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Abstract

Background: Accurate downed woody debris (DWD) volume or mass estimates are needed for numerous
applications such as fuel loading, forest carbon, and biodiversity/habitat assessments. The line-intersect sampling
(LIS) method of inventorying DWD is widely used in forest inventories and ecological studies because it is time-
efficient and unbiased. Despite its widespread use, the appropriate transect length needed to achieve a desired
precision at a particular location has received relatively little attention.

Methods: We conducted intensive LIS sampling at 33 locations representing eight mature or old-growth forest
types in northeastern USA, providing a range of forest conditions and DWD volumes (from 17 to 323 m3∙ha− 1). We
used these empirical field data to test, through simulations, the effect of increasing transect length (up to 340 m at
each location) on precision of associated LIS volume estimates. Importantly, we used a novel application of copula
models to account for within-transect spatial autocorrelation of DWD volumes during our simulations, thereby
properly addressing variance estimates.

Results: As expected, precision consistently improved with increasing cumulative transect length, and locations
with lower DWD volumes required longer transects to achieve a given level of precision. We developed models
relating precision, transect length, and DWD volume that allows us to gauge a suitable LIS transect length for
desired precision levels.

Conclusions: LIS provides an attractive method for estimating DWD volume for a given localized area of interest.
For the forest types sampled here, and for the particular copula model framework employed, transect lengths of ca.
120 m provide a reasonable level of precision, ranging from 18% to 60% coefficients of variation.
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Background
Research over the past decades has clearly established the
vital role of downed woody debris (DWD) in forest eco-
systems, where it influences biodiversity, nutrient cycling,
soil development, and wildfire behavior (Harmon et al.
1986; Schoennagel et al. 2004; Stokland et al. 2012).
Recent attention has shifted to carbon stores and fluxes in
DWD given the growing interest in carbon dynamics in
the context of climate change (Russell et al. 2014; Woodall
et al. 2015). Methods of reliably estimating DWD abun-
dance in forest systems are thus critical for carbon

estimates (e.g. Russell et al. 2015), as well as a broader
range of applications.
As with live-tree sampling, a complete census could be

conducted of all DWD pieces above a minimum diam-
eter threshold within a location of interest; however, this
may be impractical for inventories at stand or larger
scales. As a consequence, sampling methods such as
line-intersect sampling (LIS) are employed to inventory
DWD abundance (Woodall et al. 2009). LIS produces an
area-based estimate of DWD volume derived from a
sample of the logs present. In the field, the intersect
method proceeds by measuring diameters of pieces
(above a given size threshold) at the point where an in-
ventory transect crosses the pieces’ central longitudinal
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axes. The resulting data (tallied diameters and total tran-
sect length) are converted to area-based estimates of
DWD volume, typically using equations provided by Van
Wagner (1968) and Brown (1974). The theory under-
lying LIS is well developed (de Vries 1979; Kaiser 1983).
No assumption of piece shape is required, as LIS leads
naturally to an unbiased Monte Carlo estimate of vol-
ume based on the cross-section of pieces where they are
intersected by the transect line. Moreover, despite some
derivations that assume pieces are randomly distributed
(e.g. Warren and Olsen 1964), from a design-based per-
spective, the positions of pieces are regarded as fixed
even if they originated from a random process. Because it
is time-efficient and design-based unbiased, LIS is widely
used in ecological studies and fuel inventories (e.g. Brown
1974), as well as in many national-scale forest inventories
(Woodall et al. 2009). Kershaw et al. (2016, ch. 12) provide
a practical and theoretical review of LIS along with alter-
native DWD inventory approaches.
Despite its widespread use in large-scale forest inventor-

ies, the appropriate LIS transect lengths needed under local
forest settings has received relatively little attention (but see
Woldendorp et al. 2004; Sikkink and Keane 2008). Consid-
ering that many ecological studies intend to characterize
DWD attributes at particular locations, where forest stands
or small reserves are themselves the populations of interest
(Jönsson et al. 2011; Fraver and Palik 2012), surprisingly
few studies have evaluated DWD sampling methods at this
local scale. Stokland et al. (2004) caution that a DWD sam-
pling design that is efficient for assessing average ecological
values over large scales may be poorly matched to the task
of assessing those same values at local scales.
Previous empirical work as well as sampling theory

