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Abstract

Background: There is a serious lack of experience regarding the productive potential of the natural forests in
northeastern China, which severely limits the development of sustainable forest management strategies for this
most important forest region in China. Accordingly, the objective of this study is to develop a first comprehensive
system for estimating the wood production for the five dominant forest types.

Methods: Based on a network of 384 field plots and using the state-space approach, we develop a system of dynamic
stand models, for each of the five main forest types. Four models were developed and evaluated, including a base
model and three extended models which include the effects of dominant height and climate variables. The four models
were fitted, and their predictive strengths were tested, using the “seemingly unrelated regression” (SUR) technique.

Results: All three of the extended models increased the accuracy of the predictions at varying degrees for the five major
natural forest types of northeastern China. The inclusion of dominant height and two climate factors (precipitation and
temperature) in the base model resulted in the best performance for all the forest types. On average, the root mean
square values were reduced by 13.0% when compared with the base model.

Conclusion: Both dominant height and climate factors were important variables in estimating forest production. This
study not only presents a new method for estimating forest production for a large region, but also explains regional
differences in the effect of site productivity and climate.
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Background
Northeastern China, accounting for 37% of the country’s
total forest land, is known for its high diversity of forest
types (Zheng et al. 2001). The forests of the region pro-
vide indispensable ecological functions and are import-
ant for regulating the climate of both the Northeastern
Plain and the North China Plain. However, there is a
serious lack of information regarding the growth and
production of the forests in the region, which has lim-
ited the application of sustainable forest management
practices. The development of scientific forest manage-
ment strategies is dependent on accurate descriptions of
the current state of the forested areas, and also on accur-
ate estimates of future development. Current informa-
tion on forest types and growing stock volumes can be
obtained from forest inventories taken at one point in

time. Estimates of future development are based on
growth and yield models (Gadow and Hui 1999;
Burkhart 2008; García et al. 2011; Da Cunha et al. 2016).
Due to improvements in statistical methods and

computer applications, the traditional yield tables have
gradually been replaced by dynamic growth models
(Buckman 1962; Clutter 1963; Mora et al. 2012;
Burkhart and Tomé 2012). Modeling the growth and
yield of uneven-aged forests has received much less at-
tention than that of even-aged forests (Peng 2000). An
early uneven-aged growth and yield model for mixed
northern hardwood forests was proposed Moser and
Hall (1969), which expressed the yield as a function of
time, initial volume, and basal area. Many studies re-
garding uneven-aged growth and yield have been con-
ducted since (Burkhart and Tomé 2012; Choi and An
2016). For instance, Murphy and Farrar (1982) used the
same method as Moser-Hall to develop models for the
basal area and volume projection of uneven-aged
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loblolly-shortleaf pine forest stands. Also, Sullivan and
Clutter (1972) developed compatible growth and yield
models which consisted of a system of equations in to
predict both volume and basal area (Clutter 1963).
In China, due to limited data, researchers were more

inclined to apply models which could be used to esti-
mate the growth of individual trees (Ren et al. 2008;
Zeng et al. 2017). The single-tree growth models were
based on the competition relationship between individ-
ual trees and their immediate neighbors (Palahí et al.
2008; Zhao 2011). However, the decisions to use tree-
level models or stand-level models were dependent on
specific objectives (Burkhart and Tomé 2012). The
single-tree growth models were only suitable for specific
environmental conditions, and the differences in envir-
onmental conditions affected the applicability of the
models. In addition, it was difficult to estimate the devel-
opment of an entire forest based on single tree models.
Stand growth and production models are required for
estimating the development of extensive forest areas.
The few existing stand growth models in China were
mainly developed for plantations. Unfortunately, these
models were often based on limited data sets which
tended to limit their applicability (Zang 2016). In
addition, the increasing global concerns regarding cli-
mate change and ecosystem functions have generated a
strong interest in natural forest management strategies
(Choi and An 2016). At the present time, there are no
unified natural forest stand growth models for the
uneven-aged forests of northeastern China. This situ-
ation has severely limited the development of sustainable
forest management strategies for the region.
Based on a new and extensive set of observations col-

lected in the forests of northeastern China, the objective

of this study is to 1) develop dynamic stand models for
five main forest types including site and climate vari-
ables, and to 2) evaluate the predictive strengths of these
models.

