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Abstract

Background: Prescribed burning is a common practice of site preparation before afforestation in subtropical
forests. However, the effects of prescribed burning on carbon (C) dynamics of an ecosystem are poorly understood.
Therefore, a Eucalyptus urophylla plantation (EU) and a naturally recovered shrubland (NS), each treated with
prescribed burning and no burning were examined in subtropical China.

Methods: Biomass of trees and shrubs in the 1st, 3nd, 4th, and 6th year after treatments were estimated by
quadrat survey and allometric equations. Biomass of herbs and forest floors were estimated by harvest method.
Plant biomass C storage was calculated by plant biomass multiplying by its C concentration. Soil organic C (SOC)
storage in the 6th year after treatments was estimated by SOC concentration multiplying by soil bulk density and
soil volumes.

Results: Tree biomass C storage was significantly higher in the burned EU (BEU) than in the unburned EU (UEU) in
the 1st year after treatments, yet the difference decreased over time. Conversely, tree biomass C storage was lower
in the burned NS (BNS) than in the unburned NS (UNS), although the difference was not significant. However, in
the 6th year after treatments, the total plant biomass C storage was 14.56% higher in the BEU than that in the UEU,
and 59.93% higher in the BNS than that in the UNS, respectively, although the significant difference was only found
between UNS and BNS. In addition, neither SOC storage at 0–20 cm nor ecosystem C storage in either the EU or NS
was significantly affected by prescribed burning.

Conclusions: Prescribed burning has little impact on overall C storage of forest ecosystems, we consider that
prescribed burning may be an option for forest site preparation regarding plant biomass C accumulation.
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Background
Prescribed burning is used widely as a forest management
technique to prepare sites for seeding or planting, reduce
fuel loads and control plant disease (Muqaddas et al.
2016). Meanwhile, prescribed burning in forest manage-
ment can reduce resource competition between target
trees and shrubs, improve above and below-ground eco-
system structures and functions, and help maintain the
biodiversity and ecological balance of forest ecosystems
(Glitzenstein et al. 2012). In addition, prescribed burning
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influences soil physical, chemical and biological properties
(Certini 2005; Alcañiz et al. 2018), such as soil structure,
soil texture, soil organic matter content and soil microbial
activity (Granged et al. 2011; Williams et al. 2012; Hu
et al. 2016). Thus, prescribed burning could affect carbon
(C) accumulation in forest ecosystem. However, the effect
of prescribed burning on C dynamics was inconsistent.
For instance, surface fires significantly reduced C seques-
tration by forests in a short term study, especially causing
forest floor C and nitrogen (N) losses (North and Hurteau
2011). Meanwhile, surface soil C and N were decreased in
burned plots (Alcañiz et al. 2016; Pellegrini et al. 2018).
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Conversely, Rau et al. (2009) found that prescribed burning
caused only immediate increases in surface soil C and N
concentration, but over longer periods of time no statisti-
cally detectable change occurred. Furthermore, prescribed
burning could affect plant biomass C accumulation through
altering soil nutrient availability (Scharenbroch et al. 2012).
Therefore, understanding the role of prescribed burning in
forest C dynamics is very important for C cycling (Fahey
et al. 2010; Landry et al. 2015). Previous studies have com-
pared plant biomass, SOC concentration and pyrogenic C
concentration pre- and post-fire (Pellegrini et al. 2015; Fultz
et al. 2016; Krishnaraj et al. 2016), but total C storage in the
forest ecosystem has been less considered. In addition, the
effects of prescribed burning on forest C stocks in different
vegetation types remain unclear.
Plantation forest plays a crucial role in alleviating

