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Abstract

Background: Soil organic carbon (SOC) is a large reservoir of terrestrial carbon (C); it consists of different fractions
of varying complexity and stability. Partitioning SOC into different pools of decomposability help better predict the
trend of changes in SOC dynamics under climate change. Information on how physical fractions and chemical structures
of SOC are related to climate and vegetation types is essential for spatial modelling of SOC processes and responses to
global change factors.

Method: Soil samples were collected from multiple representative forest sites of three contrasting climatic zones (i.e. cool
temperate, warm temperate, and subtropical) in eastern China. Measurements were made on SOC contents and physical
fractions of the 0–20 cm soil layer, and the chemical composition of SOC of the 0–5 cm soil layer, along with
measurements and compilation of the basic site and forest stand variables. The long-term effects of temperature, litter
inputs, soil characteristics and vegetation type on the SOC contents and factions were examined by means of “space
for time substitution” approach and statistical analysis.

Result: Mean annual temperature (MAT) varied from 2.1 °C at the cool temperate sites to 20.8 °C at the subtropical
sites. Total SOC of the 0–20 cm soil layer decreased with increasing MAT, ranging from 89.2 g·kg− 1 in cool temperate
forests to 57.7 g·kg− 1 in subtropical forests, at an average rate of 1.87% reduction in SOC with a 1 °C increase in MAT.
With increasing MAT, the proportions of aromatic C and phenolic C displayed a tendency of decreases, whereas the
proportion of alkyl C and A/O-A value (the ratio of alkyl C to the sum of O-alkyl C and acetal C) displayed a tendency of
increases. Overall, there were no significant changes with MAT and forest type in either the physical fractions or the
chemical composition. Based on the relationship between the SOC content and MAT, we estimate that SOC
in the top 20 soil layer of forests potentially contribute 6.58–26.3 Pg C globally to the atmosphere if global
MAT increases by 1 °C–4 °C by the end of the twenty-first century, with nearly half of which (cf. 2.87–11.5 Pg C) occurring
in the 0–5 cm mineral soils.

Conclusion: Forest topsoil SOC content decreased and became chemically more recalcitrant with increasing MAT,
without apparent changes in the physical fractions of SOC.
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Background
Changes in soil organic carbon (SOC) with climatic factors
and vegetation have been a subject of broad interest in
assessing the impact of global change on ecosystem C bal-
ance and in devising management strategies for sequestrat-
ing carbon dioxide (CO2) using natural systems. Soil stores
about three quarters of the organic carbon contained in
terrestrial ecosystems, and climate-driven changes to this
pool could have a large impact on atmospheric CO2 (Smith
et al. 2008; Stockmann et al. 2013). The fact that some por-
tions of the SOC pool can persist for millennia while others
decompose readily can obscure our understanding of the
mechanisms controlling the SOC storage (Lützow et al.
2007; Schmidt et al. 2011). Previous studies have indicated
that both biochemical resistance and physicochemical pro-
tection contribute to differences in decomposability of
SOC (see reviews by Lützow et al. 2007; Schmidt et al.
2011). Partitioning SOC into different pools of decompos-
ability could help better predict the dynamics of SOC
under climate change (Lützow et al. 2007; Kleber 2010).
However, little information is available on how physical
fractions and the chemical structures of SOC are related to
climate and vegetation types, especially for forest soil,
which makes up 39% of global soil carbon storage (Watson
et al. 2000).
SOC is commonly partitioned into three fractions dif-

