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Mapping tree canopies in urban
environments using airborne laser scanning
(ALS): a Vancouver case study
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Abstract

Background: The distribution of forest vegetation within urban environments is critically important as it influences
urban environmental conditions and the energy exchange through the absorption of solar radiation and
modulation of evapotranspiration. It also plays an important role filtering urban water systems and reducing storm
water runoff.

Methods: We investigate the capacity of ALS data to individually detect, map and characterize large (taller than
15 m) trees within the City of Vancouver. Large trees are critical for the function and character of Vancouver’s urban
forest. We used an object-based approach for individual tree detection and segmentation to determine tree
locations (position of the stem), to delineate the shape of the crowns and to categorize the latter either as
coniferous or deciduous.

Results: Results indicate a detection rate of 76.6% for trees > 15 m with a positioning error of 2.11 m (stem
location). Extracted tree heights possessed a RMSE of 2.60 m and a bias of − 1.87 m, whereas crown diameter was
derived with a RMSE of 3.85 m and a bias of − 2.06 m. Missed trees are principally a result of undetected treetops
occurring in dense, overlapping canopies with more accurate detection and delineation of trees in open areas.

Conclusion: By identifying key structural trees across Vancouver’s urban forests, we can better understand their role
in providing ecosystem goods and services for city residents.
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Background
The past decades have seen unprecedented global
population growth and urbanization with over 50% of
the Earth’s population living within cities (Small 2001;
Weng 2014). Canada is at the leading edge of the curve,
with 80% of Canadians now living in cities (Statistics
Canada 2017). This places enormous pressures on the
planning and management of urban regions to ensure
their sustainability, with particular importance on nat-
ural urban environments. As a result, a comprehensive
understanding of the urban environment is fundamental
to ensure sustainable and adaptive urban ecosystems
(Williams et al. 2018). The spatial-temporal distribution

of vegetation within an urban environment is known as
“greenspace”, and is a fundamental component of the
urban environment. Greenspace has a critical role: it
influences urban environmental conditions and energy
exchange through the absorption of solar radiation and
modulation of evapotranspiration, and plays an import-
ant role filtering urban water systems and reducing
storm water runoff (Oke 1982; Nowak and Dwyer 2007).
Studies have also indicated the significant social (Grahn
and Stigsdotter 2003; Westphal 2003), economic (Tyr-
väinen et al. 2005), and aesthetic values (Tyrväinen et al.
2005; Jim and Chen 2006) associated with urban vegeta-
tion (Liu et al. 2017). For example, Kleinman and Geiger
(2002) estimated that 100 trees absorb up to 5 tons of
CO2 per year from the atmosphere and 450 kg of pollut-
ants including ozone and particulates. Therefore, within
an urban context, greenspaces are the primary means of
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maintaining intact natural ecosystems, capturing and
storing carbon, and preserving biodiversity.
Traditionally, information about urban forest canopy

has been obtained from field sampling, manual inter-
pretation of aerial photography and, more recently, using
technologies such as Google Street View (Liu et al. 2017;
Li et al. 2015). In addition, many cities utilize inventory
systems to collate tree location, species and condition in-
formation for street and park trees. However, these
methods are expensive, labor-intensive, and time-con-
suming, and a lack of complete coverage (Alonzo et al.
2014). Remote sensing offers a unique and efficient ap-
proach for understanding and mapping urban landscapes
providing synoptic views over large areas. Inclusion of
remote sensing data provides spatial layers upon which
relationships can be developed between urban green-
space and social issues such as access to parks and re-
creation areas and provides a platform for extrapolation
and expanded assessment into broader contexts nation-
ally and internationally (Sutton and Costanza 2002).
Classification of urban imagery at various spatial

resolutions has been a major theme in urban landscape
studies (i.e., Schneider 2012; Frolking et al. 2013; Castr-
ence et al. 2014; Lin et al. 2014; Chen et al. 2015;
Williams et al. 2018). Previous studies have applied fine
spatial resolution imagery (e.g., Benz et al. 2004), hyper-
spectral data (e.g. Roberts et al. 1998; Heiden et al.
2007), and aerial photography (e.g., Hodgson et al. 2003)
all of which offer a high degree of spatial or spectral
detail and allow derivation of urban land cover informa-
tion which in turn is important for inferring land-use,
mapping ecosystem services, or modelling of more
complex processes like air quality, hydrology, or carbon
stocks and flows. Likewise, land cover and its change
over time may also help with urban metabolism and
ecological footprint studies (Kellett et al. 2013). With
respect to mapping tree cover in urban environments
optical data from very high spatial resolution satellites
such as those of the Worldview and GeoEye series can
provide imagery with a pixel size < 0.5 m and as a result
have markedly increased the potential to map and clas-
sify tree species within complex urban environments
(Novack et al. 2011; Richardson and Moskal 2014). In
addition, new methods such as intelligent image seg-
mentation and object-based classification techniques are
also highly applicable for urban remote sensing applica-
tions (Myint et al. 2011).
Optical sensor-derived data, such as aerial photography

