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Abstract

Background: We investigated how the precision and costs of forest resource estimates for sample plots of different
type and size depend on the spatial structure of forests and jointly studied the effects of tree density and size
distribution. Statistically thinking, the trees in a forest can be regarded as a point pattern. Based on the spatial
properties of the point pattern, we classified the forests into clustered, random, and regular. We used empirical data
from 396 mapped forest plots from Finland. The variance of the unbiased Horvitz-Thompson estimator and expected
costs of the basal area and tree density estimation were calculated for 99 different sample plots of different type and
size in each of the 396 forest plots. Further, we considered the estimation of the change between two time points for
a subset of the data.

Results: The precision and expected cost depended on the tree size distribution and spatial pattern of trees. While
large sample plots are advisable for clustered forests or the monitoring of young forests with small trees, we see
potential for measuring smaller sample plots in regular forests. The choice of sample plot was more important in
clustered forests, where also the variability of the expected costs was higher.

Conclusions: If the spatial structure of forests could be predicted accurately and precisely prior to field
measurements, for instance from remote sensing data, the precision of forest inventories could potentially be
improved or costs decreased by allowing the sample plot size and type to vary from one forest stand to another.
When using a compromise sample plot over a large region and a long inventory rotation, optimizing the sample plot
for one time point ignores possible changes in forest structures caused by changes in forest management practices.

Keywords: Concentric circular plot, Expected costs, Fixed radius plot, Forest inventory, Horvitz–Thompson estimator,
Relascope plot, Sample plot, Spatial pattern of trees, Spatial structure

Background
Typically, a sampling-based national forest inventory
(NFI) is carried out to provide statistics, for example
for national or regional forest programs, sustainability
assessments, investment calculations for forest indus-
try, and reporting to international conventions (Tomppo
et al. 2010). Forest management inventories (FMI), on the
other hand, are carried out to support forest owners in
their strategic planning as well as aid decision making
concerning harvests and silvicultural measures.
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NFIs arebasedona set of fieldplots, for instance in Finland
about 15 000 plots are measured each year (Kangas
et al. 2018) totaling to 75 000 plots during each five year
inventory rotation. In recent years the forest manage-
ment inventories have been carried out using airborne
laser scanning (ALS) data and field plots (e.g. Næsset
(2004)). The field plots used may be the NFI field plots
or plots measured as a separate measurement campaign.
Thus, the field plot measurement is a large investment,
and it is important to make it as cost-efficiently as
possible.
In NFI, the inventory design is optimized in the sense

that we wish to have the highest accuracy and precision
given a fixed budget or we wish to have the lowest cost
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for a given precision (Päivinen 1987). In a cluster design,
that entails selecting the number of clusters or distance
between them, the number of plots in each cluster and
the distance between them, and the type and size of plots
within each cluster. Optimization is possible, if we make
assumptions concerning the population (Mandallaz 2007).
In an analytic setting, we need to be able to anticipate the
between-plot variance (Mandallaz and Ye 1999).
Defining optimal sample plot size and type analytically

would require that we can anticipate the effects of the plot
size and type on the between-plot variance. If the expected
between-plot variation could be expressed as a function
of plot size (see Zeide (1980)) the optimal plot size could
be calculated analytically. The optimal size, however, also
depends on the size distributions of the forest stands as
well as on the spatial patterns of trees.
While some factors affecting the accuracy and preci-

sion can be accounted for analytically, other aspects like
the spatial structure of forests are more complicated. The
analytic calculations usually assume a random pattern
(Mandallaz 2007). In Finland, however, regular patterns of
trees have been observedmore commonly (57%) than ran-
dom (25%) and clustered (18%) patterns (Tomppo 1986).
Therefore, the optimal plot is typically addressed using
simulation (e.g. Henttonen and Kangas (2015)).
In this study based on field data from different types

of forests, we compared the precision of the basal area
and tree density estimation and costs for various sam-
ple plots of different type and size. We used the unbiased
Horvitz-Thompson estimator to estimate the basal area
and tree density and obtained its variance by integrating
over the forest plot. The resulting standard deviation and
corresponding costs of various sample plots were investi-
gated with respect to the spatial structure of forests and
other stand variables such as tree density, basal area and
diameter distribution that are potentially correlated with
the spatial structure (see e.g. Tomppo (1986) p. 40 ff.).
By classifying our data, we studied how the spatial struc-
ture of forests and other stand variables affect precision
and costs of different sample plots. Further, we examined
the effect of small trees on the spatial structure, precision
and costs.

Methods
Materials
We used data of tree locations and diameters measured at
1.3 m (dbh) from different types of forest stands, including
experiments of uneven-aged forest management and thin-
nings from below resulting in different spatial patterns of
trees. Also data from natural forests and peatlands were
included. The total number of forest plots from different
data sources was 396 (Fig. 1). In order to distinguish this
data from the sample plots, they are henceforth referred
to as forest plots.