demonstrates that for a given site the precision of the LIS
estimate consistently improves (lower variance) with in-
creasing cumulative transect length (Pickford and Hazard
1978; Woldendorp et al. 2004; Miehs et al. 2010) and that
sites with lower DWD volume generally require longer
transects to achieve a desired level of precision (Brown
1974; Pickford and Hazard 1978; Woldendorp et al. 2004).
The objective of the present study was two-fold: 1) to
better quantify the effect of increasing transect length
and DWD volumes on the precision of LIS volume esti-
mates, and 2) to provide practical guidance for selecting
transect lengths that achieve a desired level of precision
regarding LIS volume estimates. We addressed these
objectives through simulations constrained by empirical
LIS data from 33 locations representing eight diverse
forest types in the northeastern USA. These locations
provide a range of forest conditions and DWD volumes,
making them ideal for addressing these objectives.
Additionally, we present a novel application of copula
models to account for within-transect spatial autocorrel-
ation of DWD volumes; without accounting for such

autocorrelation, simulations would underestimate the
variance within transects, resulting in spurious assess-
ments of appropriate transect lengths.

Methods
Study locations and field data collection
We tested the effect of increasing transect length (up to
ca. 340 m) and DWD volume on LIS precision using 33
locations representing eight mature or old-growth forest
types in northeastern USA (Table 1). These forest types
and locations were utilized opportunistically, given that
we needed DWD inventories for these locations as part
of on-going research (e.g., Fraver and Palik 2012; Fraver
et al. 2017). We thus opted to intensify sampling (i.e.,
long transects) to provide data for the modelling efforts
presented here. These locations represent diverse forest
compositions and structures, and they conveniently
capture a large range of DWD volumes necessary for
modelling. Forest types include mature red-spruce (Picea
rubens), mature spruce–hemlock (P. rubens, Tsuga cana-
densis), mature hemlock–pine (T. canadensis, Pinus
strobus), mature mixed conifer–hardwood (T. canadensis,
Acer saccharum, Fagus grandifolia, Betula alleghaniensis),
mature northern hardwoods (A. saccharum, F. grandi-
folia, B. alleghaniensis, with P. rubens), old-growth
northern white-cedar (Thuja occidentalis), old-growth
red pine (Pinus resinosa), and old-growth black ash
(Fraxinus nigra). A minimum of three locations was
established in each forest type. Additional site infor-
mation is provided in Table 1.
At each location we conducted LIS sampling using a

cluster of four transects that intersected at their midpoints
as follows: two diagonal 100-m transects (arranged south-
west to northeast and northwest to southeast) and two
70-m transects (arranged in cardinal directions). This
configuration formed a spoke-like ‘union jack’ with equal
angles between transects and a total transect length of
340m. At four of the eight sites, the centers of the union
jacks were placed on centers of existing long-term con-
tinuous forest inventory plots. At the remaining four sites,
where previous plots did not exist, centers were placed
randomly within sampled stands. This union jack config-
uration was initially employed at the red-pine locations
(the first to be sampled; Fraver and Palik 2012), as an ex-
ploratory comparison of co-located LIS and fixed area in-
ventories on 0.5-ha (70.7 m × 70.7m) plots (unpublished).
For sampling consistency, we then used this same config-
uration at all remaining locations. A multi-directional,
spoke-like arrangement is often used to reduce potential
sample variance when DWD pieces exhibit fairly uniform
fall directions (Van Wagner 1968). The most common
estimating equations used with LIS assume the angle of
intersection between individual pieces and the sample line
is random; when the sample line orientation itself is
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random, these equations provide unbiased estimates, but
strong correlation in the pieces’ fall directions can inflate
sample variance (Kaiser 1983; Kershaw et al. 2016, ch. 12).
Spoke-like transect designs have been the subject of some
debate in large-area inventories (Affleck et al. 2005; but
see Woodall and Monleon 2008); however, their use rep-
resents common field practice (e.g., Dunn and Bailey
2015), and we feel the design is adequate to evaluate the
effect of varying transect lengths, the focus of our study.
For each DWD piece intersected by the sampling transect
with a diameter ≥ 10 cm at the intersection, we recorded
diameter at intersection, distance from center, species, and
decay class (five-class system as per Sollins 1982). By
convention, if a piece intersected two transects, or if
it crossed the same transect twice, it was recorded
twice (Van Wagner 1968, Brown 1974).
We calculated DWD volume for each site as follows,