Methods
Study area
A network of 384 circular field plots was established in
the temperate natural forests of four northeastern prov-
inces (Inner Mongolia, Liaoning, Jilin, and Heilongjiang)
in China. Each sample plot covers an area of 0.1 ha. The
plots are located between 39°42′48“ to 53°19’21” north
and 119°48′12“ to 134°01’01” east. The sampled area in-
cludes eight mountains. The geographical distribution is
presented in Fig. 1. The average annual temperature
ranges from − 5.57 °C to 9.80 °C, with an average annual
precipitation of 363.83 to 1073.72 mm.

Data set
The data used in this study were collected during the
summer of 2017. In order to represent the natural for-
ests in each of the eight mountain areas, the plots were
distributed systematically. The distances between the in-
dividual plots ranged from 24 to 60 km, depending on
the area of the eight mountains. At each pre-determined
sample site, a circle with a radius of 17.85 m was estab-
lished. A hand-held GPS was used to record the longi-
tude, latitude, and altitude of each of the sites. Trees
with a breast height diameter (DBH, measured at 1.3 m
above ground level) of 5 cm or more were labeled with
numbers. For each sample tree, the species, DBH, height,
and location (which were determined by the north devi-
ation angle and distance) were recorded.

Fig. 1 Geographical distribution of the eight mountains in four provinces (a, on left); distribution of the sample plots within the study area (b, on
right): On the left, DXA, XXA, WDS, ZGC, LYL, CBS, HDL, and LGS represent the locations of Da Xing’an Mountain, Xiao Xing’an Mountain, Wanda
Mountain, Zhangguangcai Mountain, Laoye Mountain, Changbai Mountain, Hada Mountain, and Longgang Mountain, respectively; On the right,
the shape and color of the dots represent the different forest types
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In addition, an increment borer with an auger diam-
eter of 5.15 mm was utilized to extract an increment
core from the north side of each tree at a height of 1.3
m. The increment core of each tree had to pass through
the tree center, and its length was required to exceed 2
cm. In order to consider short-term abnormal fluctua-
tions in ring widths which may have been caused by cli-
matic extremes, a five-year mean was adopted, as
suggested by Gadow and Hui (1999). The two five-year
periods’ (2007 to 2012 and 2012 to 2017) radial incre-
ments of each tree were recorded to the nearest 0.01
mm. The two five-year periods’ diameter increments
(id1, id2) were used to reconstruct the 2012 and 2007 di-
ameters at breast height (DBH12, DBH07) by subtracting
id1 and id2. Thus, the bark thickness was supposed to be
constant during the last 10 years. Also, the breast height
ages of 15% of the tallest trees were assessed using incre-
ment cores.
The volume of each sample tree was calculated using

the available stem volume equations for different species
in the various regions (listed in Additional file 1). In the
current study, it was not possible to include the effects of
mortality and ingrowth in the estimate. Five stand vari-
ables were calculated for each plot as follows: (1) Domin-
ant height (Hdom, m) defined as the mean height of the
15% tallest trees; (2) age (A), defined as the average breast
height age of the dominant trees; (3) number of trees per
hectare (N); (4) stand basal area (G, m2∙ha− 1); and (5)
stand volume (V, m3∙ha− 1). In addition, the daily values of
the mean temperature and total precipitation were ob-
tained for the period ranging from 2007 to 2017 at a 0.5°
latitude-longitude spatial resolution from the KNMI Cli-
mate Explorer, which is a research tool used to assess the
climate conditions in different regions of the world
(https://climexp.knmi.nl). This study also used an Inverse
Distance Weighted (IDW) interpolation method in the
ArcGIS 10.4.1 software to assign the values to the plot lo-
cations. The growth season temperature and precipitation
values (GST and GSP) of each survey plot were thus ob-
tained. The frequency distributions of the seven variables
used for the model development are presented in Fig. 2.
In order to stratify the observations according to forest

