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Abstract

Background: Over the last decades interest has grown on how climate change impacts forest resources. However,
one of the main constraints is that meteorological stations are riddled with missing climatic data. This study compared
five approaches for estimating monthly precipitation records: inverse distance weighting (IDW), a modification of IDW
that includes elevation differences between target and neighboring stations (IDWm), correlation coefficient weighting
(CCW), multiple linear regression (MLR) and artificial neural networks (ANN).

Methods: A complete series of monthly precipitation records (1995–2012) from twenty meteorological stations located
in central Chile were used. Two target stations were selected and their neighboring stations, located within a radius of
25 km (3 stations) and 50 km (9 stations), were identified. Cross-validation was used for evaluating the accuracy of the
estimation approaches. The performance and predictive capability of the approaches were evaluated using the ratio of
the root mean square error to the standard deviation of measured data (RSR), the percent bias (PBIAS), and the Nash-
Sutcliffe efficiency (NSE). For testing the main and interactive effects of the radius of influence and estimation approaches,
a two-level factorial design considering the target station as the blocking factor was used.

Results: ANN and MLR showed the best statistics for all the stations and radius of influence. However, these approaches
were not significantly different with IDWm. Inclusion of elevation differences into IDW significantly improved IDWm

estimates. In terms of precision, similar estimates were obtained when applying ANN, MLR or IDWm, and the radius of
influence had a significant influence on their estimates, we conclude that estimates based on nine neighboring stations
located within a radius of 50 km are needed for completing missing monthly precipitation data in regions with
complex topography.

Conclusions: It is concluded that approaches based on ANN, MLR and IDWm had the best performance in two
sectors located in south-central Chile with a complex topography. A radius of influence of 50 km (9 neighboring
stations) is recommended for completing monthly precipitation data.
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Background
The effects of climate on natural resources have become
highly relevant (Cannell et al. 1995). In forestry, there is
an increasing interest to study the influence of climate on
forest productivity (Álvarez et al. 2013), forest hydrology
(Dai et al. 2011), soil water availability (Ge et al. 2013),
and wood quality (Xu et al. 2013). Nowadays, climate data
are also required for parameterizing process-based simula-
tors of tree growth (Sands and Landsberg 2002) and for
studying forest water balance (Huber and Trecaman
2002), phenology processes (Codesido et al. 2005) and to
carry out pest and disease research (Ahumada et al. 2013).
To perform these studies, complete and homogenous cli-
mate data that covers a sufficiently long period of time is
required (Teegavarapu 2012; Khosravi et al. 2015).
Climate data often have missing information that

limits their use (Alfaro and Pacheco 2000). Missing
values in climate series affects parameter estimation
when applying regression and multivariate analysis tech-
niques (Ramos-Calzado et al. 2008). In most cases, some
techniques must be applied to estimate missing data. In
forestry, there are few studies that have compared the
accuracy of different approaches. Furthermore, factors
that might affect their precision have not been studied
in detail.
The simplest approach for imputing missing values in-

volves the data being filled-in. The main limitation is that
these approaches are suitable for small gaps and can only
be applied to climate variables with a high degree of auto-
correlation (Khosravi et al. 2015), which is not the case for
annual mean temperatures or precipitation values. A more
common approach to complete missing data is to use
information from neighboring meteorological stations
(Vasiliev 1996), using techniques such as inverse distance
weighting (IDW). Nonetheless, horizontal distance is not
a measure of spatial autocorrelation (e.g., Ahrens 2006;
Ramos-Calzado et al. 2008), especially when the region
contains prominent topographic features or major water
bodies. Indeed, two relatively close stations can feature
substantial differences in their mean climate and climate
variability if they are located at opposite sides of a moun-
tain range. Spatial correlations could be quantified by cal-
culating the correlation coefficient between time series
obtained at different locations. Teegavarapu and Chandra-
mouli (2005) found that replacing distances with correl-
ation coefficients as weights improved estimation of
missing precipitation data. The resulting method is known
as a coefficient of correlation weighting (CCW), reported
by Teegavarapu (2009).
Simple and multiple linear regressions have been suc-