V ¼ π2
X d2

8L

� �
� 10 000

where V is the area-based volume (m3∙ha− 1), d is the
DWD piece diameter (m) at point of intersection, and L is
the total transect length at the site (m) (from Van Wagner
1968). Similar calculations were used to provide volume es-
timates for short 5-m segments of each transect, to be used
in the sampling simulations described below.

Simulation of sampling variability
To assess how transect length and population character-
istics influence sampling variability, we employed a
model-based approach using simulation based on a
zero-inflated, autoregressive copula. To motivate this
approach, let us first consider a naive approach that
would be simple to implement, and would have some
desirable features, but could lead to inaccurate results.
Given the line intersect data from a site, with the positions
of all the intersections recorded, one could subdivide

transects into shorter segments (e.g., 5 m) that would
allow simulation of the sampling variance for different
transect lengths, with a resolution on length that would be
meaningful for operational inventory design. Then, to
simulate transects of different total length, one would
draw segments at random with replacement from the data
for that site, concatenating them to form transects of the
desired length. For example, to form a 20-m transect, one
would choose four segments of 5m each with replace-
ment, and compute any desired values (such as DWD
volume) for the new, simulated transect. By repeating this
process many times, and varying the transect length,
one would develop a Monte Carlo estimate of the
sampling distribution of DWD volume estimates for
LIS at that site and its dependence on transect
length, with a richer potential inference beyond
second-order statistics such as variance (which,
under the assumptions implicit in this approach,
could also be calculated using the usual formulae for
simple random sampling; e.g., Thompson 2012). Es-
sentially, this approach uses the same rationale as
the bootstrap (Efron and Tibshirani 1993), substitut-
ing the empirical distribution of DWD volume on
short segments for the unknown population distribu-
tion of possible segments, to arrive at the sample dis-
tribution through resampling.
Unfortunately, the bootstrap approach makes a strong

independence assumption that is inappropriate for
DWD data under either a design- or model-based ap-
proach (for details on the distinction, see Gregoire
1998). Within a design-based framework (Kaiser 1983;
Gregoire and Valentine 2008), DWD pieces are fixed but
sample selection is random. The entire transect is a
single randomly selected sample unit, and treating
segments within a sample unit as if they were drawn in-
dependently is anathema. Without substantial additional
information (such as the joint inclusion probabilities of
the individual pieces of DWD) it is difficult to make

Table 1 Characteristics of the eight forest types from which empirical data were collected for evaluation of LIS precision

Site Forest type No. locations Mean (range)
DWD vol. (m3∙ha−1)

Howland Forest, Maine Spruce-hemlock 3 25 (17–36)

BBEW, Maine Northern hardwoods 4 46 (32–61)

PEF, Maine Hemlock-white pine 3 52 (35–66)

Baxter SFMA, Maine Red spruce 3 55 (42–70)

Various, Minnesota Red pine 7 81 (51–137)

BEF, New Hampshire Mixed conifer-hardwood 3 84 (58–111)

Various, Minnesota Black ash 6 126 (70–243)

BRFR, Maine Northern white-cedar 4 258 (205–323)