type, the 384 plots were classified into five forest types
based on the volume proportions of the different tree
species in each plot (Table 1, Additional file 2). These
types are referred to in this study as follows (the sum-
mary statistics are listed in Additional file 3): Broad-
leaved mixed forest (192 plots); mixed broadleaf-conifer
forest (30 plots); Mongolian oak forest (92 plots); larch
forest (37 plots); and birch forest (33 plots). The domin-
ant broad-leaved species are Quercus mongolica, Betula
platyphylla, Tilia amurensis, Betula davurica, Ulmus ja-
ponica and Acer mono; the main coniferous species are
Pinus koraiensis, Abies nephrolepis and Larix gmelinii.

Stand growth model
Reference model
The Sullivan and Clutter (1972) model is a widely used
and arguably one of the most logical and effective sys-
tems for estimating forest production (see a recent de-
tailed description in Burkhart and Tomé 2012). The
system has been used in many studies, and found to give
good results (Borders 1989; Zhao 2011; Burkhart and
Tomé 2012):

lnV 1 ¼ a0 þ a1SIþ a2t
−1
1 þ a3 lnG1 ð1Þ

lnG2 ¼ t1
t2

� �
lnG1 þ b0 1−

t1
t2

� �
þ b1SI 1−

t1
t2

� �

ð2Þ

lnV 2 ¼ lnV 1 þ c0 t−12 −t−11
� �þ c1 lnG2− lnG1ð Þ

ð3Þ

where a, b, and c represent the estimated coefficients; SI
is the stand site index which characterizes the stand site
quality; t1 and t2 are the ages of the initial and predicted
periods, respectively; V1 and V2 denote the stand vol-
umes of the initial and predicted periods; G1 and G2 are
the basal areas of the initial and predicted periods.
Equation 1 is based on Schumacher’s equation describ-

ing a static forest, which utilizes the predictions of the
current stand volumes from the site index, along with
the ages and stand basal areas (Schumacher 1939;
Borders 1989; Burkhart and Tomé 2012). Equation 2 can
be used to estimate the future basal areas based on the
existing stand states. Actually, Eq. 1 can be used for esti-
mating both V1 and V2. This system was found to be
consistent with the logic of forest development:

(1) When t2→ t1, then lnG2→ lnG1

(2) When t2→ +∞, then lnG2→ b0 + b1SI, which
indicates that the future area of the stand will
gradually stabilize and conform to the growth trend
of the stand;

(3) Therefore, the model will be compliant with the
compatibility principle which was previously
described by Clutter (1963) and Clutter et al.
(1983).

Extended model
The model in the current study is based on an original
model proposed by Sullivan and Clutter (1972). We de-
leted Eq. 3 of the reference model. In addition, some
variables were deleted, others added. Four systems of
equations were finally selected for this study, as detailed
in Table 2. Each system contained two equations, and
the site index (SI) of the original model was deleted
resulting in the basic stand production model (M0).
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Site index, expressed by the average height of the
dominant trees at a specific reference age, has become
one of the most widely used variables used in forest
growth modeling (Clutter et al. 1983; Monserud and
Sterba 1996; Skovsgaard and Vanclay 2008; Guo et al.
2012). It appears that there is no general index to reflect
the site quality for uneven-aged forests. We decided to
select dominant height to reflect the site condition of
these natural forests (see Gül et al. 2005; Pinto et al.

2008). Therefore, dominant height was included in the
first extended model referred to as M1 (Table 2).
Climate variables, such as temperature and precipita-

tion, are known to directly affect the productive poten-
tial of forest ecosystems. In addition, climate variables
have indirect impacts on forest productivity via species
composition and nutrient cycling (Rustad et al. 2012;
Ratcliffe et al. 2016; Morin et al. 2018). In the current
study, model M2 includes two climate variables added to

Table 1 Classification standard used in China for different forest types

Forest type Classification based on volume proportion

Pure forest Single tree species ≥65% of total volume

Coniferous mixed forest Coniferous species ≥65% of total volume

Broad-leaved mixed forest Broad-leaved species ≥65% of total volume

Mixed broadleaf-conifer forest Broad-leaved or conifer species account for 25%–65%