Fig. 1 Locations of 396 forest plots from different Finnish data sources

Erika
The Erika data set consists of 21 experimental plots of
40 m × 40 m in managed, uneven-aged Norway spruce
dominated forests at five locations in southern Finland
(Eerikäinen et al. 2014). Between 1991 and 2012, the plots
were measured usually four to five times with five years’
intervals, recording the locations, tree species, and size
characteristics (dbh and height) of all trees ≥ 10 cm tall.
Trees with dbh≥0.1 cmwere included in our calculations.
Only the fourth measurement of each plot was included in
our main study. These measurements were taken either in
2007 or 2012. From one plot with only twomeasurements,
the data from 1992 was used.

Harkas
The Harkas data set comprises 312 plots from 39 long-
term thinning experiments mainly in southern and central
Finland (Mäkinen and Isomäki 2004). These experiments
have been established in even-aged, pure, or almost pure
Scots pine or Norway spruce stands growing on mineral
soil. The recording of tree locations on plots started in
the late 1980s. We used the locations and tree dbhs from
the most recent measurement for each plot, since the
more recent locations were measured with more accurate
methods, i.e. tachymeter, instead of distance (measuring
tape) and compass direction used earlier. Only plots where
both tree locations and plot corners had been mapped
were included. Plot areas were estimated using the coor-
dinates of plot corners and therefore these areas are not
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exactly equal to those presented in earlier reports. The
median area of the plots was 1004m2 (range 788m2 - 2460
m2). The minimum dbh in the Harkas measurements was
4.5 cm.
Inari
The Inari data set consists of 18 forest plots of size 50 m × 50
m measured on the locations of plots from the 8th Natio-
nal Forest Inventory in northernmost Finland (Henttonen
and Kangas 2015). The coordinates (tachymeter mea-
surement) and dbh of all trees with dbh ≥ 2.5 cm were
recorded.

Multia
The Multia data set consists of 30 field plots of size 32 m
× 32 mmeasured in 2014 in Multia and Keuruu, southern
Finland (Tomppo et al. 2016). These data were collected
for validation of a remote-sensing based forest resource
estimation. Therefore, plots were subjectively located to
young thinning stands, advanced thinning stands and
mature stands. The coordinates and dbhs of trees with dbh
≥ 2.5 cm were measured using Sonar caliper.

Various additional data sets
The Various additional datasets consist of large plots
measured in different types of forests. Data from Vesijako,
southern Finland, comprises two plots of size 100 m
× 100 m and 70 m × 130 m. The plots were located in
mixed coniferous advanced thinning stands dominated by
Norway spruce and Scots pine, respectively. The coordi-
nates (tachymeter measurement) and size characteristics
(dbh and height) of all trees were recorded. The smallest
observed dbh in these plots was 5.7 cm.
The data from Kreutz et al. (2015) was collected from

Värriö Strict Nature Reserve in northeastern Finland and
it consists of three plots of size 300 m × 40 m located in
natural forests at different successional stages. In measur-
ing tree dbhs they were rounded to the closest cm. The
minimum dbh was 1 cm.
Hökkä et al. (2008) collected mapped tree data from

seven Scots pine dominated stands growing on drained
peatlands in different parts of Finland. We used their data
from a total of 10 plots in five stands. Similarly to the
processing of Harkas data set, we left out some parts
of the data because of missing or unclear plot corner
or tachymeter location measurements and the plot areas
were thus not equal to the report of Hökkä et al. (2008).
The median area of plots in our calculations was 6392
m2 (range 1604 m2 - 15620 m2). The minimum dbh was
4.5 cm.

Sample plot types and sizes
We considered 99 different sample plots, including differ-
ent specifications for the circular fixed radius determining
the overall size, relascope and circular concentric plots
specifying the type as follows:

(i) Fixed radius plots with the radius rmax = 3, 4, . . . , 11
m in which all trees above a certain dbh are
measured (9 different plots).

(ii) Relascope plots with the maximum radius
rmax = 3, 4, . . . , 11m and basal area factors
q = 1, 1.5, 2, 2.5, 3 (45 different plots). A tree is
included in the sample plot if its distance to the
sample plot center is at mostmin(rmax, 50 dbh/

√q)
(see Tomppo et al. (2011, p. 25 f.) for more details).

(iii) Concentric plots with radii (r1, rmax) = (1, 3), (2, 4),
(3, 5), (4, 6), (5, 7), (5, 8), (6, 9), (6, 10), (7, 11) m for
the two circles where the trees with the dbh smaller
than 5, 7.5, 10, 12.5, 15 cm are measured only from
the smaller circle with radius r1 (45 different plots).

Precision of forest resource estimation
We assumed that the sample plot location s is chosen uni-
formly randomly from the observed forest plot window
W ⊂ R

2 and that the forest characteristic Y is esti-
mated using the unbiased Horvitz–Thompson estimator
(Horvitz and Thompson 1952)

Ŷ (s) = 1
|W |

n∑

i=1

Ii(s)Yi
πi

, (1)

where n is the finite number of observed trees in the
observation window W of the forest plot, Ii(s) is the indi-
cator that tree i is in the sample plot centered at s, Yi is
the characteristic of tree i, πi is the inclusion probability of
tree i, and |W | denotes the forest plot area.We considered
the estimation of the tree density measured in number of
stems per hectare (Yi = 1) and the basal area per hectare(
Yi = π(dbhi/2)2

)
.