fering in decomposability and protection mechanisms:
active or labile, intermediate or slow, and stable or pas-
sive (Sollins et al. 1996; Mayer 2004; Lützow et al. 2006;
Schmidt et al. 2011) (Fig. 1). Chemically, the active fractions
refer to labile SOC consisting of hydrolysable chemical
bonds of saccharides, proteins and their decomposed prod-
ucts; the stable fraction is usually made up of recalcitrant
SOC compounds including aromatic or other macromole-
cules derived from lignin, lipids, waxes, suberins, cutins
and pyrogenic organic carbon from thermal degrad-
ation (Derenne and Largeau 2001; Lützow et al. 2006;
Knicker 2011; Paul 2016). Solid-state 13C cross polarization
nuclear magnetic resonance (CP-MAS NMR) spectroscopy
can determine the chemical composition of SOC by quanti-
fying the distribution of different carbon compounds and
allow comparisons of decomposability among soil samples
(Kögel-Knabner 1997; Conte et al. 2002; Pisani et al. 2014).
Physically, stable SOC is protected by bonding to soil min-
eral particles by ligand exchange, polyvalent cation bridges,
Van der Waals forces, and H-bonding etc. (Jastrow and
Miller 1997; Six et al. 2002a; Eusterhues et al. 2003; Lützow
et al. 2006; Dungait et al. 2012); the intermediate or slow
SOC is the occluded particle organic matter (POM) which
is isolated by aggregation formation (Christensen 2001; Six
et al. 2002b, 2004; Lützow et al. 2006; Gupta and Germida
2015); and the active SOC is non-protected and its decom-
posability is considered to be determined by chemical struc-
tures (Sollins et al. 1996; Mayer 2004; Lützow et al. 2006;

Schmidt et al. 2011). The protection occurs in ways of
blockage of microbial access and reduced diffusion of en-
zyme and oxygen into the intro-aggregate space (see review
by Lützow et al. 2006). Fractionation of SOC can identify
the type of physical protection (Golchin et al. 1994; Six et
al. 2002a, 2002b, 2004; Lützow et al. 2007; Paul 2016). Pre-
vious studies have shown that SOC associated with clay
and silt has older age or longer turnover time than the
non-protected SOC (Chenu and Stotzky 2002; Eusterhues
et al. 2003; Lützow et al. 2006; Wagai et al. 2009).
Many factors can affect SOC stocks and composition.

Climate affects forest SOC by shaping both SOC input
(changing plant productivity) and output (affecting soil
microbial and faunal metabolism) (Fig. 1); the overall
response of SOC to climate change depends on the bal-
ance between these two processes (Smith et al. 2008;
Stockmann et al. 2013). However, most researches on
responses of SOC to warming have primarily focused on
decomposition, neglecting the SOC input (Bradford et
al. 2016). How and to what extent climate regulates for-
est SOC fractions and chemical structures are still under
debate. There are believes that, as mean annual
temperature (MAT) rises, the labile forest SOC is more
easily decomposed and the recalcitrant SOC compo-
nents tend to accumulate, making the SOC pool overall

Fig. 1 Conceptual diagram illustrating how climate, vegetation, and
soil characteristics affect SOC pools in forest ecosystems

Sun et al. Forest Ecosystems             (2019) 6:1 Page 2 of 12



more resistant to decomposition (Garten and Hanson
2006; Fissore et al. 2008; Garten 2011; Du et al. 2014;
Pisani et al. 2014; Tian et al. 2016). Some are of the view
that the recalcitrant forms of SOC would have similar
sensitivity or are more sensitive to temperature than the
labile forms (Fierer et al. 2005; Fang et al. 2005; Conen
et al. 2006). The contrasting views might arise by consid-
ering the temperature sensitivity based on decomposition
of compounds versus that inferred from pool behavior.
Temperature sensitivity of decomposition reactions does
increase with the compound complexity, much of the re-
calcitrant pool is physically protected from decomposition
(Davidson and Janssens 2006; Conant et al. 2011), yielding
little or no change of SOC in response to MAT (Giardina
and Ryan 2000).
Vegetation affects the SOC pool size through differen-