Fig. 2 Frequency distributions of the main variables of the two five-year periods with fitted trend lines: N indicates the number of trees per
hectare; Age and Hdom are the average age and height of dominant trees, respectively; V1 and V2 denote the stand volumes of the initial and
final phases of the two five-year periods, respectively; G1 and G2 are the basal areas of the initial and final phases of the two five-year periods,
respectively; and GST and GSP are the mean growth season temperatures and precipitation of the two five-year periods, respectively
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the base model (M0). Finally, a third extended model
(M3) uses both dominant height and climate factors. In
this study, the average height of the dominant trees
(Hdom) was used while climate was expressed by the
average regional temperatures during the growing season
(GST, oC) and the growing season precipitation (GSP,
mm).

Parameter estimation and model comparison
The parameter estimates and fit statistics of the four
model systems were evaluated to determine if they were
significantly different from zero using an asymptotic t-
test (Álvarez-González et al. 2010; Temesgen et al.
2014). The results of the estimates are based on the nu-
merical and graphical analyses of the residuals. During
the analysis, three statistical criteria were examined
(Table 3): 1) bias (E ), which evaluates systematic devia-
tions of the model from the observations; 2) root mean
square error (RMSE), which measures the precision of
the estimates and any bias in the equation; and 3) model
efficiency (MEF), which indicates the proportion of the
total variance explained by the model, adjusted for the
number of model parameters and observations.
During model evaluation, we first assess whether there

is a significant difference in the deviation of the different
models. Subsequently, the model with the largest MEF
and lowest RMSE was prioritized based on the smallest
difference. Following that, three indices of the different
models were evaluated for each forest type. After analyz-
ing the results, the optimum model was selected for each

type of forest. For all 384 plots, broad-leaved mixed for-
est (192 plots) and Mongolian oak forest (92 plots), 70%
of the samples were used for model development and
comparison. Independent samples from the remaining
plots were then used for evaluating the optimal model.
Due to the restricted number of samples, all plots of the
other three forest types (mixed broadleaf-conifer forest
(30 plots); larch forest (33 plots); and birch forest (37
plots)) were used to develop the models, and evaluated
using bias, RMSE, and MEF. After evaluating the “three-
stage least squares” (3SLS) technique (Zellner and Theil
1992), we fitted all four models with the “seemingly un-
related regression” (SUR) technique (Zellner 1962). The
“systemfit” package within the R programming environ-
ment (R version 3.5.1) was used to implement the
method.

Results
Stand growth
The data set covers a wide array of stand densities, with
the number of trees∙ha− 1 ranging from 150 to 2100;
stand volumes ranging from 6.77 to 310.4 m3∙ha− 1; and
basal areas from 1.60 to 37.69 m2∙ha− 1 (Fig. 2). As can
be seen in Fig. 3, the plots are sorted by the total volume
and basal area which had accumulated in the final phase
of the two five-year periods. In the figure, the differences
in stand volume increments (VI) and basal area incre-
ments (BAI) of each plot are shown by the orange area.
VI varied from 3.0 to 50.0 m3∙ha− 1 and BAI from 0.6 to
6.5 m2∙ha− 1 across the sites. In addition, the VI and BAI
were determined to be related to the initial stand dens-
ity. When the initial stand density was very low, the
stand productivity had been significantly affected, which
will be discussed in detail in the section “Implications
for sustainable forest management”.

Model evaluation and comparison
The state-space approach used in this study implies that
the future state of the system can be predicted if the
current state of the driving variables is known (Tewari