CO2-concentration increases (Marín-Spiotta and Sharma
2013). China has plantations of approximately 69 million
hectares, which is approximately one third of the world’s
plantation area (State Forestry Bureau 2014). Furthermore,
more than 60% of the plantation area in China is distrib-
uted in the subtropics (Wang et al. 2010). Eucalyptus, a
fast-growing species, is widely planted in southern China
and many other countries throughout the world because
of its wide adaptability, high productivity, and rapid eco-
nomic returns (Fischer et al. 2017). Eucalyptus plantations
cover 4.50 million hectares in China and represent ap-
proximately 34% of the total plantation area in southern
China (China Forestry Database n.d.; China Science Daily
2015). The rotation period of Eucalyptus plantations
is approximately 4 to 8 years (Quality and Technol-
ogy Supervision of Hainan Province, China 2004).
Prescribed burning regularly occurs in site prepar-
ation for plantation forests or during rotation in
subtropical China. Therefore, evaluating the effects
of prescribed burning on the C dynamics of planta-
tion ecosystems is urgently necessary to understand
how C cycling responds to it. Additionally, the vege-
tation types or restoration treatments could cause
different responses to prescribed burning (Shorohova
et al. 2008; Wang et al. 2013), so a Eucalyptus plan-
tation and a naturally recovered shrubland with no
planted tree were tested in the present study.
We addressed the following two questions: (1)

How does prescribed burning affect plant biomass C
storage and SOC storage? (2) Do the vegetation
types cause the different responses of C accumula-
tion to prescribed burning? Inventory data from the
Heshan National Field Research Station of Forest
Ecosystem was used to estimate plant biomass C
storage and SOC storage on a Eucalyptus plantation
and a naturally recovered shrubland with burning
and no burning treatments at the early developmen-
tal stages of vegetation.
Methods
Site description
The experiment was conducted at the Gonghe Experi-
mental Site, Heshan National Hilly Land Interdisciplinary
Experimental Station (112°50′ E, 22°34′ N), Chinese
Academy of Sciences (CAS). This site is located in Heshan
City, Guangdong Province, China. The Gonghe Experi-
mental Site was established in 2005 on hilly land with
similar site characteristics, which included 14 forest types
(e.g., monoculture, mixed, exotic, or native plantations) or
management techniques (burning or clear-cutting) (Chen
et al. 2015). This region belongs to typical subtropical
monsoon climate. The mean annual temperature was
21.7 °C and the precipitation was around 1700mm∙yr.− 1.
The average elevation is 10–80m, and the soil is an acid
Acrisol with a pH of approximately 4.0.
Prescribed burning was carried out to prepare sites for

planting seedlings in March 2005 (Sun et al. 2011, dry
weight of the aboveground biomass was less than 15.0
Mg∙ha− 1). The daily air temperature was approximately
16.5 °C, and the precipitation was 109.6mm in March
2005. The previous vegetation type was shrubland, and
after logging all trees (Pinus elliotti), all vegetation in the
experimental site was slashed. Logging residues were left
in the unburned plots, but were burned in the burned
plots. E. urophylla seedlings were planted at a spacing of
2m × 3m in the plots of Eucalyptus plantations in May
2005. In the plots of naturally recovered shrubland, no
seedlings were planted, where the plant communities were
recovered naturally after treatments. Two paired vegeta-
tion sites (a naturally recovered shrubland vs. a E. uro-
phylla plantation) were selected for this study. Thus, this
study included the following four treatments: burned and
unburned naturally recovered shrubland (BNS, UNS), and
burned and unburned E. urophylla plantation (BEU,
UEU). Each treatment plot has three replicates, each with
an area of 1 ha. Additionally, all plots were arranged in a
completely randomized design. The burned plots are more
than 100m away from the unburned plots. Understory
vegetation in this studied site was highly dominated by the
Dicranopteris dichotoma (Sun et al. 2011). The SOC con-
centration was 9.45 ± 0.21mg∙g− 1, the soil nitrogen con-
centration was 0.67 ± 0.02mg∙g− 1, and the soil pH was
4.05 ± 0.02 at 0–20 cm soil layer before burning treatment
in all plots. The soil bulk density at the top 0–10 cm soil
layer was not affected by prescribed burning in these stud-
ied plots (Wang et al. 2013).