Note: BBEW Bear Brook Experimental Watershed, PEF Penobscot Experimental Forest, SFMA Scientific Forest Management Area of Baxter State Park, BEF Bartlett
Experimental Forest, BRFR Big Reed Forest Reserve. See Methods for descriptions of forest types
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progress from this perspective, beyond inference based on
the design that was actually employed (except for changes
in the number, rather than the length, of sample tran-
sects). While a design-based approach has substantial
benefits, both in terms of formulating a design for a
specific inventory, and computing defensible estimates
once the data are in hand, to understand how differ-
ent designs (such as varying transect lengths) would
impact estimates and their uncertainty, a model is in-
valuable. However, from a model-based perspective,
the independence of short, contiguous segments is
also suspect. One might expect positive autocorrel-
ation of the values from adjacent segments, not only
because of the potential for spatially clumped inputs
from tree mortality, but also because local terrain
might cause DWD pieces that are close to each other
also to share similar orientation. In the presence of
positive autocorrelation, the variance of estimates
from transects of a given length would be higher than
that implied by independent segments, and the tran-
sect length needed to reach a given level of accuracy
would be longer. To summarize: from a design-based
perspective, successive segments within a randomly
selected transect are likely to display autocorrelation
because of the fixed characteristics of the downed woody
debris population. From a model-based perspective, the in-
dependence of successive short segments is also suspect,
because of likely clumping in the random process that
generates the population. Whichever perspective is
taken in inference, it would appear important to in-
corporate autocorrelation within any simulations.
To address the challenge of autocorrelation among

successive segments, while remaining faithful to the
observed marginal distribution of estimates from those
segments, we employ a copula modeling approach.
Within the forestry literature, we believe this is the
first application to employ an autoregressive model (to
account for correlation between successive segments),
and also to address a zero-inflated distribution (many
segments are empty, with no DWD intersections).
Copula models are relatively new in the forestry litera-
ture; they have been used to describe relationships be-
tween continuous variables such as tree diameter and
height (Wang et al. 2008, 2010; MacPhee et al. 2017),
to inform spatially-explicit stand simulations (Kershaw
et al. 2010), and for imputation-based growth and
yield models (Kershaw et al. 2017). Eskelson et al.
(2011) and Fortin et al. (2013) extended copula models
in forestry to account for spatial autocorrelation. More re-
cently, copula methods have been used to simulate spatial
populations for remote sensing-assisted inventory (Ene et
al. 2012, 2013a, 2013b; Grafström et al. 2014). For a some-
what theoretical overview of copulas, see Genest and Mac-
kay (1986) and Nelsen (2006).

Strictly defined, a bivariate copula describes the rela-
tionship between two random variables x and y in terms
of two random deviates that are uniformly distributed
on [0, 1]. Specifically, if U1 and U2 ~ Uniform (0, 1),
then the copula C is defined as

C u1;u2ð Þ ¼ Pr U1≤u1;U2≤u2f g
If FX(x) and FY(y) are the cumulative distribution func-

tions of x and y, then

FXY x; yð Þ ¼ C FX xð Þ; FY yð Þð Þ
In our application, x and y are the volume estimates

(m3∙ha− 1) associated with successive pairs of short
LIS segments within the same dead wood population;
thus, they share the same cumulative distribution
function F(x) = FX(x) = FY(y). A variety of formulations
have been proposed to model the copula function C.
For simulation purposes, one of the simplest is the
Gaussian or normal copula (Wang 1998). Let Z1 and Z2

have a standard normal marginal distribution, i.e., Z1 and
Z2 ~ N (0, 1), with correlation coefficient ρ. Let Φ(∙) be the
cumulative distribution function of the standard normal
distribution. Then Φ(Z1) and Φ(Z2) will be bivariate uni-
form, with Kendall’s τ = (2/π)acrsin(ρ). More generally, if
we simulate a sequence of Zi, i = 1,…, m, the sequence will
be a first-order autoregressive [AR(1)] time series, and each
pair Φ(Z1), Φ(Zi + 1) will be described by the same copula
function C. To complete a simulation of a single transect
composed of m segments, each having marginal distribu-
tion F(x), we employ the following algorithm:

1) Generate a standard normal AR(1) time series of
length m, with correlation coefficient ρ. This can
easily be done through the sequential generation of
independent random deviates, with appropriate
summation to generate successive entries in the
time series.