Table 2 The four systems of equations developed and examined in this study

Model Form

[M0] Base Model lnV1 = a0 + a1t1
−1 + a2 ln G1

lnG2 ¼ ðt1t2Þ lnG1 þ b0ð1− t1
t2
Þ

[M1] Base Model with Hdom lnV1 = a0 + a1Hdom + a2t1
−1 + a3 ln G1

lnG2 ¼ ðt1t2Þ lnG1 þ b0ð1− t1
t2
Þ þ b1Hdomð1− t1

t2
Þ

[M2] Base Model with Climate lnV1 = a0 + a1t1
−1 + a2 ln G1

lnG2 ¼ ðt1t2Þ lnG1 þ b0ð1− t1
t2
Þ þ ðb1GST þ b2GSPÞð1− t1

t2
Þ

[M3] Base Model with Hdom and Climate lnV1 = a0 + a1Hdom + a2t1
−1 + a3 ln G1

lnG2 ¼ ðt1t2Þ lnG1 þ b0ð1− t1
t2
Þ þ ðb1Hdom þ b2GST þ b3GSPÞð1− t1

t2
Þ

a, b, and c are the estimated coefficients; Hdom indicates the dominant height, t1 and t2 are the age of the initial and predicted periods, respectively; V1 and V2
indicate the stand volume of the initial and predicted periods, respectively; G1 and G2 are the basal area of the initial and predicted periods, respectively. GST and
GSP are the growth season temperatures and precipitation

Table 3 Criteria used to evaluate the performance of the
models

E RMSE MEFPn

i¼1
ðyi−ŷiÞ
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðyi−ŷ iÞ

2

n−p

r
1−

ðn−1Þ
Pn

i¼1
ðyi−ŷiÞ

2

ðn−pÞ
Pn

i¼1
ðyi−yiÞ

2

yi, ŷi , and yi are the observed, predicted, and average values of the dependent
variable, respectively; n is the number of samples used in fitting the function;
and p indicates the number of model parameters
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and Gadow 2005; Álvarez-GonzÁlez et al. 2010; Tewari
et al. 2014). In the current study, the applied base model
and the extended models had provided adequate perfor-
mances across the six forest types. The biases of the
equations were found to be small, and there were no sig-
nificant differences in deviation among the four models.
However, the M3 model performed slightly better, as
shown in Table 4. Based on the RMSE results, noticeable
differences were observed among the predictive abilities
of the models for the different forest types. Also, the
RMSE values of the three extended models were signifi-
cantly reduced, as detailed in Table 5. The third ex-
tended model (M3), which includes both Hdom and
climate factors, had the lowest RMSE for almost all of
the forest types, with an average reduction of 13.0%
compared to the base model. The model evaluation re-
sults of the MEF were found to be consistent with those
based on RMSE. In other words, the three extended sys-
tems show adequate performances for all the forest
types. M3 has the lowest RMSE and the highest model
efficiency for the majority of the forest types, as shown
in Tables 5 and 6. For the different forest types, the
model efficiencies of the two equations had reached av-
erages of 0.968 and 0.961, respectively. Regarding the
different forest types, the RMSE evaluation results show

that the prediction accuracy of the model which are
based on the different forest types was higher. For ex-
ample, for the M3 model, the RMSE decreased by 17.1%
for all forest types, by 20.7% for the mixed broadleaf-
conifer forest, and by 13.9% for the Mongolian oak
forests.

Parameter estimates and model validation
All of the selected models were convergent and had pro-
vided sufficient performances in the different forest
types. Most of the estimated parameters of the two
equations were significantly different from zero (Table 7).
All of the three extended models had improved the pre-
dictive abilities of the base model. Therefore, by includ-
ing either dominant height or climate factors in the base
model, the model MEF had increased and the RMSE
values had decreased. When the two equations were
considered, the inclusion of dominant height (M1) pro-
vides superior predictive abilities when compared with
the model which had included only the climate factors
(M2). The M3 model has the lowest RMSE and the high-
est MEF for all of the forest types and provides the high-
est accuracy, as well as the best efficiency. Therefore, the
combination of dominant height and climatic factors
had produced superior results more often than when

Fig. 3 Stand volume (V; a, on left) and basal area (G; b, on right) of each survey plot at the end of the two five-year periods. The grey area represents the
amount of accumulation during the initial phase (V1 or G1), and the orange area represents the increase during the two five-year periods (ΔV or ΔG)

Table 4 Bias estimates of the four models for the different forest types

Bias N Trees Base model Base model + Hdom Base model + climate Base model + Hdom & climate