We measured the precision of the forest resource esti-
mation by the variance of the estimator (1). Based on
Theorem 4.2.1. fromMandallaz (2007), the variance is

V [ Ŷ (s)]= 1
|W |2

n∑

i=1

n∑

j=1

YiYj(πij − πiπj)

πiπj
, (2)

where πij is the inclusion probability for the pair of trees i
and j, given by

πij = E[ Ii(s)Ij(s)]= |B(xi, ri) ∩ B(xj, rj) ∩ W |
|W | , (3)

where xi is the location of tree i, ri is the inclusion radius
for tree i given by the sample plot type and size, and
B(xi, ri) is the inclusion zone of tree i, i.e. a circle with cen-
tre at xi and radius ri. For i = j,πii = πi = |B(xi, ri) ∩
W |/|W |. The intersection areas in (3) were computed
approximately using the R library spatstat (Baddeley
et al. 2015). Consequently, the variance (2) was calculated
for each sample plot in each forest plot described above
going through all pairs of trees in a forest plot.
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We further considered the estimation of the change
from a time point 1 to time point 2 for the Erika data
with measurements repeatedly over time, and estimated
the change simply as the difference of the estimates at the
two time points, Ŷ (2)(s) − Ŷ (1)(s). The formula for the
variance of the difference is

V [ Ŷ (2)(s) − Ŷ (1)(s)]=V
[
Ŷ (2)(s)

]

+ V
[
Ŷ (1)(s)

]
− 2Cov

[
Ŷ (1)(s), Ŷ (2)(s)

]
,

(4)

where

Cov
[
Ŷ (1)(s), Ŷ (2)(s)

]

= 1
|W |2

n1∑

i=1

n2∑

j=1

Y (1)
i Y (2)

j (π1i2j − π1iπ2j)

π1iπ2j
,

(5)

where 1i and 2j refer to tree i at time point 1 and tree j at
time point 2, respectively.

Costs for the comparison of sample plot types and sizes
We assumed that the cost (time in minutes) to measure
tree i in the sample plot of certain type and size was

ci = 0.5 · 1(s ∈ B(xi, ri) ∩ W )

+ 0.5 · 1 (s ∈ [B (xi, 1.1ri) \ B (xi, 0.9ri)] ∩ W ) ,
(6)

where s is the sampling location and ri is the inclusion
radius of tree i. Thus, we assumed simply a fixed cost per
measured tree (0.5min) and an additional cost per border-
line tree (0.5 min). A tree was defined to be a borderline
tree if its distance from the sample location was between
0.9ri and 1.1ri. Given the single tree cost (6), the expected
cost for measuring the sample plot is

E
n∑

i=1
ci =

n∑

i=1
Eci, (7)

where

Eci = 0.5
|B(xi, ri) ∩ W |

|W |
+ 0.5

|[B(xi, 1.1ri) \ B(xi, 0.9ri)]∩W |
|W | .

Similarly as the variance (2), the expected cost (7) was
calculated for each sample plot in each forest plot.
The expected cost for trees of the sample plot in a size

class Dk =[ dk , dk+1), k = 1, . . . ,K , is

E
n∑

i=1
ci1(dbhi ∈ Dk) =

n∑

i=1
1(dbhi ∈ Dk)Eci.

Classification of forest structure
In order to study the effect of spatial structure of forests
on the precision and costs of different sample plots, the
forest plots were divided into different groups of similar
stand variables.
For the classification of the spatial structure of a for-

est plot, tree locations (at stem center) are mathematically
expressed as point patterns (x1, . . . , xn) with a finite num-
ber of n trees observed on a forest plot window W. Each
point pattern is analyzed as a realization of a point process
X, which is assumed to be translation and rotation invari-
ant. In what follows, the terms point and tree location can
be used interchangeably. Likewise, the intensity λ of the
point process is equal to the tree density, albeit per m2.
The tree locations were divided into clustered, random

and regular patterns by utilizing the L-function, which
is the variance stabilizing transformation of Ripley’s K-
function (Chiu et al. 2013, Chapter 4.6) given by

L(r) =
√
K(r)
π

∀r ≥ 0. (8)

The function λK(r) gives the expected number of points
of X within a circle B(o, r) around a typical point o and
radius r (in m) without counting o itself given that there is
a point of X in o.
In the completely spatially random (CSR) case with no

interaction between the points, L(r) − r = 0 for all r ≥ 0.
This fact can be used in a test for CSR based on the test
statistic

τ = max
r≤rt

|̂L(r) − r| (9)

with Ripley’s isotropic edge corrected estimator L̂. The
CSR hypothesis can be rejected at a 5% significance level if

τ >
1.45

√|W |
n

(10)

(Chiu et al. 2013, pp. 57 f., 139 ff.). Due to size limita-
tions of some forest plots in the Harkas data, distances up
to rt = 5 m were taken into account for a short range
classification.
For the analysis, the statistical software R version 3.4.4

(Core Team 2018) was used together with the package
spatstat (Baddeley et al. 2015).