tial quantity and quality of organic matter inputs and
modification of soil microbial community composition
(Quideau et al. 2001; Stockmann et al. 2013; You et al.
2014; Castellano et al. 2015) (Fig. 1). Although it is generally
believed that the physio-chemical protection, not the initial
chemical composition, may be the dominant factor control-
ling SOC decomposition (Lützow et al. 2007; Schmidt et al.
2011), litter quality can affect SOC stabilization by affecting
the microbial processes in the initial decomposition stage
(Prescott et al. 2000; Pisani et al. 2013; Castellano et al.
2015; Wang et al. 2015, 2016; Zhang and Zhou 2018).
Vegetation community structure may also affect SOC pool
size by altering both micro-environment and soil charac-
teristics (You et al. 2014).
Soil characteristics such as mineral type, pH and texture

can affect SOC composition. Soil mineralogy alters the
chemical protection of SOC by controlling the number
and type of chemical bonds formed with organic carbon
(Lützow et al. 2006; Jones and Singh 2014; Johnson et al.
2015; Paul 2016). In acidic soil, mineral particles with Fe,
Al and Mn oxides bind with organic carbon through lig-
and exchange, protecting the SOC from decomposition
(Mikutta et al. 2006; Kögel-knabner et al. 2008; Jones and
Singh 2014). Binding of SOC (usually the alky-C) with clay
particles usually leads to a longer mean residence time
(MRT) compared to SOC binding with larger soil particles
(Lützow et al. 2006; Paul 2016). However, there are re-
search findings indicating that soil characteristics would
also be affected by climate (Mathieu et al. 2015), and soil
pH and cation exchange capacity (CEC) may both decline
with increasing MAT (Fissore et al. 2008).
Here we compared the physical fractionations and

chemical composition of SOC in the 0–20 cm layer of
the mineral soil in eight wet forests for three climatic
zones in China to address three questions: 1) In forests
rarely experiencing soil water deficit, does SOC and its
physical and chemical fractions vary across forest sites
differing in MAT? 2) Can any pattern of SOC and its

fractions with temperature across sites be isolated solely to
temperature, or do other factors, such as vegetation type,
organic matter inputs or soil texture, help determine the
pattern? 3) Can the patterns of SOC and its physical or
chemical fractions with MAT suggest how SOC might
change with climate warming? We hypothesized that: 1) as
SOC decomposition is predominantly a microbial-driven
process, increases in temperature would facilitate soil micro-
bial activities and the kinetics of soil extracellular enzymes,
thereby causing declines in forest SOC stocks along the
gradient of increasing MAT (Davidson and Janssens 2006;
Conant et al. 2011; Stockmann et al. 2013); and 2) because
of the differences in physical protection and/or chemical
recalcitrance, changes in MAT of the study sites would lead
to differential partitioning of SOC fractions such that the
higher MAT sites would have greater proportions of physic-
ally protected SOC fractions and C compounds of greater
chemical stability compared with the lower MAT sites.

Materials and methods
Study sites
Our study sites extend across three distinct climatic zones
in China, including the Dinghu Mountains National Nature
Reserve (23.09°N, 111.30°E) of subtropical climate (MAT of
20.8 °C, mean annual precipitation (MAP) of 1990mm), the
Baotianman National Nature Reserve (33.20°N, 111.46°E) of
warm temperate climate (MAT of 15.1 °C, MAP of 855
mm), and the Changbai Mountains National Nature Reserve
(41.41°N, 127.42°E) of cool temperate climate (MAT of
2.1 °C, MAP of 740 mm) (Table 1). These sites belong
to Chinese humid zones (Zhao et al., 2010), and rarely
experience soil water deficit.
The subtropical site has three forest communities: a