Plant biomass survey
In July 2005, a permanent quadrat plot of 900 m2 (30
m × 30m) was established in each of three replicates for
the E. urophylla plantation (EU) and the naturally recov-
ered shrubland (NS). Vegetation inventories were carried
out in the 1st, 3rd, 4th and 6th year, respectively. The
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height (H) and diameter (D) at breast height for trees,
and H and basal diameter for shrubs (D) were measured
for each inventory. Allometric eqs. (Y = a × (D2 ×H)b,
where a and b are statistic parameters; H and D are the
height and diameter at breast height for trees, and height
and basal diameter for shrubs) based on the H and D
were applied to calculate biomass of trees and shrubs in
each treatment (Chen et al. 2015).
Biomass of herbs and forest floor mass (dead plant mate-

rials on soil surface) were estimated by harvest method only
in the 6th year for multiple reasons. To avoid destroying
the permanent quadrat plots, three 1m× 1m subplots
around only the quadrat were selected randomly and all
above- and below-ground biomass of herbs, and forest
floors in the subplots were harvested as separate samples.
All samples were taken back to the laboratory and then
were dried in an air-oven at 65 °C to obtain constant
weights for the estimation of biomass. C concentrations of
herb and forest floor samples were analyzed by the trad-
itional potassium dichromate oxidation method (Lu 1999).
Tree and shrub biomass C storage per unit area were

calculated as follows: tree/shrub biomass per unit area ×
0.5 (assuming a constant C concentration of 50%). Herb
biomass C storage and forest floor mass C storage per unit
area were calculated as following: herb biomass/forest
floor mass per unit area × measured C concentration.

Soil sample collection and analysis
Surface soil samples were collected in the 6th year after
treatments. The soils were sampled with a corer (3.0 cm in
diameter) at 0–10 cm and at 10–20 cm depths from nine
randomly selected microsites in each quadrat. Three cores
at the same depth from the same slope positions were
combined to yield one pooled sample, and three pooled
samples were collected for each quadrat plot. Visible plant
residues and roots were removed by hand. Then, the soil
samples were sieved by a 2-mm mesh screen for soil phys-
icochemical property analysis. SOC concentration was de-
termined by the traditional potassium dichromate
oxidation method (Lu 1999). SOC storage at a specific
depth in a given area was calculated as

SOCS ¼ SOC� TH� BD� 1� PFð Þ=10

where SOCS is soil organic C storage (Mg∙ha− 1); SOC
is the soil organic C concentration (g∙kg− 1); TH is
the thickness of the soil horizon (cm); BD is the bulk
density (g∙cm− 3); and PF is the mass percentage of
fragments, sand and stone (> 2 mm). Soil bulk density
for soil samples from both the 0–10 and 10–20 cm
layers was determined using a steel ring sampler of
100 cm3 volume (5 cm diameter). Soil bulk density
was calculated by dividing the weight of the dried soil
by the volume of the soil (Guo et al. 2016).
Data analysis
Tree and shrub biomass C storage were analyzed by
repeated-measures ANOVA, with burning as the
between-subject factor and stand age as the within-subject
factor. One-way ANOVA was employed to test the effects
of burning on biomass C storage of tree and shrub at the
same stand age, herb biomass C storage, forest floor C stor-
age and SOC storage in the E. urophylla plantation and the
naturally recovered shrubland. Two-way ANOVA was per-
formed to reveal the effects of burning and vegetation types
on plant biomass C storage, SOC storage, ecosystem C
storage, and soil bulk density. Pearson correlation analyses
were conducted in order to determine the relationship be-
tween plant biomass C storage and SOC storage. When re-
quired to meet the assumptions of normality and
homogeneity of variance, data were reciprocally or
square-root transformed. Statistical significance was deter-
mined at P < 0.05. All these analyses were performed using
SPSS software (IBM, Chicago, USA).