Results
Relationship between spatial structure and stand variables
In order to understand the relationship between the spa-
tial structure of forests and other stand variables in differ-
ent types of forests, we calculated the average (standard
deviation) tree density, mean basal area weighted dbh, and
basal area of the forest plots and coupled them to the
results of the spatial structure classification (Table 1). The
Erika data with the smallest minimum dbh of 0.1 cm have
mainly clustered plots with a relatively high tree density
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Table 1 Average tree density (standard deviation) in trees/ha, average basal area weighted mean dbh in cm (standard deviation),
average basal area (standard deviation) in m2/ha, and number of clustered, random, and regular plots for the Erika (21 plots), Harkas
(312 plots), Inari (18 plots), Multia (30 plots), and various other data sources (15 plots)

Tree Min Mean Basal Structure

density dbh dbhBA area Clustered Random Regular

Erika 1571 (630) 0.1 26 (3) 23 (4) 15 4 2

Harkas 949 (536) 4.5 23 (4) 30 (9) 2 2 308

Inari 711 (392) 2.5 18 (6) 8 (5) 12 4 2

Multia 2855 (1866) 2.5 15 (6) 23 (8) 10 2 18

Various 1000 (386) 0.5-5.7 16 (7) 17 (8) 6 0 9

and mean dbh. The Harkas data including the thinning
experiments have regular tree patterns, a lower average
tree density, and the largest basal area. The Inari data with
a minimum dbh of 2.5 cm have relatively few trees and
appear mostly clustered, whereas the Multia data with the
same minimum dbh, but higher tree density, have both
clustered and regular patterns. In contrast to Tomppo
(1986), where smaller forest plots where considered, only
12 forest plots (3%) were classified as random. This small
proportion of random forests results from large forest
plots of this study that facilitate the detection of clustering
and regularity due to more observations.
Given the classification according to spatial structure,

the forest plots were partitioned according to stan-
dard deviation of dbh, basal area and tree density using
the recursive partitioning function implemented in the
rpart R package (Therneau et al. 2017). We concluded
from the partitioning for forest structure that clustered
patterns had a larger dbh range than regular patterns,
whereas regular patterns tended to have larger trees
with about the same size. Consequently, a grouping with
respect to dbh standard deviation was not informative for
this study since one group would mainly contain clustered
and the other mainly regular forests. In our data, all forest
plots with a tree density ≥ 3214 trees/ha were classified as
clustered.
Based on the partitioning, each forest plot was classified

as a plot with small (< 9.8 m2/ha), medium (in [9.8,32)
m2/ha) or large (≥ 32 m2/ha) basal area. We further
defined different development classes also taking Tomppo
et al. (2011, Table 2.17) into consideration. The result-
ing development classes are based on the mean basal area
weighted dbh (dbhBA) and tree density:

• seedling stand : mean dbhBA <8 cm or density
>3214 trees/ha,

• young stand : mean dbhBA in [8,26] cm and density in
(1500,3214] trees/ha,

• advanced stand : mean dbhBA in [8,26] cm and
density in (500, 1500] trees/ha,

• mature stand : mean dbhBA >26 cm or tree density
≤500 trees/ha.

Seedling stands tend to be clustered and forest plots with
large basal area regular (Table 2).

The effect of spatial structure on precision and costs
In order to study the effect of clustered and regular pat-
terns on precision and costs of different sample plot types
and sizes, we focused on forest plots with medium basal
area ([ 9.8, 32) m2/ha) not belonging to the seedling class.
We selected this group of forest plots as it contains both
clustered and regular patterns with more than two obser-
vations each. Then, we compared the mean standard
deviation of the estimator (1) and mean expected costs
(7) per forest structure group and sample plot type and
size (Fig. 2). The higher the tree density (younger devel-
opment classes), the lower the precision of the estimated
tree density and the bigger differences between the dif-
ferent sample plot types both for clustered and regular
forest plots. The differences between different develop-
ment classes and different sample plot types in the basal

Table 2 Number of plots per group after classification with
respect to development class and basal area (small: <9.8,
medium: [ 9.8, 32), large: ≥32 m2/ha), and spatial structure of
forests