cessfully used to estimate precipitation (Pizarro et al.
2009), and temperature (Xia et al. 1999) in different
topographical conditions. Alfaro and Pacheco (2000)
compared different estimation approaches for missing

precipitation data, including normal ratio and linear re-
gression. They found that the best results were obtained
when applying multiple linear regression; in agreement
with the results reported by Xia et al. (1999) and Pizarro
et al. (2009).
Recent studies used artificial neural networks for com-

pleting climate data (Kuligowski and Barros 1998; Khor-
sandi et al. 2011; Ghuge and Regulwar 2013). Kuligowski
and Barros (1998) compared the performance of artificial
neural networks for completing six-hour precipitation data
at six test stations from nearby stations, to four other ap-
proaches, such as the simple nearest-neighbor estimate, the
arithmetic average, the inverse distance weighting and lin-
ear regression. They found that artificial neural networks
and linear regression approaches produced the lowest over-
all errors. Khorsandi et al. (2011) compared four ap-
proaches including the artificial neural network, normal
ratio, inverse distance weighting, and a geographical coord-
inate approach for completing missing monthly precipita-
tion data. They found that artificial neural networks
produced the best results compared to other approaches.
Different artificial neural network designs have been devel-
oped and tested for missing data estimation. Coulibaly and
Evora (2007) compared six different types of artificial neural
networks and found that the multilayer perceptron (MLP)
appears to be the most effective for completing missing
daily precipitation values and missing daily maximum and
minimum temperature values.
Several studies evaluated the predictive capability of

different approaches for completing missing climate
data, but few have evaluated the effects of the radius
of influence when selecting neighboring stations (e.g.
Chen and Liu 2012) in regions with complex topog-
raphy. We tested the predictive capability of five re-
ported approaches at completing missing data of
monthly precipitations from 1995 to 2012 from
south-central Chile (around 37°S) along the west
slope of the Andes mountain range. This region fea-
tures a climate transition between semiarid conditions
in the north and more humid conditions in the south
(e.g. Viale and Garreaud 2015). More importantly, the
region exhibits a complex topography including a
central valley flanked by the Andes mountain range,
reaching over 2.000 m asl (above sea level). Our spe-
cific objectives are (i) to compare different approaches
for estimating missing monthly precipitation data
based on measures of precision and bias, and (ii) to
evaluate the effect of the number of available neigh-
boring stations within a radius of influence (25 and
50 km) on estimation precision. We selected monthly
precipitation as the target climate variable because it
is a limiting factor for fast-growing radiata pine plan-
tations in Chile (Gerding and Schlatter 1995; Álvarez
et al. 2013).
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Methods
Data
Twenty meteorological stations from the DGA
(Dirección General de Aguas) located in central Chile
(36°–38°S, 71°–72°W, Fig. 1) with complete monthly
precipitation records from January 1995 to December
2012 were selected (Table 1). Annual mean rainfall in
this region ranges from 1000 to 2000 mm.
We selected stations Diguillin (number 1) and Mul-

chen (number 11) as target stations because they were
surrounded by an equal number of neighboring stations
with a radius of influence of 25 and 50 km (Table 1).
Meteorological stations 1 and 11 were located in the An-
dean foothills at an elevation of 670 m asl and in the
Central valley at an elevation of 130 m asl, respectively
(Fig. 1). In this part of the country there is marked sea-
sonality, with winter (May to September) rainfall ac-
counting for over 65% of annual accumulation and
associated with widespread frontal systems crossing the
region (e.g. Falvey and Garreaud 2007). Episodes of
isolated convection are infrequent over this region and
account for a very small fraction of the annual accumu-
lation (Viale and Garreaud 2014). However, winter
frontal rainfall is modified by the topography producing
a marked enhancement over the western slope of the
Andes relative to low-land values (Viale and Garreaud
2015). For instance, the horizontal distance between our
target stations is less than 70 km but annual mean pre-
cipitation increases from about 1200 mm in the lower
station (1) to 2100 mm in the higher station (11). On