mature monsoon evergreen broadleaved forest protected
from anthropogenic disturbance for more than 400 years
with an overstory dominated by Castanopsis chinensis,
Schima superba and Cryptocarya chinensis, a mixed
pine-broadleaved forest existed for 60 years and originated
from a planted Pinus massoniana that was naturally colo-
nized by broadleaf species, and a conifer forest of Pinus
massoniana (Zhou et al. 2005; Zhang et al. 2013). The
warm temperate site has both natural deciduous broad-
leaved forests dominated by Quercus aliena, and mixed for-
ests of Quercus aliena and Pinus armandii that developed
from plantations established around 1956 (You et al. 2014,
2016; Wang et al. 2015). The cool temperate sites contains
coniferous forests with Picea jezoensis, Abies nephrolepis
and Larix olgensis in the overstory, mixed conifer broad-
leaved forests with Pinus koraiensis, Tilia amurensis, Acer
mono, and Fraxinus mandshuric in the overstory, and
broadleaf forests that regenerated after logging in the Pinus
koraiensis forests, commonly with an overstory of Betula
platyphylla and Populus davidiana (Wang et al. 2004; Liu
et al. 2009; Yang et al. 2010).
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Climate and soils of the eight representative forests are
described in Table 1. Five 20 m × 20m plots were estab-
lished and sampled for each forest type within each cli-
matic zone. The plot locations were determined within a
representative forest stand and kept at least 0.5 km apart
from each other. The soil effective Fe content was ex-
tracted by 50mL 0.1M HCl in of 10 g soil sample and
tested by inductively coupled plasma atomic emission
spectrometry (ICP-AES) (ICAP-9000, Jarrell-Ash, USA),
and soil texture was identified by wet sieve (to separate
sand fraction) and centrifugation (to separate clay and
slit fraction). We also conducted literature search and
collected published data required in our study.

Soil sampling
Soil samples were collected once from five plots in each of
the eight forest ecosystems across the three climatic zones
from May to June of 2013. In each plot, twenty-four soil
cores of 0–5, 5–10 and 10–20 cm mineral soil layers were
collected with a stainless-steel soil sampler (3-cm inner-
diameter) following an “S” path. Individual soil cores from
the same plot were mixed to form a single composite
sample, sieved to pass a 2-mm mesh, and air dried.

Physical fractionation of SOC
To better understand how soil stabilization differed
with site (climate) and forest type, we partitioned the
SOC pool into three physical fractions of organic car-
bon (OC): mineral (bound) OC, free OC and occluded
OC (Golchin et al. 1994; Lützow et al. 2007). The min-
eral OC refers to the fraction of SOC bonded to soil silt
and clay particles (< 53 μm), and represents the most
stable component of SOC. The mineral OC was esti-
mated by dispersion with 50 mL of 6% H2O2 and 50 mL
of 0.5 mol∙L− 1 NaOH and filtration by a 53 μm filter
(Mikutta et al. 2005). The residue passing through the
filter was collected as the mineral-bound SOC, dried at
40 °C and weighed. The free OC is the light fraction of
SOC, which occurs as the most labile carbon pool. The
free OC fraction was determined by density fraction-
ation with sodium iodide at a density < 1.6 g·cm− 3 (NaI)
(Sollins et al. 2006). The suspended material (density <
1.6 g·cm− 3 fraction) was filtered under suction and the
filter residue was collected, dried at 40 °C, and weighed
to estimate the free OC. The occluded OC is the frac-
tion of SOC protected in soil aggregates, calculated as
the difference between the total SOC and the sum of
free OC and mineral OC, and represents the SOC of
intermediate decomposability.
The C content for the free OC, the mineral OC, and the

original soil samples were analyzed by the K2Cr2O7-H2SO4

calefaction method (Nelson and Sommers 1982).

SOC chemical composition
Solid-state 13C CPMAS NMR was used to determine the
chemical composition of SOC in the 0–5 cm soil layer,
as this layer had the highest SOC content. The NMR
spectra were obtained at a frequency of 100.38MHz on
a Bruker Avance III 400M with a 4 mm MAS probe
(Bruker Avance III 400M, Bruker, Switzerland). To re-
duce the paramagnetic material and increase the organic
matter content, 50 mL of 10% hydrofluoric acid (HF)
was added to 5 g soil sample, the suspension was shaken
for one hour, centrifuged for 10 min at 3000 rpm∙min− 1,
and the supernatant discarded, this procedure was re-
peated eight times, and the precipitate was then washed
four times by distilled water and dried at 40 °C (Schmidt
et al. 1997). In the 13C CPMAS NMR operations, this
HF-pretreated soil sample material was spun at 5 kHz in
a ZrO2 rotor (o.d. = 4 mm) at the magic angle with a
contact time of 3 ms and a recycle delay time of 1 s. The
chemical shift reference was glycine (176.03 ppm). Spin-
ning side-bands were eliminated using the total suppres-
sion of side bands (TOSS) sequence.
The 13C CPMAS NMR spectra were plotted between