Develop. class Basal area Structure

Clustered Random Regular

Seedling small 2 0 0

medium 6 1 2

large 1 0 0

Young small 0 0 0

medium 9 0 20

large 1 0 46

Advanced small 6 0 1

medium 9 3 131

large 0 1 47

Mature small 4 1 1

medium 7 5 62

large 0 1 29

Total 45 12 339
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Fig. 2 Precision versus expected costs for different fixed radii (maximum radius between 3 and 11 m), relascope (basal area factors from 1 to 3), and
concentric plots (dbh limit from 5 to 15 cm) sample plots for the estimation of basal area and tree density in clustered and regular forest plots of
different development classes (see text for description). The precision has been measured by the standard deviation (sd) of the respective estimator
(1) averaged over the forest plots. This is a zoomed view and some values have been cut off

area estimation were smaller, largest differences between
the sample plot types occurring for clustered patterns and
in the youngest development class. In any case, both for
clustered and regular forest plots, the relascope sample
plots appeared to be the most efficient choice to esti-
mate basal area. On the contrary, they were unfeasible
for the tree density estimation. In this case, the fixed
radius plots seems to be the best design. In general, the
precision was lower in clustered forests than in regular
forests. Increasing the maximum radius rmax (increasing
the costs) further led to a more pronounced improvement
of precision for clustered than for regular patterns (see
also Table 3).
In a more detailed study, we focused on eight different

sample plots with two different maximum radii, namely 7
and 9 m. For the relascope plot we considered the basal
area factors 1 and 2 for each case. The inner radii of the
concentric plots with these maximum radii were 5 and 6
m, respectively, and the dbh limit was set to 10 cm. We
compared the average expected costs for clustered and
regular patterns (Table 3) and found that the fixed radius
plots were almost twice as expensive for clustered than for

regular patterns. As expected, the difference in costs was
not as prominent for the other designs where fewer small
trees are measured. In the case of the relascope plots, it
was slightly more expensive to measure the regular pat-
terns. Furthermore, we calculated the cost savings and loss
of precision in percentage (determined by the increase in
standard deviation of the estimator) in comparison to the
values for the concentric plot with a 9 m maximum and
a 6 m inner radius, which is the design closest to the one
currently used in the Finnish NFI. For clustered patterns,
using a fixed radius plot instead of the concentric design
would increase the costs by 45% and would achieve a 18%
improvement of the tree density estimation, but it would
not lead to any improvement of precision for basal area.
Again it can be seen that the relascope design has a large
loss of precision (over 350%) for the tree density estima-
tion especially for clustered patterns. For the basal area
estimation of regular patterns, all designs with a maxi-
mum radius of 9 m seem to have about the same precision.
When lowering the maximum radius to 7 m, the precision
is reduced by 14% on average which comes with a cost sav-
ing of between 33 and 52%. The overall best solution for
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Table 3 Average expected costs (time in minutes) for measuring eight different sample plots, cost savings (in %), and loss of precision
(in %) determined by the increase in standard deviation of the estimator for basal area and tree density

Plot configuration Precision loss %

Exp. cost Savings % Basal area Tree density

Clust. Reg. Clust. Reg. Clustered Regular Clustered Regular

Fixed 7 26 14 10 33 19 12 -5 6

Fixed 9 42 22 -45 -5 0 0 -18 -3

Relas. (1,7) 12 12 59 43 22 13 354 35

Relas. (1,9) 16 18 45 14 5 1 354 29

Relas. (2,7) 9 10 69 52 28 16 523 60

Relas. (2,9) 11 12 62 43 16 8 523 59

Concen. (5,7) 19 13 34 38 20 13 13 10

Concen. (6,9) 29 21 0 0 0 0 0 0

The values are presented separately for clustered and regular patterns. Percentages are calculated in reference to the concentric plot with a 9 m maximum and a 6 m inner
radius. For all concentric plots, trees with a dbh < 10 cm were only measured in the inner circle

basal area estimation among the evaluated sample plots
seems to be the relascope plot with amaximum radius of 9
m and the basal area factor 1, but even the basal area factor
2 gave reasonable precision. For tree density, it appeared
worth taking the fixed radius plot with a maximum radius
of 7 m into account instead of the concentric plot with a
9 m maximum radius. Not only can costs be saved, but
there is even an improvement in precision for clustered
patterns.
We also studied the distribution of costs and precision

among the clustered and regular forests for the selected
eight sample plots with boxplots (Fig. 3). In general, the
precision was higher (lower standard deviation of the esti-
mators) for regular patterns than for clustered. Further,
the variability was lower for regular than for clustered
patterns in all cases, especially for the precision of the
relascope estimation of tree density and expected costs
of the fixed radius plots. The variability of the basal area
estimation appears similar for all sample plots for either
clustered or regular forests. Relascope plots had the small-
est cost variability, but they showed a large variability in
precision for tree density estimation.

The effect of minimum dbh on spatial structure and change
estimation
We studied the effect of the minimum dbh on the spa-
tial structure classification and the estimation of change
in tree density between consecutive time measurements
using all 98 measurements from the Erika data source.
The spatial structure classification depended on the min-
imum dbh of the trees measured in the forest plots,
where with a minimum dbh of 0.1 cm, most of the pat-
terns were classified as clustered (Fig. 4). There was a
clear shift towards more regular patterns with increasing
dbh limit.