the other hand, annual precipitation across central Chile
exhibits significant inter-annual variability where the
standard deviation of annual accumulation is up to a third
of the mean value due to the effects of the cold and warm
phases of El Niño Southern Oscillation (ENOS; e.g., Monte-
cinos and Aceituno 2003; Garreaud 2009).
The meteorological stations located in the Andes foot-

hills show less variability in terms of mean annual pre-
cipitation than stations located in the Central valley
(Fig. 2). This can be partially explained by an increased
amount of stations at higher elevations located in the
Central valley (CV = 62.8%) compared to the Andes foot-
hills (CV = 54.5%).
The Euclidean distance between target and neigh-

boring stations were computed using the formula

dmi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi−xmÞ2 þ ðyi−ymÞ2

q
, where xm and ym are

the UTM coordinates of the target station and xi and
yi are the UTM coordinates of the neighboring sta-
tion. The radius of influence of 25 km included three
neighboring stations and the radius of influence of
50 km included nine neighboring stations for each
target station (Fig. 1). Although the neighboring sta-
tion 20 was 52 km away from target station 11 it was
maintained in the analysis in order to have the same
number of neighboring stations for each target station
(Table 1).
Minimum station density guidelines for different

climatic and geographic zones have been established
by the World Meteorological Organization (WMO

Fig. 1 Geographical location of the meteorological stations. Target stations are represented with a red dot ( ) and neighboring stations with a
black dot (●). Radius of influence of 25 km (dashed circle) and 50 km (continuous circle)
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2008). In the study area, the corresponding network
density of meteorological stations is ~ 1.3 stations
per 1000 km2, which is less than the minimum rec-
ommended network density for mountainous areas (4
stations per 1000 km2). Because existing network of
climatological stations has a low density to explain

the spatial variability of rainfall in mountainous re-
gions at shorter time scales (e.g. hourly and daily) we
used a monthly timescale for performing a compari-
son of approaches for estimating missing monthly
precipitation data. Longer-timescales rainfall (e.g.
monthly, seasonal and annual) tend to be more

Table 1 Meteorological stations used for estimating monthly precipitation values

Zone Station number Station name Latitude (S) Longitude (W) Elevation (m asl) d (km) Δh (m)

Andean foothills 1 (Target) Diguillín 36°52′07″ 71°38′33″ 670 0 0

2 Fundo Atacalco 36°54′55″ 71°34′58″ 730 7 60

3 Las Trancas 36°54′41″ 71°30′34″ 1200 13 530

4 Mayulermo 36°49′02″ 71°52′33″ 385 22 285

5 Coihueco Embalse 36°38′27″ 71°47′57″ 314 29 356

6 Caracol 36°38′56″ 71°23′25″ 620 33 50

7 Las Cruces 37°10′11″ 71°48′22″ 650 36 20

8 Pemuco 36°58′35″ 72°06′03″ 200 43 470

9 Trupán 37°16′25″ 71° 49′ 09″ 480 48 190

10 Cholguán 37°09′02″ 72°04′01″ 225 49 445

Central valley 11 (Target) Mulchén 37°43′02″ 72°15′01″ 130 0 0

12 San Carlos de Purén 37°35′43″ 72°16′37″ 150 14 20

13 Pilguén 37° 51′04″ 72°12′49″ 300 15 170

14 Quilaco 37°40′38″ 71°59′47″ 225 23 95

15 Poco a Poco 37°52′21″ 71°59′17″ 620 29 490

16 Los Ángeles 37°30′02″ 72°31′01″ 90 34 40

17 Cerro el Padre 37°46′49″ 71°51′38″ 400 35 270

18 Las Achiras 37°20′59″ 72°22′54″ 125 42 5

19 Encimar Malleco 38°06′02″ 72°07′01″ 520 44 390

20 Quillaileo 37°37′53″ 71°40′15″ 500 52 370

Fig. 2 Variation of the annual precipitation sum for meteorological stations at the Andean foothills (a) and Central valley (b). Meteorological
stations are arranged by elevation, the target stations 1 and 11 are highlighted in dark gray. Red dotted lines indicate the inter-annual
precipitation mean
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spatially homogeneous than shorter-timescales rainfall
(Cheng et al. 2008; Girons-Lopez et al. 2016). In
addition, longer-timescale rainfall is of major import-
ance for the evaluation of water availability for man-
agement of forest plantations (Álvarez et al. 2013).