2) Convert the resulting series to an autocorrelated
series of uniform deviates ui =Φ(Z1).

3) Apply the inverse of the empirical cumulative
distribution function to translate the uniform series
to the marginal distribution of downed wood
volume estimates, xi = F− 1(ui).

The only slight complication in the simulation phase
of our application arises due to the zero-inflated nature
of DWD volume data. Specifically, let p0 be the probabil-
ity of obtaining xi = 0 in a given population. Then, in
step 3 above, xi = 0 whenever ui < p0.
The zero-inflated nature of the data does cause a

more important problem in the estimation stage that
must precede simulation, however. Specifically, it
complicates the estimation of the autocorrelation
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parameter ρ. In the absence of zero-inflation, the Zi,
ui, and xi would share a common value of Kendall’s
τ (or Spearman’s rank-correlation coefficient), both of
which share a one-to-one relationship with ρ. Thus, it
would be possible to calculate a reasonable value of ρ
based on the value of τ calculated from the sample pairs
xi, xi + 1 in the transects for a given population.
Alternatively, one could reverse the process used in simu-
lation: calculate ui = F(xi) to translate the sample series to
an autocorrelated uniform series, then Zi =Φ− 1(ui) to
obtain a standard normal AR(1) series, and finally
estimate ρ from the serial correlation of the Zi. How-
ever, this approach fails for zero-inflated data, because
it is unclear what value to assign to ui (and hence Zi)
when xi = 0.
To overcome this challenge, we adopted a

maximum-likelihood approach based on the estimation of
correlation coefficients in the presence of censoring, as
originally developed by Lyles et al. (2001). In fact, our situ-
ation is somewhat simpler than that described by Lyles et
al. (2001), because the Zi are defined to have standard nor-
mal distribution; we do not need to concern ourselves
with the mean and variance as nuisance parameters.
We reverse-engineer the Zi values as described above,
but record the values as censored whenever xi = 0;
that is, we only know that Zi ≤Φ− 1(p0). Then, we
may recognize four distinct categories of outcomes
for Zi, Zi + 1 pairs:

Category 1: In this category, neither Zi nor Zi + 1 are
censored. Pairs of this type contribute lnf(Zi,Zi + 1) = ln
f(Zi + 1| Zi) + ln f(Zi) to the log-likelihood. Following Lyles
et al. (2001), we denote this contribution as ln(ti1):

ln ti1ð Þ ¼ −
1

2 1−ρ2ð Þ Z2
i þ Z2

iþ1−2ρZiZiþ1
� �

− ln 2π 1−ρ2
� �� �

Category 2: In this category, Zi is known but Zi + 1 is
censored. Let Z' =Φ−1(p0). The contribution of these
pairs to the log-likelihood is

ln ti2ð Þ ¼ ln Pr Ziþ1≤Z
0 jZi

� 	h i
þ ln f Zið Þ

which equals

ln ti2ð Þ ¼ Z2
i

2
− ln 2πð Þ þ lnΦ

Z
0
−Ziffiffiffiffiffiffiffiffiffiffi
1−ρ2

p
" #

Category 3: In this category, Zi + 1 is known but Zi is
censored; by the same rationale as Category 2, the
contribution to the log-likelihood is

ln ti3ð Þ ¼ Z2
iþ1

2
− ln 2πð Þ þ lnΦ

Z
0
−Ziþ1ffiffiffiffiffiffiffiffiffiffi
1−ρ2

p
" #

Category 4: In this category, both Zi and Zi + 1 are
censored. Then the contribution to the log-likelihood is
ln{Pr[(Zi ≤ Z')∩ (Zi + 1 ≤ Z')]}, i.e.

ln ti4ð Þ ¼ ln
1ffiffiffiffiffiffi
2π

p
Z Z0

−∞
Φ

Z
0
−Zffiffiffiffiffiffiffiffiffiffi
1−ρ2

p
" #

exp
Z2

2

� �
dZ

( )