The minimum dbh also had an effect on precision
and costs in the change estimation, where with increas-
ing minimum dbh, precision increased while cost and
cost variability decreased (Fig. 5). Consequently, mini-
mum dbhs of 2.5 or 4.5 cm decreased the costs con-
siderably in comparison to the 0.1 cm limit, but the
patterns were still clustered (Fig. 4). With a minimum
dbh of 9.5, the locations of the measured trees mostly
formed a regular pattern, where all sample plot types
included almost the same trees (Fig. 5). If the main inter-
est is to study the development of young forests, e.g.
changes in small trees (with dbh ≤ 9.5 cm), the tree
density is typically more important than the basal area.
In order to minimize the variance (4) of the estimated
change such studies should be based on large fixed radius
plots (Fig. 5).

Discussion
It is well known from earlier studies (e.g. Henttonen and
Kangas (2015)) that the optimal sample plot type depends
on the variable of interest. For volume and basal area,
relascope sample plots are both cost efficient and pre-
cise, but also other types of sample plots produce precise
results. For tree density, fixed area plots are the most pre-
cise. This study confirms those results. In cases where
the relascope cannot be used reliably, e.g. in very dense
forests, additional measurements have to be made to
check whether a tree truly belongs to the sample plot.
The resulting additional costs have not been included in
the cost calculations for this study and could increase the
workload variability of relascope plots. We originally con-
sidered also more complicated cost models, but finally
based the current study on the simple costs (6), because
of lack of support for the more complicated cost models.
Our simple cost model is based on the assumption that the



Häbel et al. Forest Ecosystems             (2019) 6:8 Page 8 of 11

Fig. 3 Boxplots of precision measured by the standard deviation (sd) of the estimator (1) and costs for eight sample plots with maximum radii 7 and
9 m, basal area factors 1 and 2, and inner radii 5 and 6 m, where trees with a dbh < 10 cm were only measured in the inner circle. This is a zoomed
view and some values have been cut off

number of trees and borderline trees are the main factors
affecting the costs.
If the spatial structure of forests could be predicted prior

to field measurements, for instance from remote sensing
data (see e.g. Packalen et al. (2013); Pippuri et al. (2012);
Häbel et al. (2018)), it would in principle be possible to let
the sample plot size and type vary from a forest to another.
However, in the current inventories, the same sample
plot is used over the whole inventory region and, thus,
a compromise solution is needed. Another aspect is the

operational requirements of NFIs. One solution would be
to define a budget for a day’s work, and select the sample
plot in a cluster by minimizing the RMSEs of the selected
forest variables, using the budget as a constraint. However,
this approach always leads to measuring as many trees as
the budget allows. In addition, it does not take the vari-
ability in the workload into account. The plot type with
the minimum variability in the costs is the relascope plot
and the fixed radius plots have the highest variability due
to high variability in the number of measured small trees.
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Fig. 4Maximal deviation of the centered L-function from zero for all
98 measurement of the 21 Erika forest plots and for different
minimum dbh ranging from 0.1 to 9.5 cm. The solid black lines give
the classification bounds for the CSR case, where values above the
upper bound correspond to patterns classified as clustered and
values below the lower bound to regular patterns

For selecting a sample plot for an operational NFI, we
need to balance the measurements of small trees so that
the RMSE of tree density is acceptable while the plot
design is cost-efficient and robust. In order to produce
an optimal and operational plot, we could introduce a

probabilistic budget constraint, such that P(time used
for measuring a cluster of x plots < 8 h) > p, and
minimize the RMSE of tree density subject to that con-
straint. In this approach, the parameters to be defined
are the number of plots within a cluster and the required
probability p.
Measurements from forest plots are not only used in

inventory calculations, but they are also used as auxiliary
variables in model-assisted stand variable estimation. In
FMIs, for instance, the collected data are used to build a
model to predict the forest variables of interest to all pix-
els (raster cells) for a map of a certain region of interest.
In such a case, the quality of sample plots may be assessed
based on the performance of those models. Adnan et al.
(2017) studied the effect of sample plot size and stand
density on the quality of estimation of tree size hetero-
geneity from ALS. Tree size heterogeneity can be related
to the spatial structure of forests since regular patterns
have a tendency to be even-aged with about the same size
for all trees and clustered patterns tend to be uneven-
aged or show at least a larger variation in tree size. Adnan
et al. (2017) concluded that for a reliable field-based esti-
mation the smallest sample plot size required is 6 m, but
that plot sizes between 9 and 12 m maximize the cor-
relation between field values and ALS metrics. Tomppo
et al. (2016) also studied ALS-assisted forest resource esti-
mation, but not for the spatial structure. They suggested
that a relascope plot with a basal area factor 1 or a con-
centric plot with a maximum radius of 9 m and an inner
radius of 5.64 m and a lower dbh limit of 9.5 cm for the
outer circle (used in the Finnish NFI) could be used to

Fig. 5 Precision versus expected costs for different fixed radius (maximum radius between 3 and 11 m), relascope (basal area factors from 1 to 3),
and concentric plots (dbh limit from 5 to 15 cm) for the estimation of change in tree density (with a certain minimum dbh of either 0.1, 2.5, 4.5, or 9.5
cm) between consecutive time measurements for each minimum dbh. The precision has been measured by the standard deviation (sd) of the
respective estimator (see (4)). The expected cost is the sum of expected costs of the consecutive measurements. Both the mean sd and mean
expected cost were obtained by averaging over the forest plots. This is a zoomed view and some values have been cut off
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reduce the cost in comparison to a fixed radius plot with
a 9 m maximum radius while still being feasible for ALS-
assisted inventories. Future studies could assess whether
case depended optimal sample plots can be found for
remote sensing-assisted inventories.