and Landsat satellite imagery, however, are generally poor
when characterizing the vertical structure of urban vegeta-
tion (Plowright et al. 2016). The dimensions and vertical
architecture of trees reflect their productivity, age, overall
health and vigor (Schomaker et al. 2007). A large, dense
crown is an indicator of optimal tree growth, while less

dense crowns can be indicative of poor health and stress
(Zarnoch et al. 2004; Plowright et al. 2016). Although
some vertical tree metrics can be estimated through indir-
ect relationships with optical bands (Cohen and Spies
1992), additional three-dimensional data on tree condition
is critically important.
Airborne laser scanning (ALS), also known as light

detection and ranging (LiDAR), offers a means to dir-
ectly measure the three-dimensional structure of vegeta-
tion. An ALS instrument emits pulses of light that are
reflected off trees, ground surfaces, and other terrestrial
features and can penetrate through gaps in the foliage,
enabling ALS to directly measure the vertical aspects of
tree crowns and forest canopies (Plowright et al. 2016;
Coops et al. 2007). A key benefit of ALS is the capacity
to reliably obtain high-precision, three-dimensional mea-
surements of buildings and trees over broad spatial
scales which, as a result, has attracted significant interest
among urban and natural resource managers (Hudak
et al. 2009; Williams et al. 2018). ALS has been shown
to be highly accurate for estimating a range of vegetation
parameters such as tree height, biomass, stand density,
basal area, volume, and Leaf Area Index (LAI) (Liu et al.
2017; Riaño et al. 2004; Hudak et al. 2006; Næsset 2007;
Edson and Wing 2011). Kim et al. (2009) and Kim et al.
(2011) used intensity values and structure variables in-
cluding standard deviations (SD) of heights, percentiles,
and crown ratios derived from leaf-on and leaf-off data,
for tree species differentiation. In urban environments
Liu et al. (2017) evaluated the potential of ALS to map 15
common urban tree species using a Random Forest (RF)
classifier in the City of Surrey, British Columbia, Canada.
Results indicate an overall accuracy of 51.1%, 61.0% and
70.0% using hyperspectral, ALS and the combined data
respectively. The overall accuracy for the two most im-
portant and iconic native coniferous species improved
markedly from 78% up to 91% using the combined data.
The results of this research highlight that variables de-
rived from ALS data contributed more to the accurate
prediction of species than hyperspectral features (Liu
et al. 2017).
Large, mature trees are valued for a number of reasons

by city dwellers and managers. Larger, older trees have con-
sistently been shown to store more carbon (Stephenson
et al. 2014), and support a diversity of bird taxa. The values
are difficult, and in some cases impossible, to replicate with
large numbers of smaller trees (Le Roux et al. 2015). This is
because large older trees provide critical structural com-
plexity that is beneficial to a variety of bird species, particu-
larly habitat specialists that have co-evolved with mature
forests (e.g., cavity nesters) (Lindenmayer and Laurance
2016). Older trees can also benefit surrounding trees by
fostering a higher diversity of mycorrhizal fungi, which can
facilitate nutrient transfer among trees of different age
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classes and species (Simard and Durall 2004; Twieg et al.
2007). For the general population as well these larger trees
provide a range of ecosystem services, with large trees
having high cultural and emotional value associated with
them (Lindenmayer et al. 2014; Pearce et al. 2015). With
large, old trees predicted to decline in urban landscapes (Le
Roux et al. 2014) it is increasingly critical to identify, map
and characterize (in terms of type, height and size) large
trees over the city’s land base.
The City of Vancouver, British Columbia, Canada,