Unfortunately, the integral has no convenient, closed-
form expression, but it yields readily to numerical
integration. By summing the contributions to the
log-likelihood across all unique adjacent pairs of seg-
ments within a site, one obtains the log-likelihood func-
tion; maximization with respect to ρ yields the maximum
likelihood estimate, and the inverse of the negative of its
second derivative provides the asymptotic variance of the
estimate, from which the standard error and confidence
limits may be computed.
To summarize: For each location, we used all unique

pairs of adjacent 5-m segments, and estimated a
site-specific ρ and its standard error by maximum likeli-
hood. Then, we simulated artificial transects of varying
length using a zero-inflated autogressive copula, based
on the estimated value of ρ and the empirical distribu-
tion of volume estimates for 5-m segments from that
location. We simulated transect lengths from 20m to
340 m by 20-m intervals, with 1000 simulated replica-
tions at each length for each location. For comparison
purposes, we performed identical simulations with ρ = 0,
i.e., no autocorrelation, for each location. In this case,
the simulation is mathematically identical to the inde-
pendent bootstrap approach. We summarized the distri-
butional characteristics of the 1000 replicates and used
the results as response variables for further modeling to
characterize the dependence of sampling variability on
transect length and DWD volume.

Modeling of simulation results
Using output from our simulation set, we tallied mean
DWD volume estimates and standard deviations for use
in the modeling described below. That is, each transect
length from each of the 33 locations yielded a mean and
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a standard deviation, calculated from the 1000 runs unique
to each transect length–location combination. We used
linear and non-linear mixed-effects models to evaluate the
influence of transect length and total DWD volume (pre-
dictor variables, unique to each location) on the coefficient
of variation (CV) of these estimates. Total DWD volume
refers to that calculated from the full 340-m transect length
for each location. We first tested the predictors in individ-
ual models and then combined them to determine the
best-fit two-term model. Forest type was included as a
random factor in all models, given that we are not making
inferences about particular forest types, for which our sam-
ple size (3–7 locations per type) is inadequate. Logarithmic
and square-root transformations of response and pre-
dictor variables were explored for stabilizing variance
and improving residual-versus-predicted diagnostics.
The fact that our candidate models included trans-
formed and non-transformed variables limited our
reliance on Akaike’s information criterion (Burnham and
Anderson 2002) for evaluating model performance. In-
stead, we relied on pseudo R2 (see below) and root mean
square error (RMSE, back transformed as needed) values,
as well as graphs of observed-versus-predicted and
residual-versus-predicted values to determine which
models were best supported by the data. For the one-term
models, we tested linear, negative exponential, and power
function model forms; for the two-term model, we
tested linear, negative exponential, power, quadratic,
and partial quadratic forms. Analyses were conducted
in the nlme package (Pinheiro et al., 2016) in R (version
3.0.3; Core Team, 2016), using the weighting option to

compensate for non-homogenous variance. Goodness-
of-fit (pseudo R2) for the models was expressed as the
correlation between observed and predicted CVs (cf.
Canham et al. 2004).

Results
Simulations of various transect lengths revealed that, as
expected, the precision (here, CV) of the LIS estimate
consistently improved with increasing cumulative tran-
sect length. Model comparisons revealed that the rela-
tionship between CV and transect length was best
described by a power function (P < 0.0001, R2 = 0.801,
RMSE = 0.127) as shown in Fig. 1. Importantly, our analysis
of DWD values along transects indicated the presence of
spatial autocorrelation, with correlation coefficients (one
for each of 33 locations) forming a bimodal distribution;
that is, some locations showed positive and others negative
autocorrelation (Fig. 2).
Simulations also revealed that precision of the LIS es-

timate improved with increasing DWD volume present,
meaning that for a given transect length, greater preci-
sion could be achieved where higher DWD volumes are
encountered. The relationship between CV and DWD
volume was best described by a linear function, as
shown in Fig. 3. Although this model was statistically
significant (P < 0.01), the relationship is quite weak
(R2 = 0.228, RMSE = 0.206).
When the CV was modeled as a function of both tran-

sect length and DWD volume, model comparisons re-
vealed that the exponential relationship was best supported
by the data, expressed as CV = a × eb × volume × ec × sqrt_length,