Eq. 1 Eq. 2 Eq. 1 Eq. 2 Eq. 1 Eq. 2 Eq. 1 Eq. 2

All 384 30,135 −0.333 0.983 0.090 0.583 0.550 0.910 −0.043 0.556

Broad-leaved mixed forest 192 15,284 −0.441 0.717 −0.264 0.479 0.263 0.678 −0.214 0.464

Mixed broadleaf-conifer forest 30 2748 −1.218 0.932 −0.668 0.601 2.764 0.652 0.735 0.566

Mongolian oak forest 92 7097 −0.097 1.104 0.004 0.433 −0.845 0.880 −0.242 0.404

Larch forest 37 2314 −0.280 0.418 −0.245 0.314 −0.077 0.428 −0.183 0.280

Birch forest 33 2692 −0.217 0.446 −0.171 0.446 0.188 0.430 −0.114 0.431

Bold numbers indicate the lowest bias value of each equation across all of the models for a given forest type
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each factor had been added individually. In the current
study, based on the aforementioned results, the predic-
tion and simulation abilities of the M3 model showed
the best performance results when compared with the
three other models. Therefore, M3 was selected as the
common model for the entire study region.
The experimental testing of the model with new and

independent data provided an overall check of the entire
model construction process. During the testing of the se-
lected model, all survey plots, broad-leaved mixed forest
and Mongolian oak forest were validated with independ-
ent data. The predicted stand volume and basal area re-
sults versus the observed stand volume and basal area
results for the remaining 30% of the samples are dis-
played in Fig. 4. Additional file 3 shows the sensitivity
analysis of the selected model. The use of the selected
models and the coefficients listed in Table 7 had in-
creased the precision of the estimates for the different
forest types of northeastern China.

Discussion
Factors affecting growth model performance
Understanding the dynamics of forest development is im-
portant for calculating sustainable forest use and for
evaluating alternative forest management strategies. Our
study is a first attempt to estimate such dynamics for a
large, diverse and important natural forest region where
forest production models are not yet available. Compared
with even-aged forest growth models, which have been ex-
tensively studied, natural forest stand growth models are

more challenging (Burkhart and Tomé 2012). Previous
studies have shown certain relationships between site con-
ditions and dominant height of uneven-aged forests
(Huang and Titus 1993). Dominant height alone does not
fully express all of the required environmental information
(Carmean 1975; Pokharel and Dech 2011; Weiskittel et al.
2011), but it is a useful first alternative. The inclusion of
dominant height in the base model was found to increase
the model MEF and reduce the average RMSE value by
8.9%, as detailed in Tables 5 and 6. These findings are
consistent with the results of numerous previous studies
(Gadow and Hui 1999; Weiskittel et al. 2011; Chave et al.
2014; Mensah et al. 2017).
Considering the extensive and widely distributed for-

ests of northeastern China, with varying temperature
and precipitation levels, each geographical location will
affect forest productivity and ecosystem functions. Fur-
ther studies are needed extend the applicability of this
first model, especially since evidence regarding climate
change impacts on forest productivity has been expand-
ing continuously in the recent past, and some of the
changes in growth have already been observed (Sánchez-
Salguero et al. 2012; Ruiz-Benito et al. 2014; Spathelf
et al. 2014). In order to investigate whether climate fac-
tors can replace dominant height, climate variables alone
were added to the base model (M0) in the form of M2.
However, it was found that there was no significant im-
provement when compared to M0. It was found that for
the majority of the forest types, the results of the M2

model were even less efficient than those of M1 (Tables 5

Table 5 RMSE values for the four models of the different forest types

Bias N Trees Base Model Base Model + Hdom Base Model + Climate Base Model + Hdom & Climate

Eq. 1 Eq. 2 Eq. 1 Eq. 2 Eq. 1 Eq. 2 Eq. 1 Eq. 2

All 384 30,135 12.761 1.651 10.572 1.426 12.837 1.572 10.556 1.373

Broad-leaved mixed forest 192 15,284 10.652 1.382 9.950 1.198 10.598 1.351 9.941 1.191

Mixed broadleaf-conifer forest 30 2748 17.639 1.511 17.424 1.451 16.956 1.498 11.572 1.406