developed an Urban Forest Strategy in 2014 with a spe-
cific target of planting 150,000 new trees by 2020 (City
of Vancouver 2014). The plan includes policies and by-
laws to protect existing trees, plant trees to increase
urban forest canopy, and to manage a healthy, resilient
urban forest for future generations of the city. Its goal is
to plant 150,000 new trees between 2010 and 2020, and
increase the urban forest canopy from 18% to 22% by
2050 (City of Vancouver 2014). Key to the strategy is to
protect and maintain current trees, especially those
which are mature and large. To detect, map and
characterize these large trees we develop and apply an
object-based approach for individual tree detection and
segmentation designed to both determine tree locations
(position of the stem) and to delineate the shape of the
crowns. We then extract attributes of interest such as
tree height and crown diameter. Subsequently, using a
series of ALS metrics we examine the capacity of
ALS data to predict if crowns are deciduous or con-
iferous. We compare the predictions with both exist-
ing databases of tree locations and new field data
collections. In this paper we investigate the capacity
of ALS data to individually detect, map and
characterize large (taller than 15 m) trees within the
City of Vancouver, recognising the additional cultural
and ecological importance these trees have compared to
the overall urban forest canopy.

Study area
Home to over 600,00 residents, the City of Vancouver,
BC is the third largest city in Canada (Statistics Canada
2017). The city is bounded by the Coast Mountains and
Burrard Inlet to the north and the Fraser River to the
south, which flows into the Strait of Georgia in the west
(Williams et al. 2018). Landuse and landcover includes
densely built-up areas, extensive areas of lower-density
single-family homes as well as varied greenspaces
ranging from small parks less than 0.5 ha, to golf courses
and the 405 ha Stanley Park (Vancouver Board of Parks
and Recreation 2016). Most of Vancouver’s native forest
vegetation was removed during early settlement and
forest harvesting between 1860 and 1910. Remnant areas
of temperate rain forest remain in Stanley Park and
other large parks and is dominated by large evergreens:

western hemlock (Tsuga heterophylla (Raf.) Sarg.), western
red cedar (Thuja plicata Donn ex D.Don), and
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Exotic
tree species are common as park and street trees with
dominant species including maples and cherries (over 50%
of all street trees), but also including ashes, lindens, oaks,
magnolias, hornbeams, and beeches.
Recent estimates from ALS data indicate that the City

of Vancouver has about 18% urban forest cover, with
about 61% on public lands (streets and parks), and 39%
on private lands (City of Vancouver 2018). Forest cover
measurements indicate a minor decline in overall forest
cover from 19% in 1995 to 18% in 2015. Most of the tree
loss is associated with urban densification, including the
loss of large, mature trees.

Data
The ALS data used in this study was acquired in February
2013 over the boundaries of the City of Vancouver.
The discrete-return dataset was provided in 168 non-
overlapping tiles in LAS format with a point density >
12 points·m− 2. The vertical and horizontal accuracies
are 0.18 and 0.36 m (95% confidence interval),
respectively. An example of a typical point cloud
acquired over an urban area is shown in Fig. 1 and
shows a profile of ALS returns.
To validate the tree detection, delineation, characterization

and species determination, individual tree data within the
city was compiled from three different sources. The first was
a geodatabase which provides an extensive inventory of trees
located in the public parks of the City of Vancouver. It has
been collected by a combination of photo-interpretation and
field visits. This dataset was used as a base layer providing
the spatial coordinates for 22,211 trees. For a subset of
18,146 of these trees, the tree type (deciduous or coniferous)
was specified. No height data is available in this exist-
ing database. A second dataset with tree height mea-
surements for large significant trees obtained by laser
rangefinder and species identification was available for
Stanley Park and Kerrisdale area. To complement
these datasets, an additional field campaign was com-
pleted in four city parks: Queen Elizabeth Park, Me-
morial West Park, Musqueam Park and Locarno Park.
A Vertex ultrasound hypsometer was used to deter-
mine the height of identified crowns and the average
of two tape measurements on perpendicular axes con-
stituted the recorded value for crown diameter. The
compiled dataset presented a total of 74 trees with
height and type information, 51 of which with a
crown diameter value.

Methods
The developed workflow for detecting the large trees in
this study is detailed below and consists of three key
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steps. First, using the raw point clouds of the LAS files,
a canopy height model (CHM) for the study area was
derived. Second, a segmentation of the tree crowns took
place and tree attributes were extracted. Third, each
crown was classified into coniferous/deciduous based on
ALS point cloud metrics.

Canopy height model production
The ALS point clouds were first normalized by extract-
ing the height above the ground of each point. From
these normalized point clouds a 0.3-m Digital Surface
Model (DSM) was derived providing the height above
the ground of each pixel. To do so, the pit-free DSM
algorithm (Khosravipour et al. 2016) was used. Finally, a
mask was generated to remove buildings and other
urban structures as well as low vegetation from the
surface resulting in a clean CHM representing only high
vegetation.