Conclusions
We classified forests according to spatial structure, tree
density and size distribution and found that regular and
clustered patterns of trees tend to have different forest
characteristics. All in all, it can be concluded that both
precision and costs vary depending on the tree density,
basal area, diameter distribution, and spatial structure of a
forest as well as estimated forest variable. Therefore, there
seems to be no obvious overall optimal sample plot.
Today’s forests in Finland are most often regular as a

result of the silvicultural methods used since the 1950s,
which include forest regeneration most often by clear-cut
and planting, or due to thinnings from below in younger
forests. The amendments to the Forest Act (2013) allow
uneven-aged forest management since 2014. This will
slowly increase the proportion of clustered forests. This
trend makes the monitoring of the development of small
trees evenmore important than before e.g., for the estima-
tion of forest growth and for the prediction of scenarios
for the future development of forests. For these purposes,
sample plots which give more weight to small trees than
relascope plots, where the inclusion probability is pro-
portional to dbh2, could be considered. For example, this
could be achieved by estimating the inclusion probabili-
ties of trees as a function of several tree characteristics
(instead of only dbh2) using data from previous invento-
ries. Also step functions, leading to multiple concentric
circles with the radii depending on tree characteristics,
could be used in practice.

Abbreviations
ALS: Airborne laser scanning; dbh: Diameter at breast height measured at 1.3
m; FMI: Forest management inventory; NFI: National forest inventory; RMSE:
Root mean squared error

Acknowledgements
We wish to thank Saija Huuskonen, Hannu Hökkä, Harri Mäkinen, Risto Ojansuu
and Erkki Tomppo for providing the data as well as Merja Arola and Ville Pietilä
for advice in data processing. The authors would also like to thank Kari T.
Korhonen for helpful discussions.

Funding
Henrike Häbel, Mikko Kuronen and Helena Henttonen were financially
supported by the Academy of Finland (Project Number 304212) and Mari
Myllymäki similarly by the Academy of Finland (Project Numbers 295100 and
306875).

Availability of data andmaterials
The data is not owned by the authors and cannot be shared. The R code is
available upon request.

Authors’ contributions
All authors were involved in planning and conducting the study as well as
writing the manuscript. HH conducted the classification, statistical analysis and

most of the manuscript writing. MK did the variance and cost calculations.
HMH was responsible for the data management. AK mainly contributed to the
background and discussion. MM was the principal investigator of this study,
had acquired the funding, and supervised HH and MK. All authors read and
approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790
Helsinki, Finland. 2Natural Resources Institute Finland (Luke), Yliopistokatu 6,
80100 Joensuu, Finland.

Received: 19 November 2018 Accepted: 19 February 2019

References
Adnan S, Maltamo M, Coomes D, Valbuena R (2017) Effects of plot size, stand

density, and scan density on the relationship between airborne laser
scanning metrics and the gini coefficient of tree size inequality. Can J
Forest Res 47(12):1590–1602

Baddeley A, Rubak E, Turner R (2015) Spatial Point Patterns: Methodology and
Applications with R. Chapman and Hall/CRC Press, London

Chiu SN, Stoyan D, Kendall WS, Mecke J (2013) Stochastic Geometry and its
Applications. 3rd edn. Wiley, Chichester

Core Team R (2018) R: A Language and Environment for Statistical Computing,
Vienna. https://www.R-project.org/

Eerikäinen K, Valkonen S, Saksa T (2014) Ingrowth, survival and height growth
of small trees in uneven-aged picea abies stands in southern finland.
Forest Ecosystems 1:5. https://doi.org/10.1186/2197-5620-1-5

Forest Act (2013). http://www.finlex.fi/fi/laki/kaannokset/1996/en19961093.pdf
Häbel H, Balázs A, Myllymäki M (2018) Spatial analysis of airborne laser

scanning point clouds for predicting forest variables. arXiv:1805.08907
[stat.AP]., https://arxiv.org/abs/1805.08907

Henttonen HM, Kangas A (2015) Optimal plot design in a multipurpose forest
inventory. Forest Ecosystems 2(1):1–14. https://doi.org/10.1186/s40663-
015-0055-2

Hökkä H, Koivusalo H, Ahti E, Nieminen M, Laine J, Saarinen M, Laurén A, Alm J,
Nikinmaa E, Klöve B, Marttila H (2008) Effects of tree stand transpiration
and interception on site water balance in drained peatlands: experimental
design and measurements. In: Farrell C, Feehan J (eds). After Wise Use -
The Future of Peatlands, Proceedings of the 13th International Peat
Congress, Tullamore, vol. 2. pp 169–171