Mongolian oak forest 92 7097 7.626 1.763 7.617 1.296 7.790 1.702 7.657 1.265

Larch forest 37 2314 5.524 0.884 5.319 0.898 5.427 0.862 5.287 0.850

Birch forest 33 2692 4.928 1.043 3.688 1.065 4.996 1.042 3.669 1.061

Bold numbers indicate the lowest RMSE value of each equation across all the models for a given forest type

Table 6 MEF values for the four models of the different forest types

MEF N Trees Base model Base model + Hdom Base model + climate Base model + Hdom & climate

Eq. 1 Eq. 2 Eq. 1 Eq. 2 Eq. 1 Eq. 2 Eq. 1 Eq. 2

All 384 30,135 0.938 0.938 0.957 0.954 0.937 0.944 0.957 0.957

Broad-leaved mixed forest 192 15,284 0.945 0.948 0.952 0.961 0.945 0.950 0.952 0.961

Mixed broadleaf-conifer forest 30 2748 0.961 0.959 0.968 0.962 0.929 0.959 0.967 0.964

Mongolian oak forest 92 7097 0.966 0.914 0.966 0.953 0.964 0.919 0.966 0.956

Larch forest 37 2314 0.989 0.980 0.989 0.979 0.989 0.981 0.990 0.981

Birch forest 33 2692 0.963 0.948 0.979 0.945 0.962 0.948 0.979 0.946

Bold numbers indicate the highest MEF value of each equation across all of the models for a given forest type
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and 6). The evaluation indicates that none of the domin-
ant height and climate factors were individually suffi-
cient to fully express the contributions of environmental
factors to forest production.
Lei et al. (2016) have shown that a traditional growth

and yield model has the potential to be modified to
function as a climate sensitive model by including cli-
mate factors. As expected, the third extended model
(M3), which includes both dominant height and climate
factors, produced results that are superior to those of a
traditional growth model (see similar results by Rustad
et al. 2012; Ratcliffe et al. 2016; Morin et al. 2018). Ac-
cording to the results, the productivity of stands in-
creased with increasing temperature and precipitation
for all forests combined (Table 7). This is logical because
adequate precipitation provides sufficient moisture for
tree growth. In addition, summers with higher tempera-
tures can increase cambium activity and contribute to

the accumulation of photosynthates, which is vital for
latewood cell-wall thickening (Rossi et al. 2006). But dif-
ferent results were found in the different forest types.
The Birch forest type has the same trend as all forests
combined. For the Broad-leaved mixed forest, Mongo-
lian oak forest and Birch forest, temperature had a nega-
tive effect on forest productivity. Studies on the
temperature response of photosynthetic carbon uptake
indicate the existence of an optimum temperature for
photosynthesis. Photosynthesis increases with increasing
temperature until it reaches an optimum, beyond which
rates decrease. The decrease is related to stomatal clos-
ure and increased rates of respiration (Lin et al. 2012;
Slot and Winter 2017). In addition, the relationship be-
tween photosynthesis and temperature may be affected
by precipitation. Excessive rainfall is usually coupled
with increased cloudiness and reduced solar radiation at
the forest canopy below photosynthetic light saturation

Table 7 Estimated parameters for the selected growth model (M3) for each forest type

Forest type All Broad-leaved mixed forest Mixed broadleaf-conifer forest Mongolian oak forest Larch forest Birch forest

N 384 192 30 92 37 33

Trees 30,135 15,284 2748 7097 2314 2692

Eq. 1

a0 1.3957*** 1.4079*** 1.7628*** 1.3226*** 1.9215*** 1.5099***

a1 0.0151*** 0.0120*** 0.0100** −0.0038ns 0.0019* 0.0170***

a2 −2.0886*** −2.2830*** −4.1406*** −0.7157* −1.247** − 1.7083*

a3 1.1049*** 1.1180*** 1.0500*** 1.2122*** 1.0747*** 1.0173***

Eq. 2

b0 1.1418*** 3.0958*** 6.1632*** 0.5858ns −0.9892ns 3.8268*

b1 0.0837*** 0.0820*** 0.0741*** 0.1261*** 0.0410*** −0.0250ns

b2 0.0168ns −0.0377* −0.1250** − 0.0010ns 0.0960* − 0.0356ns

b3 0.0018*** 0.0001ns −0.0022** 0.0025*** 0.0069** 0.0022ns

*indicates a significance at the p < 0.05 level; ** indicates a significance at the p < 0.01 level; *** indicates a significance at the p < 0.001 level; and ns indicates no
significance was observed