Approaches for estimating missing data
We selected the following five reported approaches for
estimating missing monthly precipitation data for the
two target meteorological stations. All approaches were
implemented and tested using the Statistical Analysis
System-SAS (SAS Institute Inc. 2009).

Inverse distance weighting (IDW)
Missing data from target station m are determined from
the values observed in neighboring stations weighted by
the inverse distance between the target and the neigh-
boring stations. The missing data yj(m) at station m,
based on the values observed in neighboring stations is
given by,

y j mð Þ ¼
Xn
i¼1

d−k
mi � x j ið Þ

� �
=
Xn
i¼1

d−k
mi ð1Þ

where, n is the number of neighboring stations with
information from the month to be estimated, dmi is the
Euclidian distance between station i and m, and xj(i) is
the observed value at station i, and k is the distance of
friction ranging from 1 to 6 (Vieux 2004). In this study,
we used a value of k = 2 suggested by Teegavarapu
(2009).

Modified inverse distance weighting (IDWm)
Elevation has an important influence on precipitation
(Golkhatmi et al. 2012; Viale and Garreaud 2015), there-
fore we used the elevation differences between the target
and neighboring stations to adjust IDW estimates. A re-
vised version of the approach proposed by Chang et al.
(2005) ensuring that the sum of the weights equals 1 was
used. This approach considers not only the effect of Eu-
clidian distances but also differences in elevation. Eleva-
tion differences were added to the base IDW formula as;

y j mð Þ ¼
Xn
i¼1

h−ami � d−k
mi � x j ið Þ

� �
=
Xn
i¼1

h−ami � d−k
mi

� � ð2Þ

where hmi is the absolute elevation difference between
the target and neighboring stations, and exponent a is a
power parameter. Thus, hmi modifies the weights of
IDW, prioritizing neighboring stations that are at the
same or a close elevation of the target station giving
them higher weights during the calculations. Values of
the exponents a and k between 1 and 3 were tested, and

a value of a = 1 and k = 1 were selected for computing
the missing data.

Correlation coefficient weighting (CCW)
In this approach distance is replaced by Pearson’s correl-
ation coefficients. The missing value j in a given month
at the target station m is completed as,

y j mð Þ ¼
Xn
i¼1

rmi � x j ið Þ
� �

=
Xn
i¼1

rmi ð3Þ

where rmi is the Pearson’s correlation coefficient be-
tween the precipitation series of the neighboring station
i and the incomplete series of the target station m, xj(i) is
the monthly value observed at station i (Teegavarapu
2009).

Multiple linear regression (MLR)
The ordinary least squares method is used to fit a line
between the observed data from the target station and
several neighboring stations. We used a stepwise selec-
tion process to ensure that each station in the final lin-
ear model contributes to the accuracy of the estimate
without compromising the goodness of fit. The linear
model has the following form,

y j mð Þ ¼ β0 þ
Xn
i¼1

βi � x j ið Þ ð4Þ

where yj(m) is the observed monthly value from the tar-
get station m, xj(i) is the observed value in the neighbor-
ing station i and βi are the parameters to be estimated
(Freund et al. 2006).