Results
Tree biomass C storage
Repeated-measures ANOVA indicated that prescribed
burning did not show any significant effect on tree bio-
mass C storage in the EU and NS (Fig. 1a and b). While,
tree biomass C storage in the BEU was 83.63%, 7.10%,
20.99% and 20.63% higher than in the UEU at 1, 3, 4 and
6 years of age, respectively, and the difference was signifi-
cant at 1 year of age and not at 3, 4 and 6 years of age. At
1 year of age, tree biomass C storage in the BEU (7.18Mg
C∙ha− 1) was higher than in the UEU (3.91Mg C∙ha− 1) (F
= 26.87, P = 0.007; Fig. 1a). By contrast, tree biomass C
storage in the BNS was 12.07%, 74.67%, 60.92% and
99.21% lower than in the UNS at 1, 3, 4, and 6 years of
age, although the differences were not significant (all P >
0.178; Fig. 1b). In addition, two-way ANOVA showed that
vegetation types significantly affected tree biomass C stor-
age at 6 years of age (Table 1), and tree biomass C storage
was significantly higher in the EU than that in the NS. But
the burning did not significantly affect tree biomass C
storage. Meanwhile, the interaction effect of vegetation
types and burning was not significant (Table 1).

Shrub biomass C storage
Shrub biomass C storage was 0.16 to 0.92 and 0.29 to
0.91Mg C∙ha− 1 from 1 to 6 years of age for the EU and
NS, respectively. Repeated-measures ANOVA showed
that the effect of burning on shrub biomass C storage
was not significant in the EU (Fig. 1c) or in the NS (Fig.
1d). Interestingly, shrub biomass C storage was slightly
higher both in the BEU than in the UEU and in the BNS
than in the UNS at 1, 3, 4, and 6 years of age, although
the differences were not significant (all P > 0.211).
Two-way ANOVA indicated that neither vegetation



Fig. 1 Tree biomass carbon storage (a, b) and shrub biomass carbon storage (c, d) in the 1st year to 6th year after treatments, respectively,
corresponding to 2006 to 2011. BEU, UEU, BNS and UNS refers to the burned Eucalyptus plantation, unburned Eucalyptus plantation, burned
naturally recovered shrubland and unburned naturally recovered shrubland, respectively. Values are means + SE, n = 3. Lowercase letters indicate
significant differences in tree/ shrub biomass carbon storage between burned and unburned treatments in the Eucalyptus plantation or naturally
recovered shrubland at the same stand age at the P = 0.05 level. B: burning; SA: stand age. The inserted P-values were from repeated measures ANOVA
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types nor burning significantly affected shrub biomass C
storage at 6 years of age, and the interaction effect of vege-
tation types and burning was not significant (Table 1).

Herb biomass C storage
Two-way ANOVA showed that both the prescribed burn-
ing and vegetation types significantly affected herb
Table 1 Effects of burning (B), vegetation types (VT) and their intera
biomass, total plant biomass (the sum of tree, shrub and herb biom
depth, ecosystem C storage (the sum of tree biomass C, shrub biom
density in the 6th year after treatments

Factors B

F P

Tree biomass C 0.48 0.508

Shrub biomass C 3.19 0.112

Herb biomass C 8.50 0.019

Total plant biomass C 1.48 0.259

Forest floors C 2.80 0.133

SOC storage 0.00 0.968

Ecosystem C 0.23 0.642

Soil bulk density (0–10 cm) 1.88 0.208

Soil bulk density (10–20 cm) 0.37 0.560
biomass C storage (Table 1). Vegetation types caused a
different response of herb biomass C storage to prescribed
burning. In the EU, prescribed burning did not signifi-
cantly affect herb biomass C storage (F = 1.04, P = 0.365),
which was 12.92% lower in the BEU (7.50Mg C∙ha− 1)
than in the UEU (8.62Mg C∙ha− 1) (Fig. 2). Whereas herb
biomass C storage was 67.19% higher in the BNS (12.77
ction effects on C storage in tree biomass, shrub biomass, herb
asses), forest floors, and soil organic C (SOC) storage at 0–20 cm
ass C, herb biomass C, forest floors C and SOC), and soil bulk