Fig. 1 Modelled relationship (black line, accounting for spatial auto-correlation) between line intersect sampling precision (expressed as
coefficient of variation, CV) and transect length, showing that precision increases (lower CV) with increasing transect length. Ignoring spatial
autocorrelation of DWD values (grey dots) falsely suggests greater precision can be obtained for a given transect length
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where sqrt_length is the square root of transect
length (Fig. 4). However, diagnostics for this model
were poorer than those for the length-only model
(here, R2 = 0.795, RMSE = 0.128), and the volume
term became non-significant. For this reason, the
length-only model was used for inferences regarding
appropriate transect lengths.

Discussion
Our study was motivated by the need to provide guid-
ance in selecting a LIS transect length appropriate for
estimating DWD volumes for particular locations of
interest. We note that a sampling design efficient for
assessing average ecological values of DWD over large
scales (as in national forest inventories) may not be well

suited for assessing those same values at local scales, such
as small forest reserves (Stokland et al. 2004), where the
reserve itself may be the population of interest.
Our finding that the precision of LIS estimates consist-

ently improved with increasing transect length corroborates
a number of previous studies from quite different forest
types (e.g., Van Wagner 1982; Pickford and Hazard 1978;

Fig. 2 Frequency distribution of ρ coefficients for the 33 locations,
suggesting tendencies toward both negative and positive spatial
autocorrelation of DWD values within sampling transects

Fig. 3 Relationship between line intersect sampling precision (expressed as coefficient of variation) and downed woody debris (DWD) volume.
For a given transect length, sites with greater volumes generally produce more precise estimates

Fig. 4 Modelled relationship between line intersect sampling
precision (expressed as coefficient of variation), transect length, and
downed woody debris (DWD) volume, using simulations constrained
by empirical field data from 33 locations within eight forest types of
northeastern USA. Top model form: CV = 1.30268 × e–0.0002277 × volume

× e–0.1059549 × sqrt_length, where sqrt_length is the square root of
transect length. Diagnostics for this model (R2 = 0.795, RMSE = 0.128)
were poorer than those for the length-only model (Fig. 1), and the
volume term was non-significant
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Woldendorp et al. 2004; Miehs et al. 2010; Keane and Gray
2013). Similarly, our finding that precision of LIS esti-
mates improved with increasing DWD volume present
has been reported from a range of distinct forest
systems (Brown 1974; Pickford and Hazard 1978;
Woldendorp et al. 2004). However, the best-fit model
that included both transect length and DWD volume
as predictors showed poorer diagnostics than that of the
length-only model described above, suggesting that the
length-only model (shown in Fig. 1) could be used for
inferences regarding appropriate transect lengths.
If DWD pieces were distributed at random, basic

sampling theory (e.g. Thompson 2012) predicts that the
variance of the total DWD intersected by a transect
would scale linearly with transect length; thus, the CV
would scale with the − 0.5 power of transect length for a
given DWD density. However, clumping or regularity in
DWD pieces would produce a departure from this scal-
ing relationship. Indeed, our analysis of DWD values
along transects revealed the presence of spatial autocor-
relation, with some locations tending toward positive
and others toward negative autocorrelation (Fig. 2). We
found no discernable pattern among locations regard-
ing forest type or DWD volume that might explain the
bimodal distribution. We minimized the confounding
effects of autocorrelation through simulations based on
a zero-inflated autoregressive copula model, which
accounted for correlations between adjacent 5-m tran-
sect segments unique to each location. Without ac-
counting for such autocorrelation, our simulations
would have underestimated variance (Fig. 1), leading to
spurious assessments of appropriate transect lengths.
To the best of our knowledge, this is the first attempt
to employ an autoregressive model to account for spatial
autocorrelation, while also addressing a zero-inflated dis-
tribution (segments may contain no DWD).
A frequent question in the design of research or moni-