Artificial neural networks (ANN)
An artificial neural network is a computational model
inspired structurally and functionally in biological neural
networks (Coulibaly and Evora 2007). The architecture
of the designed artificial neural network corresponds to
a feed forward multilayer perceptron with one hidden
layer with ten neurons (see e.g. Dreyfus 2005; Teegavar-
apu and Chandramouli 2005). The observed values in
the neighboring stations are used for the input layer and
the estimated values for the target station are obtained
for the output layer. To model the transformation of
values through the layers a sigmoid function was used
for the hidden layer and linear activation was used for
the outer layer. Training of the artificial neural net-
work was performed by using the standard error as
criterion, applying the Levenberg-Marquardt training
algorithm (Khorsandi et al. 2011; Ghuge and Regul-
war 2013). The artificial neural network was built,
trained and simulated using the SAS NEURAL pro-
cedure (SAS Institute Inc. 2009).
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Cross-validation and statistical evaluation
Because complete monthly precipitation records were
available for all meteorological stations, we simulated
missing values using cross-validation for evaluating the
accuracy of the estimation approaches. Cross-validation
is a technique used for assessing how generalized the re-
sults of a statistical analysis are compared to an inde-
pendent dataset (Chen and Liu 2012). For each target
station, data were randomly partitioned into 10 nearly
equally sized folds containing 21 or 22 monthly precipi-
tation records (about 10% of total data). Subsequently,
10 estimation and validation iterations were performed,
where 9 folds were used to estimate model parameters
and the remaining fold was used to validate the method.
Refaeilzadeh et al. (2009) reported that 10 folds are the
most common because it allows estimations to be made
with 90% of the data, producing representative data.
The performance and predictive capability of the ap-

proaches for completing missing monthly precipitation re-
cords were evaluated using the ratio of the root mean square
error to the standard deviation of measured data (RSR).

RSR ¼
 Xn

i¼1

ðy jðmÞ−ŷ jðmÞÞ2=
Xn
i¼1

ðy jðmÞ−�ymÞ2
!1=2

ð5Þ

the percent bias (PBIAS).

PBIAS ¼ 100 �
Xn
i¼1

y j mð Þ−ŷ j mð Þ
� �

=
Xn
i¼1

y j mð Þ
� � !

ð6Þ

and the Nash-Sutcliffe efficiency (NSE),

NSE ¼ 1−
Xn
i¼1

y j mð Þ−ŷ j mð Þ
� �2

=
Xn
i¼1

y j mð Þ−ym
� �2 !

ð7Þ
where yj(m) and ŷj(m) are the observed and estimated

expected monthly precipitations at station m during the
month j, respectively, ȳm is the observed mean and n is
the number of missing values.
The RSR standardizes the root mean square error

(RMSE) using the observed standard deviation. RSR var-
ies from the optimal value of 0, which indicates zero
RMSE or residual variation and therefore a perfect esti-
mation, to a large positive value (Moriasi et al. 2007).
Percent bias (PBIAS) measures the average tendency of
the estimated data to be larger or smaller than their ob-
served counterparts (Moriasi et al. 2007). On the con-
trary, Nash-Sutcliffe efficiency (NSE) is a normalized
statistic that determines the relative magnitude of re-
sidual variance compared to measured data variance
(Nash and Sutcliffe 1970). NSE indicates how well the
plot of observed versus estimated data fits the 1:1 line
(Moriasi et al. 2007).

For testing the main and interactive effects of the ra-
dius of influence (e.g. number of neighboring stations)
and estimation approaches, we applied a two-level fac-
torial design considering the target station as the block-
ing factor (Quinn and Keough 2002),

yijkl ¼ uþ Si þ Rj þ Ak þ R� Að Þjk þ eijkl ð8Þ

where yijkl is RSR calculated in the lth cross-validation
iteration within the kth estimation approach within the
jth radius of influence within the ith target station, Si is
the target station (block), Rj is the radius of influence, Ak

is the estimation approach, (R ×A)jk is the interaction
between radius of influence and estimation approach
and eijkl is the error term. To confirm significant differ-
ences between factors (radius of influence or estimation
approach) the Student–Newman–Keuls (SNK) test was
used (Quinn and Keough 2002). A p-value of 0.05 was
considered significant.