− 100 and 300 ppm, and spectra were divided into six
chemical shift regions representing alkyl C (10–45 ppm),
O-alkyl C (45–90 ppm), acetal C (90–110 ppm), aromatic
C (110–140 ppm), phenolic C (140–160 ppm), and carb-
oxyl C (160–200 ppm; Baldock et al. 1990). The labels
assigned to each region are considered to be only indica-
tive of the dominant C type present. The total signal in-
tensity and the proportion contributed by each C type
were determined by integration of spectral regions. Alkyl
C (10–45 ppm) is commonly derived from long-chain
lipids and aliphatic biopolymers, such as suberin, cutin
and resin, and it is considered to be the most stable part
of SOC (Skjemstad et al. 1983; Oades 1995; Kögel-Knabner
1997; Krull and Skjemstad 2003). O-alkyl C (45–90 ppm)
generally consists of proteinaceous structures and sec-
ondary alcohols, and acetal C (90–110 ppm) represents
deoxygenated (anomeric) polysaccharides. Both are de-
rived from cellulose and other carbohydrate decompos-
ition and are readily decomposed (Baldock et al. 1990;
Krull and Skjemstad 2003). The aromatic (110–140
ppm) and phenolic (140–160 ppm) regions are derived
from lignin, tannins and charcoal, and are difficult to
decompose (Skjemstad and Dalal 1987; Skjemstad et al.
1996; Krull and Skjemstad 2003). Carbonyl C (160–200
ppm) typically consists of amides, carboxylic acids and
esters which can be readily decomposed (Baldock et al.
1990; Krull and Skjemstad 2003). We calculated the ra-
tio of alkyl C to the sum of O-alkyl C and acetal C (A/
O-A) as an index of the decomposition state of SOC;
and high values of A/O-A represent highly decomposed
SOC; this index is positively correlated to SOC stability
(Wang et al. 2010; Du et al. 2014).
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Statistical analyses
Because site was confounded with climate, we considered
the different site-vegetation-types (n = 8) as the sample
unit for testing the effects of MAT and vegetation type on
the total SOC, chemical composition and physical frac-
tions with ANOVA. If significant ANOVA differences
were present for the effect of MAT, we used an orthogonal
polynomial contrast to test for a linear pattern. All data
were analyzed using SPSS Version 19.0 with α < 0.05 for
accepting significance, unless otherwise specified.

Results
Site and soil characteristics
MAP for the past 20 years varied from 690 to 850mm at
the coolest site to about 2000mm at the warmest site
(Table 1). SOC concentration of the mineral soil in the
0–20 cm layer varied across sites and vegetation types,
ranging from 54.9 to 104.2 g·kg− 1, and total soil N was
highly correlated with SOC (r = 0.97). Soils were mostly
silt (65% averaged across sites), with the sand fraction
varying from 6.1% to 45.1% and the clay fraction varying
from 4.8% to 13.7% across sites (Table 1).

Variations of the total SOC and fractions with mean
annual temperature (MAT)
The total SOC concentration in the mineral soil of the
0–20 cm layer differed among locations (p = 0.04) and
had a negative linear relationship with MAT (p = 0.01;
Fig. 2a). The value of total SOC concentration was 57.7
g·kg− 1 at the warmest site, 35% lower than the SOC con-
centration of 89.2 g·kg− 1 at the coolest site. A linear fit