toring protocols is how long transects should be to pro-
vide a reliable DWD volume estimate for a given location.
A perusal of literature where LIS was used to estimate
DWD volume for particular locations reveals substantial
variation in the transect length employed: total transect
lengths can range from < 40m (Bradford and Kastendick
2010; Buma et al. 2014) to 200m or more (Ekbom et al.
2006; Lõhmus and Kraut 2010). For the forest types and
conditions sampled here, and considering the particular
copula model framework employed, transect lengths of ca.
120m provide what we feel is a reasonable level of preci-
sion, ranging from 18% to 60% CV from the observed sim-
ulations, and 37% from the fitted model results, across the
range of DWD volumes encountered (Fig. 1). Practitioners
working in these or similar forest types and requiring
greater precision could chose a transect length based on
the curve or equation presented in Fig. 1. For our own

inventories, we find it convenient to arrange three 40-m
transects radiating equi-angularly from a center point.
This total length is somewhat comparable to the 100m
recommended by Woldendorp et al. (2004) for eucalypt
forests of Australia to remain below a 100% CV threshold.
Regarding the national DWD inventory of the US
(Woodall and Monleon 2008), the total transect length
sampled in a fully forested plot is 88 m, which would
place the estimated CV below 43% for the locations
sampled here. This level of uncertainty may be accept-
able, as the strategic-scale inventory is designed to pro-
duce reliable DWD estimates (e.g., CV’s below 10%) at
the scale of entire forest types or regions (Woodall et
al. 2013), not for particular locations of interest, the
focus of our study.
LIS provides an attractive method for estimating DWD

volume for a given localized area of interest, particularly
when transects of reasonable length are employed. LIS
sampling has been repeatedly shown to be much more
time efficient than the other common sampling alterna-
tive, namely censuses of fixed area plots (Bailey 1970;
Jordan et al. 2004). Nevertheless, a complete census of
large plots, including mapping of DWD pieces, may re-
main the method of choice in studies where spatial
information is needed, or where a particular plot size
is needed for comparability to preexisting benchmarks
(see Rouvinen and Kouki 2002; Jönsson et al. 2008).
It should not be assumed, however, that a complete census
of a large plot yields a precise estimate of DWD volume, in
part because of the chance of overlooking hard-to-detect
DWD pieces (Jordan et al. 2004; Kershaw et al. 2016), and
more importantly because of the bias inherent in an as-
sumed piece shape (Fraver et al. 2007; Ducey and Fraver
2018), both problems against which LIS provides natural
safeguards. That is, LIS requires tallying only those pieces
that cross a specific, well-defined transect, thus avoiding
the need to search a large area for hard-to-detect pieces,
and as above, no assumption of piece shape is required for
LIS sampling.

Conclusions
As interest in forest carbon accounting, woody fuels as-
sessments, and forest structure inventories increases, so
does the need for practical DWD sampling guidelines
based upon metrics of uncertainty, as we have provided
in this study. Our simulations, based on empirical field
data, allowed us to test the influence of transect length
and DWD volume on the precision of LIS volume esti-
mates, using a range of forest conditions. Our study is
among the first to provide practical guidelines for appro-
priate LIS transect lengths for particular locations, where
forest stands or small reserves may themselves represent
the entire populations of interest. To the best of our
knowledge, our study is the first to apply copula models
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to account for within-transect spatial autocorrelation of
DWD volumes during our simulations, while also ad-
dressing a zero-inflated distribution (transect segments
may contain no DWD), thereby properly addressing
variance estimates. As expected, precision of DWD vol-
ume estimates improved dramatically with increasing
cumulative transect length; precision improved only
slightly with increasing DWD volumes. For the forest
types sampled here, as well as the particular copula
model framework employed, transect lengths of ca. 120
m provide a reasonable level of precision, ranging from
18% to 60% coefficients of variation. Finally, we note
that although we have focused our analyses on DWD
volume, these same results would apply to estimates of
DWD biomass or carbon density, as these are typically
calculated directly from volume data.

Abbreviations
AR: Auto-regressive; CV: Coefficient of variation; DWD: Downed woody
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