Tree crown segmentation and attribute extraction
For the automatic delineation of tree crowns, the CHM
was filtered and smoothed using a moving window
applying median and mean filters to attenuate abrupt
changes in height. The peaks corresponding to the tree-
tops were then identified as the local maxima of the
smoothed surface, with the condition that they were
separated by a minimum distance of at least 2.4 m (8
pixels). We then applied a marker-controlled segmenta-
tion with the compact watershed algorithm (Soille and
Ansoult 1990; Neubert and Protzel 2014) with compact-
ness parameter set to 1 to encourage more regular
segments. During this step, the local maxima were used
as the markers, i.e., the starting points for the region
growing process to delineate each segment. Then, for
each crown the height of the treetop (based on the ori-
ginal, unsmoothed CHM), the X and Y coordinates of
the stem location (as the polygon centroid), and the
crown diameter (as the diameter of a circle of equal
area) were extracted. As the focus of the paper is on the

characterization of big trees, the results were then
filtered to include only trees that were higher than 15 m.

Coniferous vs. deciduous classification
In the final phase, each detected tree was classified as
coniferous or deciduous using a Random Forest (RF)
classifier (Breiman 2001) based on 27 predictive features
derived from a series of ALS metrics (Table 1). Some of
the raw ALS metrics were normalized by the 99th per-
centile of height (closely approximating the height of the
tree) in order to avoid scale difference in the final fea-
tures caused by different tree heights (see description).
The ground truth data providing the reference labels

“coniferous” or “deciduous” came from the park trees
geodatabase. The reference tree found to be the closest
to the segment centroid assigned the ground truth label
to the segment. In total, the dataset used to train and
validate the model included 1809 coniferous and 4183
deciduous trees. A random 70%/30% training/validation
split was adopted, resulting in 4178 trees in the training
set and 1814 in the validation set. A RF classifier with
1000 trees was then trained and applied to the data to
label each segment in the area of interest.

Assessment protocol for tree detection and attribute
extraction
The first step in assessing the accuracy of the tree delin-
eation and associated extracted attributes consisted of
linking each segmented crown to a given reference tree.
To do so, the reference trees were subset to focus on
those > 15 m, based on a direct height extraction from
the canopy model. If a single reference tree was found
within an ALS-derived segment, a direct match was
established and the tree was added to the list of matched
trees. If more than one reference tree was found inside a
single segment, the closest tree to the centroid was con-
sidered a match and added to the list. The remaining
trees were added to the list of unmatched trees. The

Fig. 1 Example of an ALS point cloud across a small section of the urban environment. Point colored by return type with red corresponding to
first returns and other colors second or third returns. Urban structures and ground are typified by a single (first) return whereas vegetation is
characterized by a set of multiple return types
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reference trees that were found to be outside any seg-
ment were also appended to this list.
The list of matched trees is considered to contain the

True Positives (TP), i.e., the correctly detected trees,
whereas the list of unmatched trees is considered to
contain the False Negatives (FN), i.e., the missed refer-
ence trees. The TP rate is then computed as TP / (TP +
FN). The reference dataset being a presence-only dataset
(not an exhaustive list of all tree locations), it was not
possible to compute a False Positives rate, i.e., the num-
ber of trees incorrectly detected by the algorithm at
locations where no trees are present. For the TP, the
average horizontal distance (in meters) between refer-
ence tree and the matched tree was computed. Addition-
ally, the treetop height and/or crown diameter, if
measured in the field, were compared to the ALS
estimates and Root Mean Square Error (RMSE) and bias
(both in meters) were computed. The accuracy of the
coniferous/deciduous classification was assessed based
on the independent validation set, with measures such
as Overall Accuracy (OA) and F1-scores (harmonic
mean of user’s and producer’s accuracy) derived from
the confusion matrix.

Results
The tree delineation procedure had a TP rate of 76.6%
for trees > 15 m (n = 5710). Examining the 4375
correctly detected trees, the average positioning error of
the stem location was 2.11 m. Based on the 68 correctly
detected trees having coinciding reference height mea-
surements, the RMSE and bias were equal to 2.60 m
and − 1.87 m, respectively. Crown diameter was esti-
mated with a RMSE of 3.85 m and a bias of − 2.06 m
using the crown diameter measurements of 45 correctly
detected reference trees.