to the MAT gradient gave an average rate of reduction
in the total SOC of 1.87% with 1 °C increase in MAT.
All three physical fractions of total SOC trended lower
as MAT increased (32%–41% lower in the warmest sites
versus the coolest sites; Fig. 2a), but differences among
the sites of different climates were not significant (p >
0.06); fraction composition as percentage of total SOC
did not differ among sites (p > 0.76). When pooling the
data for all the forest sites (n = 8), SOC and all its three
physical fractions had significantly negative linear rela-
tionships with MAT (p < 0.01).
Among the three subdivided soil layers, only the 0–5 cm

layer displayed a significant decrease (p = 0.01; Fig. 2b) in
the total SOC with increasing MAT, at an average rate of
2.91% reduction with a 1 °C increase in MAT. The phys-
ical fractionations of the different soil layers did not vary
across sites, except for the occluded OC in the 10–20 cm
layer being highest at the sites with MAT of 15.1 °C (p =
0.046; Fig. 2d).
The chemical composition of 0–5 cm SOC, inferred by

the proportion of each chemical fraction in total SOC, did
not differ among forest types (p > 0.26) or vary with MAT
(Figs. 3 and 4). SOC was mostly composed of O-alkyl C
(mean = 32%) and alkyl C groups (mean = 26%), followed
by aromatic and carbonyl C (mean = 13% both), acetal C
(mean = 9%), and phenolic C (mean = 8%). The percentages
of aromatic C and phenolic C have a tendency of decreases
with MAT, while the percentage of alkyl C and the value of
A/O-A showed a tendency of insignificant increases (p >
0.13, Fig. 5). When pooling the data for all the forest sites
(n = 8), alkyl C and A/O-A value had significantly negative

Fig. 2 Variations in the concentrations of total SOC and physical fractions with MAT. a 0–20 cm layer; (b) 0–5 cm layer; (c) 5–10 cm layer; and (d)
10–20 cm layer. Values are averages across forest types within climatic zones. Vertical bars indicate standard errors of means (n = 3 for the cool
temperate and subtropical sites, and 2 for the warm temperate sites)
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linear relationships with MAT (p < 0.05) and aromatic
C had a significantly positive relationship with MAT
(p < 0.01).

Are factors other than temperature important in the MAT
response of SOC?
Averaged across the sites of different climates, SOC con-
centration showed no apparent pattern with vegetation
types. The total SOC concentration and the concentra-
tion of mineral OC, free OC and occluded OC fractions
did not differ among forest types for either the whole
profile of 0–20 cm soil layer or the subdivided soil layers
of 0–5, 5–10 and 10–20 cm (p > 0.98; Fig. 6).
The decreasing pattern in total SOC concentration

with MAT across sites of different climates was accom-
panied by changes in the organic matter input (litter)
and output (soil microbial respiration) and soil charac-
teristics (effective Fe content). Both annual litterfall and
soil microbial respiration increased with MAT (linear

orthogonal contrast p = 0.01 and 0.02; Fig. 7a and b), evi-
dence that a decrease in SOC concentration with MAT
did not result from the changes in either organic matter
input or output, but a balance between the input and
the output.
The soil effective Fe content also increased with increas-

ing MAT (linear orthogonal contrast p = 0.02; Fig. 5f), but
soil clay content did not vary with MAT (linear orthog-
onal contrast p > 0.51; Fig. 7c).

Discussion
There have been some on-going debates as what con-
trols the decomposability of SOC. And results from pre-
vious studies demonstrated either declining forest SOC
with increasing MAT (Bird et al. 2002; Garten and Han-
son 2006; Raich et al. 2006; Fissore et al. 2008; Garten
2011) or no significant variations in the total SOC stocks
with MAT (Trumbore et al. 1996; Giardina and Ryan
2000; Plante et al. 2006; Zimmermann et al. 2010). This
contradiction might be due to that warmer climate often
lend to increases in both plant productivity (SOC input)
and soil respiration (SOC output), changes in the SOC
stock with temperature are determined by the balance of
SOC gain through increased productivity and SOC loss
through soil respiration (Raich et al. 2006; Smith et al.
2008; Ziegler et al. 2017). Results in this study also show
that the decreasing SOC with MAT is associated with
increases in both annual litterfall and soil microbial respir-
ation. So our findings of decreasing total SOC with in-
creasing MAT suggest greater impacts of warming on
accelerating SOC decomposition than on increasing SOC
input in Chinese wet forests.
All physical fractions and chemical fractions of total