VT B × VT

F P F P

62.60 0.000 0.64 0.449

0.05 0.826 0.35 0.573

9.69 0.014 20.51 0.002

46.24 < 0.001 < 0.01 0.961

6.38 0.035 0.34 0.574

0.07 0.799 1.14 0.316

12.08 0.008 0.28 0.608

0.04 0.842 0.47 0.512

1.24 0.298 1.73 0.224



Fig. 2 Herb biomass carbon storage in the 6th year (2011) after
treatments. EU and NS refers to the Eucalyptus plantation, and naturally
recovered shrubland, respectively. Values are means + SE, n = 3.
Lowercase letters indicate significant differences in herb biomass
carbon storage between burned and unburned treatment in the same
vegetation type at the P = 0.05 level

Chen et al. Forest Ecosystems            (2019) 6:26 Page 5 of 9
Mg C∙ha− 1) than in the UNS (7.64Mg C∙ha− 1), and the
difference was significant (F = 37.08, P = 0.004; Fig. 2). The
interaction effect of vegetation types and burning on herb
biomass C storage was significant (Table 1).
Forest floor C storage
Two-way ANOVA suggested that vegetation types sig-
nificantly affected forest floor C storage (Table 1). Forest
floor C storage was significantly higher in the EU than
in the NS (Table 2). However, burning did not signifi-
cantly affect forest floor C storage. And the interaction
effect of vegetation types and burning on forest floor C
storage was not significant (Table 1). One-way ANOVA
showed that forest floor C storage in the BEU was lower
16.16% than in the UEU, although the difference was not
significant (Table 2). In the NS, burning significantly af-
fected forest floor C storage, which was 77.10% lower in
the BNS than in the UNS (Table 2).
Table 2 Total plant biomass C storage (the sum of tree, shrub and h
C (SOC) storage at the different depths as well as ecosystem C stora
storage) in the 6th year after treatments. P and F values were from t
plantation, naturally recovered shrubland, and the treatments of unb

C storage (Mg
C∙ha− 1)

EU

UB B P (F

Total plant biomass 37.72 ± 2.81 43.21 ± 8.11 0.55

Forest floor 3.98 ± 0.54 3.33 ± 0.95 0.58

SOC (0–10 cm) 23.32 ± 2.52 20.13 ± 5.89 0.67

SOC (10–20 cm) 12.48 ± 0.60 10.05 ± 3.06 0.47

SOC (0–20 cm) 35.80 ± 2.96 30.48 ± 8.90 0.60

Ecosystem 77.49 ± 4.23 77.02 ± 17.56 0.98
SOC storage
Prescribed burning did not significantly affect SOC stor-
age in the EU or in the NS either at the 0–10 cm or at
the 10–20 cm soil layers (Table 2). In the 0–20 cm soil
layer, SOC storages were 30.48, 35.80, 34.66 and 28.91
Mg C∙ha− 1 for the BEU, UEU, BNS and UNS, respect-
ively (Table 2). In addition, two-way ANOVA showed
that neither vegetation types nor prescribed burning sig-
nificantly affected SOC storage, and the interaction ef-
fect of vegetation types and burning on SOC storage
was not significant at the 0–20 cm soil layer (Table 1).
Ecosystem C storage in the 6th year
In this study, total plant biomass C storage was the sum
of tree, shrub, and herb biomass C storage. Ecosystem C
storage was the sum of total plant biomass C, forest
floor C, and SOC storage at the 0–20 cm layer. The
total plant biomass C storage were 43.21, 37.72,
13.48 and 8.43 Mg C∙ha− 1 for the BEU, UEU, BNS
and UNS, respectively (Table 2). Two-way ANOVA
showed that burning did not significant affect total
plant biomass C storage, yet vegetation types did sig-
nificantly affect total plant biomass C storage. There
was a significantly higher total plant biomass C stor-
age in the EU than in the NS. In addition, total
plant biomass C storage was 14.56% and 59.93%
higher when burning was present in the EU and NS,
respectively, while the significant difference was ob-
served only in the NS (Table 2).
Two-way ANOVA indicated that prescribed burning did