The confusion matrix for the coniferous/deciduous
classification is reported in Table 2. The OA was 86.9%,
with F1-scores of 0.79 and 0.91 for the coniferous and
deciduous classes, respectively. A subset of the devel-
oped spatial coverage of large trees (< 15 m) across the
city is shown in Fig. 2.
The results indicate the fully automated tree detection

and crown delineation approach performs well. The TP
rate is consistent with other studies, especially if taking
into account that the reference trees were principally
located in parks and therefore were often located in high
density clusters. The missed trees account for less than
25% of the reference trees and are principally a result of
undetected treetops occurring in dense canopies. Detec-
tion and delineation of trees in open areas was in
general more accurate. The tree height RMSE and the
associated bias suggests the workflow underestimates
the height of tall trees, which is a typical of ALS -based
estimates of height, as the laser return is unlikely to
intersect with the exact apex of the tree. However, field
measurement error is also likely, given difficulties in
measuring the height of tall trees in the field (all the
trees that were measured are > 30 m).
Across the City of Vancouver clear differences in the

number and height of large trees is apparent (Fig. 3).
The urban forest of Stanley Park on the peninsula adja-
cent to downtown has a number of large mature trees
which are dominant in terms of the number, height and

Table 1 List of the 27 features derived from the ALS metrics extracted for each segment

Feature name Description

Normalized average height Average height of all returns above 2 m, normalized by the 99th percentile of height.

Normalized standard deviation of height Standard deviation of height of all returns above 2 m, normalized by the 99th percentile
of height.

Normalized average square height Average of the square of the height of all returns above 2 m, normalized by the 99th
percentile of height.

Skewness of height Skewness of the height of all returns above 2 m.

Kurtosis of height Kurtosis of the height of all returns above 2 m.

Canopy cover from first returns Fraction of first returns above the 2 m threshold (number of first returns above 2 m divided
by the total number of first returns)

Canopy cover from all returns Fraction of all returns above the 2 m threshold (number of all returns above 2 m divided by
the total number of all returns)

Normalized percentiles of height: p = 10, 20, 30,
40, 50, 60, 70, 80, 90, 95

Percentiles of height (height below which p % of points lay), normalized by the 99th
percentile of height.

Bicentiles of height: b = 10, 20, 30, 40, 50, 60, 70,
80, 90, 95

Percentage of the points whose height is below b % of the 99th percentile of height.

Table 2 Confusion matrix for the coniferous/deciduous
classification of the delineated segments

Predicted

Actual Deciduous Coniferous

Deciduous 1137 111

Coniferous 127 439
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crown size. Generally however there is an East – West
gradient with postal codes west in the city generally being
dominated by taller, coniferous trees, whereas in the east
the tree height is lower and stands have generally domi-
nated by deciduous trees. The only exception to this is
Killarney in the south east which has values dominated by
the mature forest in the Fraserview Golf Course.
Figure 4 shows summaries of the distribution of

average tree height (> 15 m), density of tall trees per ha,
average crown diameter and percentage of conifer by
postcode across the city. The results mirror those in
Fig. 3 with an increase in the density and height of

trees from east to west (with the exception of the
Fraserview Golf Course). Tall trees are more associ-
ated with conifer compared to deciduous tree species
with larger conifers such as western hemlock, western
red cedar, and Douglas-fir dominating on the western
side of the city.

Discussion
Results presented in the case study demonstrate that
individual large tree canopies can be mapped from ALS
point clouds-derived rasters and with an object-based
workflow. The use of the high-density ALS data also
proved potential in the fully-automatic classification of
trees as either coniferous or deciduous. While the
deciduous/coniferous tree classification was accurate in
this study, the tree crown attributes for deciduous trees
are likely to present errors due to the lack of a complete
vegetated crown at the time of ALS acquisition in Febru-
ary. Crown diameter was also underestimated (on aver-
age by 2 m) mainly due to overlapping crowns in dense
canopies. In open areas, isolated trees were well
delineated. Part of the height and crown diameter mis-
match may be attributed to the four year lag between
the ALS acquisitions (in 2013) and the field data collec-
tion (mainly in 2017), an interval during which some of
the younger trees have grown.
The ALS data acquired for this study was acquired

principally for the purposes of developing high quality
digital terrain information across the city. The leaf-off
ALS acquisition may have hampered the results in the
detection/delineation of deciduous trees, lowering thus
the overall TP rate. It is not uncommon that leaf-off
collections are undertaken in order to obtain precise
DEM’s with a focus on urban structures, hydrology and
urban water movement. Leaf-off collections can result in
sparse point clouds for deciduous stands because of the
large number of laser pulses penetrating the canopy.
Improved delineation of the crowns for deciduous trees
enabled by a leaf-on acquisition may result in the extrac-
tion of more meaningful ALS-based features, in turn
potentially enhancing the classification results.
With relation to the choice of extracting trees taller