Results
Predictive capability of estimation approaches
The ANN and MLR approaches produced the best re-
sults for nearly all statistical criteria at both target sta-
tions 1 and 11, presenting a lower bias and higher
precision compared to the other approaches (Table 2).
On the contrary, the CCW approach showed the worst
performance in terms of bias and precision for all target
stations and radius of influence combinations. The vari-
ant IDWm produced better results than IDW for all tar-
get stations and radius of influence combinations,
indicating that the inclusion of elevation differences im-
proved the predictive capability. This result was some-
what expected given the existence of a vertical
precipitation gradient in this mountainous region.
Estimation approaches showed a decrease in RSR and

PBIAS, as well as an increase in NSE, when they were
applied to the higher elevation target station 1 compared
to the lower target station 11 (Table 2). In comparison
to other approaches, IDW and CCW increase RSR and
PBIAS and decrease NSE when the radius of influence
increased from 25 to 50 km, that is, when the number of
neighboring stations increased from 3 to 9.

Comparison of estimation approaches
The ANOVA showed significant differences (p < 0.0001)
between estimation approaches (Table 3). Even though
ANN and MLR have the lower RSR values (Table 1), the
SNK multiple comparison test showed no significant dif-
ferences with IDWm (Fig. 3a). Additionally, IDWm had a
more significant difference than IDW and CCW (Fig. 3a).
This indicates that including elevation differences into
the IDW significantly contributed to the improvement
of its performance. The worst RSR values were obtained
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when applying the CCW approach (Fig. 3a) and its RSR
values increased when the radius of influence was in-
creased (Fig. 3b).
The ANOVA showed no significant effect of the radius

of influence on RSR values, indicating that similar esti-
mates of missing data can be obtained when considering
3 or 9 neighboring stations. However, as shown in
Table 3 a significant interaction between the radius of
influence (R) and the estimation approach (A) was de-
tected (Table 3). This seemingly contradictory result is
due to the opposite impact of the radius of influence on
the method’s performance: RSR increases when increas-
ing the radius of influence (Fig. 3b) in IDW and CCW.
In contrast, in the other approaches the RSR decreases
when the radius of influence increases (Fig. 3b).

Discussion
In this study, we compared five alternative approaches
for estimating missing monthly precipitation records in
two sectors in south-central Chile with complex terrain.
The ANN and MLR showed higher precision and in
most cases a lower bias compared to the other ap-
proaches. However, the precision (as per RSR) of IDWm

was not significantly different from ANN and MLR, ac-
cording to the SNK test (p < 0.05). The ANOVA

Table 2 Predictive capability of the estimation approaches by target station and radius of influence (number of neighboring stations)

Estimation
approach

25 km (3 neighboring stations) 50 km (9 neighboring stations)

RSR PBIAS NSE RSR PBIAS NSE

Target station 1

IDW 0.167 0.218 0.969 0.162 3.092 0.971

IDWm 0.151 −0.172 0.975 0.147 −1.987 0.976

CCW 0.220 10.599 0.946 0.297 18.965 0.905

MLR 0.142 −0.183 0.978 0.138 −0.190 0.978

ANN 0.131 −0.357 0.980 0.123 0.356 0.983

Target station 11

IDW 0.269 −11.956 0.911 0.350 −21.490 0.865

IDWm 0.204 −2.811 0.937 0.162 1.993 0.968

CCW 0.270 −13.459 0.916 0.462 −31.408 0.766

MLR 0.191 −0.900 0.951 0.134 −0.512 0.980

ANN 0.186 −0.313 0.953 0.137 0.066 0.978

The best approach for each statistic is highlighted in bold

Table 3 Analysis of variance for estimation approaches

Source DF SS MS F-value p-value

Target station 1 0.2363 0.2363 38.21 < 0.0001

Radius of influence (R) 1 0.0163 0.0163 2.64 0.1057

Estimation approach (A) 4 0.8214 0.2053 33.20 < 0.0001

R × A 4 0.2024 0.0506 8.18 < 0.0001

Error 189 1.1690 0.0062

Fig. 3 SNK multiple comparisons for average RSR between
estimation approaches (a) and interaction between radius of
influence and estimation approach (b). In the upper panel, error bars
represent the standard deviation and the letters (a, b, c) represent
group methods that are not significantly different at α = 0.05
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indicated that the radius of influence in terms of RSR
did not significantly affect their predictive capability.
However, this result can be explained by the signifi-
cant interaction between the radius of influence (R)
and the estimation approach (A). Therefore, an add-
itional ANOVA was performed to evaluate the effects
of the radius of influence on the predictive capability
considering only the best three approaches: ANN,
MLR and IDWm. For these approaches the radius of
influence had a significant effect (p = 0.036). There-
fore, we conclude that estimates based on nine
neighboring stations located within a radius of 50 km
are recommended for completing missing monthly
precipitation data in these regions with complex
topography.