not significantly affect ecosystem C storage, yet the vegeta-
tion types did (Table 1). Ecosystem C storage was higher in
the EU than in the NS (Table 2). One-way ANOVA sug-
gested that there was no significant difference in ecosystem
C storage both between in the BEU (77.02Mg C∙ha− 1) and
UEU (77.49Mg C∙ha− 1), and between in the BNS (49.62
Mg C∙ha− 1) and UNS (40.16Mg C∙ha− 1), although it was
23.56% higher in the BNS than in the UNS (Table 2).
erbs biomass C storage), forest floors C storage, and soil organic
ge (the sum of total plant biomass C, forest floors C, and SOC
he results of one-way ANOVA. EU, NS, UB, B stand for Eucalyptus
urning and burning, respectively

NS

) UB B P (F)

7 (0.41) 8.43 ± 1.04 13.48 ± 0.73 0.017 (15.74)

5 (0.35) 2.82 ± 0.30 1.48 ± 0.36 0.046 (8.11)

6 (0.20) 19.49 ± 4.73 22.50 ± 2.08 0.369 (1.02)

9 (0.61) 9.42 ± 1.96 12.15 ± 0.23 0.239 (1.91)

1 (0.32) 28.91 ± 4.11 34.65 ± 1.44 0.258 (1.74)

0 (0.00) 40.16 ± 4.26 49.62 ± 1.54 0.105 (4.36)
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Soil bulk density
Two-way ANOVA indicated that neither prescribed
burning nor vegetation types affected soil bulk density at
the 0–10 and 10–20 cm soil layers. Meanwhile, the inter-
action effects of prescribed burning and vegetation types
on soil bulk density were not significant (Table 1).

The correlations of vegetation C storage and SOC storage
Pearson correlation analyses showed that the tree bio-
mass C storage was significantly and positively corre-
lated to the forest floor C storage, total plant biomass C
storage, and ecosystem C storage (P = 0.020, < 0.001 and
< 0.001, respectively; Table 3), yet the herb biomass C
storage was negatively correlated to forest floor C stor-
age (P = 0.039). The significantly positive correlations be-
tween forest floor C storage and total plant biomass C
storage was also be found (P = 0.035). Meanwhile, there
were significantly positive correlations between forest
floor C storage, total plant biomass C storage, SOC stor-
age and ecosystem C storage (P = 0.025, < 0.001 and
0.019, respectively; Table 3).

Discussion
Effects of prescribed burning on plant biomass C storage
Plant biomass C storage was influenced by prescribed burn-
ing. In the naturally recovered shrubland, the effect could
be ascribed to the difference in herb biomass C storage in
that the plant communities were dominated by herbs. In
the Eucalyptus plantation, tree biomass C storage contrib-
uted a large proportion of plant biomass C storage.
Prescribed burning significantly increased tree biomass

C storage in the 1st year in the Eucalyptus plantation;
however, the effect was gradually weakened with increas-
ing stand age. We speculated that prescribed burning ac-
celerated nutrient return from residues (e.g., logging
plant residues) on the soil surface shortly after burning,
which promoted plant growth. Butler et al. (2017) found
that prescribed burning increased the availability of soil
phosphorus. Hence, prescribed burning enhanced tree
Table 3 The Pearson correlations (r) between biomass C
storage of tree, shrub, herb, forest floor, total plant and soil
organic C storage.