than 15 m, a comparison of tree delineation methods by
Jakubowski et al. (2013) suggested that ALS data with an
average of around 2 points·m− 2 was sufficient for detect-
ing large individual trees. In general, attempts to extract
individual tree attributes have relied on higher densities.
Point densities > 9 points·m− 2 were used to accurately
extract tree height, base height, crown diameter, and
crown volume as well as perform segmentation of indi-
vidual trees directly from the raw LiDAR point cloud
(Zhang et al. 2015). Smaller trees might require even
higher density. In terms of the accuracy assessment, to
effectively optimize the parameters of the automatic

Fig. 2 Detail of the tree crown map (coniferous in green, deciduous
in yellow) in a subset of the City of Vancouver with an orthophoto
as a background and the 5 reference trees located in the area
(pink dots)

Fig. 3 Mapped locations of all detected trees > 15 m across the City
of Vancouver
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workflow, a comprehensive validation dataset is re-
quired. In addition future work could focus on the
extraction of other tree attributes besides tree location
and crown size. For example, individual crown structure
can be examined using ALS as filled and open volumes
within a canopy (Lefsky et al. 1999). The approach
involves superimposing a grid over individual canopies
composed of 0.1 m3 voxels up to the level of the highest
LiDAR return. These cells are classified as either “filled”
or “empty” volume depending on whether a return was
recorded within the voxel and as either “euphotic” zone,
if the cell is located within the uppermost 65% of all
filled volumes, or as “oligophotic” zone if it is located
below this point in the profile. Coops et al. (2007) found
that the overall canopy surface structure of Douglas-fir
stands in coastal British Columbia, Canada, were charac-
terized by the total amount of the “open gap” canopy
volume profile class with dense, shorter stands showing
an even upper canopy surface, while the mixed, more
variable crown structures, have a significantly higher
amount of open gaps, which are indicative of increased
total canopy surface.

A small field campaign was conducted for this study
to acquire height and crown diameter for a small set of
sample trees. However, a complete census of tree loca-
tions over a test area may be desirable to assess and
compare the delineation assumptions which should rely
not only on TP rate but also on the False Positive rate
(reporting on false alarms, i.e., segments that do not
correspond to any actual tree). Manual crown delinea-
tion as done by a photo-interpreter based on an ortho-
photo could also be useful, even though overlapping
crowns may be hard to correctly digitize.
Across the study we demonstrate that although there

is variation in the number and size of trees across the
city, Vancouver is still very green. This agrees with previ-
ous studies which demonstrate that only approximately
22% of the larger Metro Vancouver is urban land cover
(Williams et al. 2018). The City of Vancouver had previ-
ously estimated its canopy cover from ALS data to be
18%, comparable to the cities of Victoria, BC (18%) and
Seattle, WA (23%) (City of Vancouver 2014). However,
our results are consistent with Williams et al. (2018)
who found that broadleaf and coniferous trees cover

Fig. 4 Summary of detected tree attributes by postcode (a) Height, (b) Density, (c) Crown diameter and (d) % conifer
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about 19% and 6% of Vancouver’s area, respectively,
which they found was an increase of 7% on the previous
estimate for a total canopy cover of about 25%. Similarly,
Li et al. (2015) and Seiferling et al. (2017) using Google
Street view imagery to estimate street-level canopy cover
in Vancouver and estimated a median 25.9% street-level
canopy cover for the City.

Conclusion
We presented a case study relating on an effort to map
large trees in the city of Vancouver, BC, Canada. The
methodology we detailed herein revolves around an
object-based image analysis applied on ALS data to
detect tall trees locations and to extract attributes of
interest, including tree height, crown diameter and con-
iferous/deciduous class. By identifying large trees in
Vancouver, this study adds to previous information gath-
ered about canopy cover in Vancouver by identifying
structural keystones (Le Roux et al. 2015) in Vancouver’s
urban forests. Because large trees are so valuable due to
their form and function, their identification is critical for
a comprehensive understanding of the urban forest.

Abbreviations
ALS: Airborne laser scanning; DSM: Digital Surface Model; FP: False Positives;
LiDAR: Light Detection and Ranging; OA: Overall Accuracy; RMSE: Root Mean
Square Error; TP: True Positives
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