Is there a “best” method?
Past studies have reported that the artificial neural
network approach (ANN) was the best at estimating
missing monthly precipitation records compared to
other approaches (Teegavarapu and Chandramouli
2005; Khorsandi et al. 2011). Coulibaly and Evora
(2007) tested different neural networks architectures
for completing daily precipitation records and found
that the best method was the multilayer perceptron
used in our study. In contrast, Alfaro and Pacheco
(2000) in Costa Rica and Pizarro et al. (2009) in cen-
tral Chile found that multiple linear regression (MLR)
was the best method for filling in gaps in annual and
monthly precipitation series, respectively. Thus, past
research showed that ANN and MLR have emerged
as robust methods for completing missing data in dif-
ferent geographical and climate settings (Kuligowski
and Barros 1998).

Impact of elevation
The inclusion of elevation differences between the target
and neighboring stations as a weight modifier to the
IDWm significantly improved its performance. This is in
agreement with studies that showed that including eleva-
tion differences in IDW had a positive impact on its pre-
dictive capability (Chang et al. 2005; Golkhatmi et al.
2012). Recently, Khosravi et al. (2015) used an altitude
ratio (elevation of the target station divided by elevation
of the neighboring station) to enhance the efficiency of
the geographical coordinate method for completing gaps
in annual precipitation series.
The Pearson’s correlation coefficients between the tar-

get and surrounding stations are presented in Fig. 4. The
values are moderately high (typically larger than 0.8)
which is somewhat contradictory with the poor perform-
ance of the CCW method (e.g., Fig. 3a). We speculate
that such a high correlation coefficient is due to the
marked annual rainfall cycle, which is common among
the seasons in this region and therefore this coefficient
has little impact on the estimate of monthly precipita-
tion values. Also there is a negative relationship between
Pearson’s correlation coefficients and the elevation dif-
ferences between the target station and its neighboring
stations (Fig. 4). This allows us to conclude that neigh-
boring stations located at similar altitudes to the target
station have a close relationship.

Impact of the radius of influence
Even though the ANOVA showed that the radius of in-
fluence has a non-significant effect on precision (RSR),
this factor interacted significantly with the evaluated ap-
proaches (Fig. 3b). An increase of the radius of influence
around the target station improved the predictive cap-
ability of only three of the evaluated approaches: ANN,

Fig. 4 Relationship between the Pearson’s correlation coefficients and absolute elevation differences between each target station and their
neighboring stations: (a) target station 1 (Andean foothills) and (b) target station 2 (Central valley)
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MLR and IDWm. However, CCW and IDW showed a
decreased performance when the radius of influence in-
creased from 25 to 50 km, probably due to the associ-
ation between decreased precipitations at the target and
neighboring stations when distance from the target sta-
tion increased (Johansson and Chen 2003; Mair and
Fares 2011). Chen and Liu (2012) evaluated the IDW for
interpolating rainfall data and found that the optimal ra-
dius of influence was in most cases up to 10–30 km.
They also reported that the interpolation accuracy of
this approach could become inferior when the number
of considered rainfall stations exceeds the optimal value.

Conclusions
This study found that approaches based on artificial
neural networks (ANN), multiple linear regression
(MLR) and IDWm had the best performance in two sec-
tors located in central-south Chile with a complex top-
ography. Inclusion of elevation differences and Euclidian
distances between targets and neighboring stations as
weight modifier in the IDWm significantly improved
overall estimates. Because the predictive capability of the
three best approaches was significantly affected by the
number of neighboring stations (radius of influence), we
conclude that estimates based on nine neighboring sta-
tions located within a radius of 50 km are needed for
completing missing monthly precipitation data.
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