Tree Shrub Herb Forest floor Plant SOC EC

Tree – 0.215 −0.493 0.657* 0.99** 0.291 0.906**

Shrub – – 0.029 −0.267 0.262 0.186 0.254

Herb – – – −0.600* −0.374 0.140 −0.269

Forest floor – – – – 0.610* 0.302 0.639*

Plant – – – – – 0.356 0.935**

SOC – – – – – – 0.662*

Note: Tree, shrub, herb, forest floor, plant, SOC, and EC stand for the C storage
of tree biomass, shrub biomass, herb biomass, forest floor, and total plant
biomass; soil organic carbon storage, and ecosystem carbon storage;
respectively. *indicates P < 0.05, **indicates P < 0.01
and shrub biomass C storage. However, after a period of
time, the nutrients derived from the decomposition of res-
idues and litter in unburned plots with abundant logging
residues could become richer than those in burned plots.
As a result, the effect of prescribed burning on tree bio-
mass in the Eucalyptus plantation was gradually weak-
ened. In addition, the decreased soil N and soil available P
in the burned Eucalyptus plantation after 3 years of treat-
ments could be responsible for that (Sun et al. 2011). Fur-
thermore, it could be ascribed to the physiological trait of
Eucalyptus. The biomass of fast-growing Eucalyptus in-
creased fast as the nutrients were relatively abundant at
the early stage. That prescribed burning increased tree
biomass C storage to some extent in Eucalyptus planta-
tions in the present study was consistent with that ob-
served in Chinese fir plantations by Zhou et al. (2016).
The herbs in the studied vegetation types were domi-

nated by D. dichotoma. D. dichotoma is a light-demanding
heliophyte and has a high light compensation point (Chen
et al. 2016; Zhu et al. 2016) that is intensively controlled
by canopy cover. In the Eucalyptus plantation, less bio-
mass of D. dichotoma was found for the greater tree bio-
mass. This result was supported by the results of Bataineh
et al. (2006). Nevertheless, in the naturally recovered
shrubland, plants were dominated by herbs such as D.
dichotoma. Meanwhile, prescribed burning has been
shown to accelerate nutrient return from residues on the
soil surface, which promoted plant growth (Carter and
Foster 2004; Close et al. 2011; Gautam and Mandal 2016).
Furthermore, the litter of D. dichotoma decomposed
slowly (Ma et al. 2009), and nutrient return from the litter
of D. dichotoma was also slow. In addition, prescribed
burning did not affect the germination of D. dichotoma.
As a result, the herb biomass C storage in the BNS was
higher than that in the UNS.
Forest floor C storage was significantly affected by pre-

scribed burning in the naturally recovered shrubland. In
the Eucalyptus plantation, forest floor C storage was also
higher in unburned plots than in burned plots, yet not sig-
nificantly. The observed forest floor C storage was not
consistent with that reported by Kim et al. (2016). The fol-
lowing two possible reasons could be responsible for this
difference. On the one hand, the pre-fire residues could be
mixed on the forest floor and have a slow decomposition
rate (Jiang et al. 2012). On the other hand, prescribed
burning reduced the occurrence of diseased plants and in-
sect pests (Houdeshell et al. 2011; Hall et al. 2016), so the
litter production could be reduced. Although burning de-
creased the litter decomposition rate by shifting soil mi-
crobial communities (Sun et al. 2011; Holden et al. 2013),
some of the soil microbial parameters changes (e.g., soil
microbial biomass C, ß-glucosidase, and phosphatase ac-
tivities) were ephemeral, and only some of these changes
lasted for 3 years (Fontúrbel et al. 2016). The intensity of
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prescribed burning could be responsible for these changes.
Espinosa et al. (2018) found that litter productivity showed
no significant difference 1 year after low intensity pre-
scribed burning. In addition, great total plant biomass could
produce more forest litter, it was supported by the positive
relations between forest floor biomass C and total plant
biomass C storage in this study.