Horvitz DG, Thompson DJ (1952) A generalization of sampling without
replacement from a finite universe. J Am Stat Assoc 47(260):663–685.
https://doi.org/10.1080/01621459.1952.10483446

Kangas A, Astrup R, Breidenbach J, Fridman J, Gobakken T, Korhonen KT,
Maltamo M, Nilsson M, Nord-Larsen T, Næsset E, Olsson H (2018) Remote
sensing and forest inventories in nordic countries - roadmap for the future.
Scand J Forest Res 33(4). https://doi.org/10.1080/02827581.2017.1416666

Kreutz A, Aakala T, Grenfell R, Kuuluvainen T (2015) Spatial tree community
structure in three stands across a forest succession gradient in northern
boreal fennoscandia. Silva Fenn 49(2):397–412. https://doi.org/10.14214/sf.
1279

Mäkinen H, Isomäki A (2004) Thinning intensity and growth of scots pine
stands in finland. Forest Ecol Manag 201(2–3):311–325. http://dx.doi.org/
10.1016/j.foreco.2004.07.016

Mandallaz D (2007) Sampling Techniques for Forest Inventories. CRC Press,
Boca Raton

Mandallaz D, Ye T (1999) Forest inventory with optimal two-phase, two-stage
sampling schemes based on the anticipated variance. Scand J Forest Res
29(11):1691–1708

Næsset E (2004) Practical large-scale forest stand inventory using a
small-footprint airborne scanning laser. Scand J Forest Res 19(2):164–179.
https://doi.org/10.1080/02827580310019257

https://www.R-project.org/
https://doi.org/10.1186/2197-5620-1-5
http://www.finlex.fi/fi/laki/kaannokset/1996/en19961093.pdf
https://arxiv.org/abs/1805.08907
https://doi.org/10.1186/s40663-015-0055-2
https://doi.org/10.1186/s40663-015-0055-2
https://doi.org/10.1080/01621459.1952.10483446
https://doi.org/10.1080/02827581.2017.1416666
https://doi.org/10.14214/sf.1279
https://doi.org/10.14214/sf.1279
http://dx.doi.org/10.1016/j.foreco.2004.07.016
http://dx.doi.org/10.1016/j.foreco.2004.07.016
https://doi.org/10.1080/02827580310019257


Häbel et al. Forest Ecosystems             (2019) 6:8 Page 11 of 11

Packalen P, Vauhkonen J, Kallio E, Peuhkurinen J, Pitkänen J, Pippuri I, Strunk J,
Maltamo M (2013) Predicting the spatial pattern of trees by airborne laser
scanning. Int J Remote Sens 34(14):5154–5165. https://doi.org/10.1080/
01431161.2013.787501

Päivinen R (1987) Metsän inventoinnin suunnittelumalli. [A planning model for
forest inventory, In Finnish]. 11th edn. University of Joensuu publications in
Sciences, University of Joensuu, Joensuu

Pippuri I, Kallio E, Maltamo M, Peltola H, Packalén P (2012) Exploring horizontal
area-based metrics to discriminate the spatial pattern of trees and need for
first thinning using airborne laser scanning. https://doi.org/10.1093/
forestry/cps005

Therneau T, Atkinson B, Ripley B (2017) rpart: Recursive Partitioning and
Regression Trees.,. https://CRAN.R-project.org/package=rpart, r package
version 4.1-11

Tomppo E (1986) Models and methods for analysing spatial patterns of trees.
Communicationes Instituti Forestalis Fenniae 138

Tomppo E, Gschwantner T, Lawrence M, McRoberts RE (eds) (2010) National
Forest Inventories. Pathways for Common Reporting. Springer, Heidelberg

Tomppo E, Heikkinen J, Henttonen HM, Ihalainen A, Katila M, Mäkelä H,
Tuomainen T, Vainikainen N (2011) Designing and Conducting a Forest
Inventory - case: 9th National Forest Inventory of Finland. Springer,
Dordrecht

Tomppo E, Kuusinen N, Mäkisara K, Katila M, McRoberts RE (2016) Effects of
field plot configurations on the uncertainties of ALS-assisted forest
resource estimates. Scand J Forest Res 32(6):488–500. https://doi.org/10.
1080/02827581.2016.1259425

Zeide B (1980) Plot size optimization. Forest Sci 26(2):251–257

https://doi.org/10.1080/01431161.2013.787501
https://doi.org/10.1080/01431161.2013.787501
https://doi.org/10.1093/forestry/cps005
https://doi.org/10.1093/forestry/cps005
https://CRAN.R-project.org/package=rpart
https://doi.org/10.1080/02827581.2016.1259425
https://doi.org/10.1080/02827581.2016.1259425

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Materials
	Erika
	Harkas
	Inari
	Multia
	Various additional data sets

	Sample plot types and sizes
	Precision of forest resource estimation
	Costs for the comparison of sample plot types and sizes
	Classification of forest structure

	Results
	Relationship between spatial structure and stand variables
	The effect of spatial structure on precision and costs
	The effect of minimum dbh on spatial structure and change estimation

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References