Fig. 4 Predicted versus observed stand volume (a, on left) and basal area (b, on right) for the three forest types. The colors represent the different forest
types; G2 is the basal areas of the initial phases of the two five-year periods; and V1 is the stand volumes of the initial phases of the two five-year periods
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(Slot and Winter 2017). For the mixed broadleaf-conifer
forest, stand productivity is negatively correlated with
temperature and precipitation. We have no straight for-
ward explanation for this result, either because of the
complexity of the species composition or due to the
limitation of the number of samples. Higher photosyn-
thesis and productivity require balanced hydrothermal
conditions, which may have different effects of climate
variables in the different forest types. This study shows
that our selected model has better predictive perform-
ance in uneven-aged natural forests than the traditional
growth modeling approaches which did not include cli-
matic factors. In future research, the current network of
temporary plots will be gradually replaced by a perman-
ent observational network, which will improve essential
estimates of forest dynamics, including ingrowth, mor-
tality and response to disturbances.

Implications for sustainable forest management
The practical problem of sustainable forest management
in China’s northeastern region is that not enough infor-
mation is currently available regarding the changes in vol-
ume and basal area growth over time in the different
forest types of the region. This has been found to severely
limit the successful development of sustainable forest
management strategies. In our study, the third extended
model including both dominant height and climate factors
showed superior performance. Future forest management
strategies should be flexibly formulated according to the
climate differences in a region in order to sustain forest
ecosystems more effectively (Lindner et al. 2014).
In addition, it appears that there is no general answer

to the question whether the density-production relation
is asymptotic or whether there is a stand density that re-
sults in maximum production (Pretzsch 2005). Is it pos-
sible to increase volume production of a very dense
forest by thinning or is production at a maximum under
self-thinning conditions? Our observations, presented in
Additional file 4 for six forest types, do not provide a
straightforward answer. The only conclusion that can be
made is that, at low basal areas, there is a steep rise in
production with increasing density.
Our observations do not show a clear evidence of

transgressive growth caused by thinning, such as
found by Pretzsch (2005). One could speculate that
there may be a distinct unimodal frontier, with max-
imum production at about 25 m2∙ha− 1, but our data
do not allow a clear and consistent interpretation,
which is to be expected in forests with a variety of
species mixtures and site conditions. This result is
consistent with the finding in an afromontane forest
(Gadow et al. 2016). The general assumption is that
forest production is not asymptotic and will eventu-
ally decrease as density reaches very high levels

(Vanclay and Henry 1988; Corral Rivas et al. 2016).
However, we cannot confirm or reject this assump-
tion because there is a lack of very high densities in
our datasets. Pretzsch (2005) found that the growth
of Picea abies reacts most positively to thinning
under poor site conditions while increment is reduced
on favorable sites. Recent research shows that the
density effect on growth depends on the specific spe-
cies mixtures and site variables (Oliver and Larson
1996; Corral Rivas et al. 2016). The ability to quantify
such effects remains to be an important topic for fu-
ture studies.

Conclusions
Based on a large set of 0.1 ha forest plots, this study
presents a new scientific basis for estimating the pro-
ductive potential of the natural or near-natural forest
resources of northeastern China. Model performance
was improved by including regional climate variables.
The new system of equations, extensively tested using
independent data sets, may be used to estimate pro-
duction of six different forest types under different
climate scenarios. In addition, the relatively simple
form and convenient use of the new forest model
makes it suitable as a first scientific basis for decision
support. This will enable forest managers to calculate
sustainable use and develop improved management
strategies for different local conditions. The results,
although preliminary, can already contribute to im-
proving resource planning and management in this
important forest region of China.
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