Effects of prescribed burning on SOC storage
Prescribed burning did not affect SOC storage in the 0–10
and 10–20 cm soil layers in both the Eucalyptus plantation
and naturally recovered shrubland. The observed SOC stor-
age was consistent with previous studies (Neill et al. 2007;
Roaldson et al. 2014). However, Rau et al. (2009) found that
burning increased C and N within the first 0–3 cm of soil,
and this change was not statistically detectable when inte-
grated into the 0–8 or 0–52 cm layers. In this study, the ef-
fect of prescribed burning on SOC was likely diluted in the
0–10 cm soil layer. Therefore, the soil thicknesses can have
a dilution effect that is associated with the actual impacts of
fire on soil properties (Armas-Herrera et al. 2016). Mean-
while, the season of prescribed burning could be respon-
sible for this effect. Early season burns had less dramatic
short-term effects on the soil abiotic conditions than late
season burns (Hamman et al. 2008). In our study, the pre-
scribed burning was conducted in March 2005. In addition,
in this studied area, Sun et al. (2009) reported that SOC
concentration in the 0–10 cm soil layer significantly de-
creased after 3 years of prescribed burning in Eucalyptus
plantations, but we did not detect this effect after 6 years.
This result suggested that the effect of prescribed burning
on SOC could last for less than 6 years. Wang et al. (2016)
found that prescribed burning changed the SOC release
only in the 1st year. Additionally, the burning intensity
drives the post-fire temporal pattern of SOC accumulation
(Sawyer et al. 2018). Low- and moderate-intensity pre-
scribed burning could have little effect on SOC storage on
the long-term scale. Besides, the little effect of prescribed
burning on SOC in the EU could be due to the nature of
Eucalyptus, which is an exotic species with fast growth rate
and could sequester more soil organic C as greater biomass
C accumulation than native species. However, this was not
supported by our previous result that the soil organic C ac-
cumulation was not significantly different between the
plantations with fast-growing species (i.e. E. urophylla, and
Acacia crassicarpa) and plantations with slow-growing spe-
cies (Castanopsis hystrix, and a mixture of 10 native tree
species) at the early development stages (Chen et al. 2017).

Effects of prescribed burning and vegetation types on
ecosystem C storage
The ecosystem C storage was not affected by prescribed
burning in both the Eucalyptus plantation and naturally
recovered shrubland. The observed ecosystem C storage
was consistent with that reported by others (Scheller et al.
2011). Santos et al. (2003) found that the negative effects
of burning on the C balance of the ecosystem were more
or less neutralized after only 12months. Meanwhile, the
effects of burning on C in ecosystems depended on the in-
tensity of prescribed burning (Keeley 2009). However, the
vegetation types had a significant effect on ecosystem C
storage as the difference in plant biomass C storage was
mainly induced by plant traits (Chen et al. 2015). It was
also supported by the significantly positive correlations be-
tween total plant biomass C storage and ecosystem C stor-
age. The interaction effects of prescribed burning and
vegetation types on herb biomass C storage were appar-
ent. Different plant species, vegetation types, and forest
types could lead to various responses to burning (Prévosto
et al. 2011; Balch et al. 2015; Lutz et al. 2017; Pellegrini
et al. 2018). Therefore, the vegetation types should be con-
sidered when assessing the effects of prescribed burning
on ecosystem C dynamics.
There were several limitations in the present study. The

SOC data were absent before the prescribed burning for
the studied plots in spite of the similar site characteristics
at the experimental sites, and the information on the SOC
dynamics over time after treatments could not be evalu-
ated. Besides, the effect of prescribed burning on forest C
storage was only investigated in a Eucalyptus plantation
and a naturally recovered shrubland, whether or not it can
be applied to other forests needs more investigation.

Conclusions
In subtropical plantations, we found that prescribed
burning significantly increased herb biomass C storage
and total plant biomass C storage in the naturally recov-
ered shrubland, and slightly increased tree biomass C
storage and total plant biomass C storage in the Euca-
lyptus plantation. However, SOC storage and ecosystem
C storage were not significantly affected by prescribed
burning in two vegetation types. Consequently, we con-
clude that prescribed burning has little impact on overall
C storage of forest ecosystems, and could be an option
for forest site preparation in subtropics.
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