SOC were not significantly different among the sites of
different climates. However, when data were pooled for
all the study sites, we found significant relationships in
some of variables of the physical and chemical fractions

Fig. 3 13C NMR spectrum of 0–5 cm soil layer across eight forest
sites in three climatic zones

Fig. 4 Variations in the proportion of different chemical fractions across eight forests in three climatic zones. Values are averages of sampling
plots for each forest type within climatic zones. Vertical bars indicate standard errors of means (n = 5)
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with MAT, with inferences to increased proportion of
physically and chemically more stable SOC with increas-
ing MAT of the forest sites. With increasing MAT, the
proportions of aromatic C and phenolic C had a ten-
dency of decreases, whereas the proportion of alkyl C
and A/O-A value trended higher. As aromatic C is inter-
mediately decomposable and concentrated in the oc-
cluded OC pool, and alkyl C percentage and the A/O-A
value are positively related to stable soil C (Skjemstad et
al. 1983; Oades 1995; Kögel-Knabner 1997; Krull and
Skjemstad 2003; Courtier-Murias et al. 2013; Du et al.
2014), our results suggest preferential preservation of C
compounds of higher stability with warmer climate. This is
supported by findings from some recent studies (Garten
and Hanson 2006; Fissore et al. 2008; Garten 2011; Du et
al. 2014; Pisani et al. 2014; Tian et al. 2016). Findings largely
vary in literature in the temperature response of SOC frac-
tions. Garten (2011) reported that, in the top soil of five for-
est sites along a latitudinal gradient with MAT from 6.2 °C
to 14.6 °C in North American, the labile POM content de-
creased by 26% with increasing MAT, but the mineral OC
did not show a linear relationship with MAT. Fissore et al.

(2009) studied the subpools of SOC across 26 sites under
hardwood or pine forests with MAT ranging from –2 °C to
20 °C in North America using incubation and chemical
methods, and found that only the active SOC decreased
strongly with increasing MAT, while slow and acid insol-
uble SOC showed no significant relationships with MAT.
Hakkenberg et al. (2008) determined the turnover time of
different SOC fractions in 11 forests along a MAT gradient
from 4.2 °C to 11.8 °C, with findings that the turnover
time of heavy and light fractions (stabilized and inter-
mediate pools) decreased at about 8%–16% and 4%–
11%, respectively, with a 1 °C increase in MAT. The in-
consistency among studies in the relationship of the
total SOC or its fractions with temperature may arise from
complex mechanisms controlling SOC stocks and pro-
cesses. The mechanisms of temperature response may vary
with the type of SOC fractions. The free OC is physically
unprotected and can be temperature sensitive as its
enzyme-controlled decomposition increases at higher
temperature (Davidson and Janssens 2006; Conant et al.
2011). In contrast, the response of mineral associated SOC
to higher temperature may differ with mineral types and

Fig. 5 Variations in (a) percentage of aromatic C; (b) percentage of phenolic C; (c) total SOC content; (d) percentage of alkyl C; (e) A/O-A value;
and (f) effective Fe content with MAT. Values are averages across forest types within climatic zones. Vertical bars indicate standard errors of
means (n = 3 for the cool temperate and subtropical sites, and 2 for the warm temperate sites)
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bond type (Conant et al. 2011). While several types of
mineral-OC bonds would desorb with warmer tempera-
tures, stronger ligand exchange bonding might also occur
(ten Hulscher and Cornelissen 1996; Pignatello 1999;
Conant et al. 2011). The mechanism of the temperature re-
sponse in aggregated OC is unclear (Plante et al. 2009).
We found no apparent effects of forest type on the total

