alday et al. 2017a) indicating that high water avail-
ability before or at the beginning of the fruiting

Fig. 3 The performance of the probability of occurrence models are depicted by the receiver operating characteristic (ROC) curves and the area
under the ROC curve (AUC). In parentheses are shown the AUC estimates bootstrapped 95% confidence intervals

Table 2 Estimates of the fitting statistics of the hurdle models for the three groups of fungi. The estimates of the fitting statistics of
the yield models not conditional on the probability of mushroom occurrence are shown between brackets. BIAS is the average
error, RMSE is the root mean square error, AIC denotes the Akaike’s information criterion, LowB and UpB are the lower and upper
bounds of the bootstrapped 95% confidence intervals

All ectomycorrhizal model Edible model Marketed model

Estimate LowB UpB Estimate LowB UpB Estimate LowB UpB

BIAS 0.63 −5.47 2.20 1.07 −1.37 2.10 1,53 0.20 2.38

(−2.79) (−8.80) (−0.87) (−2.80) (−5.50) (−1.56) (−9.31) (−11.62) (−7.53)

RMSE 111.97 101.61 123.87 83.01 73.71 92.98 64.68 55.21 72.84

(112.01) (101.63) (124.15) (82.92) (73.69) (92.20) (65.75) (56.10) (74.46)

BIAS (%) 0.01 −0.05 0.02 0.02 −0.02 0.03 0.04 0.01 0.06

(−0.02) (−0.08) (− 0.01) (− 0.04) (− 0.08) (−0.02) (−0.2) (− 0.28) (− 0.14)

RMSE (%) 0.94 0.92 0.94 1.21 1.17 1.22 1.79 1.72 1.79

(0.91) (0.90) (0.92) (1.15) (1.11) (1.16) (1.40) (1.34) (1.42)

AIC 9717.70 9341.20 9991.21 9781.01 9457.40 9986.35 7995.27 7646.20 8231.70
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season would favor good mushrooms yields. However,
to maintain high total and edible mushrooms yields
during the whole fruiting season it seems to be neces-
sary lower rainfall and higher temperature in Novem-
ber. The negative effect of precipitation on mushroom
yields in excessive wet conditions was already re-
ported by Boddy et al. (2014) and Karavani et al.
(2018). These last authors also found that cold tem-
peratures at the end of the season can also have a
negative influence on mushroom yields. In contrast,
marketed mushroom yields was not related to precipi-
tation from October to November or to temperature
in November. This result suggest an earlier phenology
of the marketed species (Karavani et al. 2018).

Effect of stand structure on mushrooms occurrence and
productivity
The composition of the mycorrhizal fungal community
is strongly influenced by forest stand structure, being
stand basal area one of the most used variables to de-
scribe the stocking of forests stands (Tomao et al. 2017).
In our models, stand basal area had a significant effect
on the yield of all the groups of fungi considered. The
optimal stand basal area at which mushroom production
was maximized was about 40 m2·ha− 1 for total and ed-
ible mushrooms and 30 m2·ha− 1 for marketed fungi,
which is in accordance with previous research. In Spain,
Martínez-Peña et al. (2012) reported that values around
40 m2·ha− 1 maximized the Boletus edulis yields in the P.

Fig. 4 Effect of basal area on mushroom yield. The values assigned to the predictors correspond the mean values of each groups of plots
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sylvestris forests of Central Spain; and de-Miguel et al.
(2014) reported values between 30 and 40m2·ha− 1 as the
optimum basal area for edible and marketed mushroom
production in pure P. pinaster stands growing in good
conditions. In Finland, Tahvanainen et al. (2016) found
that the most suitable basal area for Lactarius sp. and all
marketed mushrooms was 30 m2·ha− 1.
Basal area’s effect follows a right-skewed unimodal curve,

although the decreasing trend is not very pronounced (Fig.
4), indicating that high mushrooms yields can be found
from 20 to 30m2·ha− 1 over a wide range of basal areas. This
pattern seems to indicate that mushrooms yields may be
maximized when the forest stand is not too dense or too
sparse. The effect of thinning was found not significant in
the modeling process. This result can be explained by the
fact that thinning was applied only once in 31 out of the 90
plots included in the dataset, and also because the groups of
fungi considered included many species. A review of the lit-
erature shows different and sometimes contradictory results
about the effect of thinning on mycorrhizal ecosystems, be-
cause such forestry operation may modify fungal succession
patterns aboveground and provide favorable conditions for
certain species in detriment to others (Bonet et al. 2012;
Mumcu Küçüker and Başkent 2017b; Tomao et al. 2017), al-
though recent research did not find any thinning effect on
the fungal community belowground (Castaño et al. 2018).

Conclusions
The mushroom yield models developed in this study are
the first empirical models for predicting the annual yields
of ectomycorrhizal mushrooms in Pinus sylvestris and Pinus
pinaster stands in northern Spain. These models are of the
highest resolution developed to date and enable predictions
of mushrooms productivity by taking into account weather
conditions and forests’ location, composition and structure.
The modeling approach used, i.e., hurdle mixed models,
allowed a better insight into the processes driving fungi
emergence and abundance, and therefore into the eco-
logical system. In addition, these models can be very useful
for forest and land managers, since the integration of them
into forest management planning can facilitate the decision
making process in multifunctional forests because provide
further knowledge about the patterns of mushroom pro-
duction and associated ecosystem services in the north of
the Iberian Peninsula. Since the basal area has been demon-
strated as a significant factor influencing the mushroom
yields, this open the range of options for forest managers,
who are usually managing the forests only considering tim-
ber as an economic option. The consideration of both tim-
ber and mushrooms in the definition of the optimal
management schedule through optimization techniques
may increase the profitability of the northern Iberian Penin-
sula forests as demonstrated by Palahí et al. (2009).

Fig. 5 Performance of the selected models for mushroom yield conditional on the probability of mushroom occurrence (Eqs. (3) and (4)). The
solid line represents perfect fit (1:1 equality line) whereas the dashed line indicates the regression line between the measurements and the back-
transformed conditional predictions (including random year effects) of the selected model along with their confidence intervals
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