SOC and its physical fractions and chemical groups.
Among the soil variables studied, only the effective Fe,
which is often positively related to soil mineral OC
(Mikutta et al. 2006; Kögel-Knabner et al. 2008; Jones and
Singh 2014), displayed a similar trend with changes in the
proportion of alkyl C and the A/O-A value with MAT.
The soil clay content, which is commonly positive related
with stable SOC (Lützow et al. 2006; Plante et al. 2006;
Jones and Singh 2014), did not vary with MAT. Therefore,
the declining SOC with increasing MAT is predominantly
a temperature response.
In this study, the effects of vegetation and water limita-

tion were controlled by including broadleaf forest, conifer
forest and mixed-wood forest and restricting the study sites
to humid regions. There possibly exist other confounding
factors such as differences in soil types, pedology, and
microbial communities resulting from geographical separa-
tions and long-term climatic influences. However, our la-
boratory testing indicated that SOC mineralization was
mostly affected by initial soil substrate (Tang et al. 2018).

Matching laboratory-derived carbon fractions with the
SOC models might better predict changes in SOC with
climate (Motavalli et al. 1994; Smith et al. 2002; Poeplau
et al. 2013). However, evidence for that contention is
mixed. The current study did not reveal a clear and
straightforward relationship between SOC composition
and its temperature response. Therefore, the patterns of
total SOC and its fractionations with MAT are insuffi-
cient in informing how SOC might change with climate
warming. Integrating information of soil physiochemical
properties, SOC fractionations and their interactions
with decomposer communities could help to achieve a
better understanding in SOC dynamics with changing
environmental conditions (You et al. 2014, 2016).
Globally, forest soil stores about 704 Pg organic carbon

(Lal 2005), about 50% of which is in the top 20 cm soil
layer and 14% in the 0–5 cm mineral soil layer (Jobbágy
and Jackson 2000). If the relationship for SOC found
across sites with different MAT holds for other forested
sites, we estimate that by end of the twenty-first century,
the top 20 cm mineral soil (1.87% reduction rate) in for-
ests worldwide would contribute from 6.58 Pg C to the
atmosphere under RCP 2.5 (1 °C increase in global mean
air temperature with stringent GHG mitigation), to as
much as 26.3 Pg C under RCP 8.5 (4 °C increase in global
mean air temperature with very high GHG emissions). By
considering only the top 5 cm soil layer, the loss of SOC

Fig. 6 Variations in the concentrations of total SOC and physical fractions among forest types. a 0–20 cm layer; (b) 0–5 cm layer; (c) 5–10 cm
layer; (d) 10–20 cm. Values are averages of the same forest types across climatic zones. Vertical bars indicate standard errors of means (n = 3 for
broadleaf and mixed forest, and 2 for conifer forest)

Sun et al. Forest Ecosystems             (2019) 6:1 Page 9 of 12



would range from 2.87 Pg C under RCP 2.5 to 11.5 Pg C
under RCP 8.5.
By any means of accounting, the contribution of forest

soils to the atmosphere resulting from warming would
likely outweigh the current terrestrial plant uptake from
forest regrowth. A marked shift in carbon balance between
forest ecosystems and the atmosphere would impose posi-
tive feedback to global climate change. Our overall findings
raise a key issue of consideration in managing forests for
carbon sequestration, and highlight the need in techno-
logical development for stabilizing forest SOC with chan-
ging climate.

Conclusion
We assessed the long-term effects of temperature, litter
inputs, soil characteristics and vegetation type on the
SOC content of the 0–20 cm soil layer and its fractions

across three wet forested sites of contrasting climatic
zones in China. The total forest SOC in the 0–20 cm soil
declined with increasing MAT, and annual litterfall and soil
microbial respiration increased with increasing MAT. A
preferential preservation of C compounds of higher stability
with warmer climate was found, and this might be caused
by easily decomposed labile SOC and accumulated recalci-
trant SOC components with increasing temperature. We
found no apparent effects of forest type on the total SOC
and its physical fractions and chemical groups, and only the
effective Fe displayed a similar trend as the proportion of
alkyl C and the A/O-A value with MAT.
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