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Abstract

Background: Generalized height-diameter curves based on a re-parameterized version of the Korf function for
Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) in Norway
are presented. The Norwegian National Forest Inventory (NFI) is used as data base for estimating the model
parameters. The derived models are developed to enable spatially explicit and site sensitive tree height imputation
in forest inventories as well as future tree height predictions in growth and yield scenario simulations.

Methods: Generalized additive mixed models (gamm) are employed to detect and quantify potentially non-linear
effects of predictor variables. In doing so the quadratic mean diameter serves as longitudinal covariate since stand age,
as measured in the NFI, shows only a weak correlation with a stands developmental status in Norwegian forests.
Additionally the models can be locally calibrated by predicting random effects if measured height-diameter pairs are
available. Based on the model selection of non-constraint models, shape constraint additive models (scam) were fit to
incorporate expert knowledge and intrinsic relationships by enforcing certain effect patterns like monotonicity.

Results: Model comparisons demonstrate that the shape constraints lead to only marginal differences in statistical
characteristics but ensure reasonable model predictions. Under constant constraints the developed models predict
increasing tree heights with decreasing altitude, increasing soil depth and increasing competition pressure of a tree. A
two-dimensional spatially structured effect of UTM-coordinates accounts for the potential effects of large scale spatially
correlated covariates, which were not at our disposal. The main result of modelling the spatially structured effect is
lower tree height prediction for coastal sites and with increasing latitude. The quadratic mean diameter affects both
the level and the slope of the height-diameter curve and both effects are positive.

Conclusions: In this investigation it is assumed that model effects in additive modelling of height-diameter curves
which are unfeasible and too wiggly from an expert point of view are a result of quantitatively or qualitatively limited
data bases. However, this problem can be regarded not to be specific to our investigation but more general since
growth and yield data that are balanced over the whole data range with respect to all combinations of predictor
variables are exceptional cases. Hence, scam may provide methodological improvements in several applications by
combining the flexibility of additive models with expert knowledge.
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Background
The prediction of tree height is of central importance,
not only for the calculation of growing stock from sam-
ple inventories, but also in the prognosis of middle and
long-term forest development for forest planning and in
the analysis of timber supply. The estimation of single
tree volume and assortment is made using species-
specific taper functions which use tree height and the
diameter at breast height (dbh) (and occasionally other
stem diameters) as input parameters. Single tree
volumes are then the basis for expanding total timber
volume from sample forest inventories for any given
evaluation and planning unit. With respect to dbh, infor-
mation from fully documented experimental plots, or at
least from concentric sample plots, can frequently be re-
lied upon for tree height imputation in sample forest in-
ventories and for generating realistic start values to
initialize forest growth simulators. Measurements of tree
height, however, are considerably more costly to obtain,
so that often little or no data is available. If one to sev-
eral height measurements are available in a stand or
sample plot, height-dbh curves based on simple mixed
models are applied which allow for local calibration of a
mean population relationship and thus local prediction
(e.g. Corral-Rivas et al. 2014). These models that employ
exclusively diameter as predictor are purely data imput-
ation tools and do not, for example, describe explicitly
the effects of site or competition on the height-dbh rela-
tionship. Generalized height curves describe these effects
(Larsen and Hann 1987; López et al. 2003; Temesgen
and Gadow 2004). However, frequently the information
on measured height-dbh pairs is not used for local cali-
bration of the height predictions. A combination of both
model approaches leads to generalized height-diameter
(h-d) models, which can be locally and temporarily cali-
brated. Hence, these models are developed using either
linear or non-linear mixed models in which site, stand,
competition variables but also regional units or geo-
graphic coordinates are used as covariates (Lappi 1997;
Eerikäinen 2003; Calama and Montero 2004; Mehtätalo
2004; Nanos et al. 2004; Hökkä, 1997; Schmidt et al.
2011). From a more general point of view mixed models
also provide a solution to the problem of correlated
errors that results from grouped data structures and they
quantify the variability between groups via random
effects (Pinheiro and Bates 2000). This is highly relevant
in h-d modeling since in most forest growth and yield
data bases several measurements origin from the same
sample plot or trial and measurement occasion.
In forest growth simulations the actual projection of

future tree heights is frequently based not on height-dbh
curves but on height growth functions of dominant
trees. These can be adapted for single trees using
additional tree covariates like competition indices

(Pretzsch 2009). However, if a longitudinal covariate,
such as age or quadratic mean diameter, is used then
valid future height projections can be obtained directly
using the generalized h-d model.
H-d models for Norway spruce (Picea abies (L.)

Karst.), Scots pine (Pinus sylvestris L.) and silver birch
(Betula pendula Roth) are presented in this paper, which
allow an optimal height prediction for any given dbh in
all of the example situations described below. This is
true regardless of the number of available height
measurements, as well as in those cases in which only
measurements from an earlier inventory are available.
Furthermore, an optimal combination of information
from stand and site variables together with local height
measurements is ensured. These requirements are
fulfilled by using a generalized height-diameter model
which has been parameterized as a mixed model. Mixed
models facilitate the local or temporal calibration of
global models which have been determined using fixed
covariate effects (Lappi 1997; Mehtätalo et al. 2015). As
in our investigation only few causal site variables were
available the covariates used are mainly proxies. In order
to guarantee the highest possible accuracy of prediction
in those cases for which no height-dbh pairs were avail-
able at all, complex linear predictors for the fixed effects
are parameterized in generalized additive mixed models
(gamm). Moreover for forecasts of future height devel-
opment, it seems advantageous to describe the highest
possible variance partition as a function of dynamic (i.e.
time-varying) covariates through their fixed effects,
because it can be assumed that the information from
measured dbh-height pairs becomes less meaningful
with increasing simulation period. The use of longitu-
dinal variables, such as age or quadratic mean diameter
(qmD) increases the possible applications of the models
from purely data imputation to height projection in
growth simulations. Finally implausible effects, resulting
for certain data ranges of covariates in the gamm, are
forced into plausible (as decided by experts) patterns by
defining monotonicity-restrictions in shape-constraint
additive models (scam).
The developed longitudinal h-d models provide solu-

tions for the following applications throughout Norway:

� Height imputation, taking into account site and tree
effects for single trees in the NFI and also for
initializing growth simulators, when no
representative height measurements are available.
For the application, a measured or estimated dbh
must be available.

� Medium-term future height predictions for the
analysis of timber supply, forest development
scenarios and silviculture scenario simulations,
taking (fixed) site and tree effects into account.
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� Ensuring plausible height predictions for the
whole data range of covariates by applying
monotonicity-constraints where necessary for
the fixed model effects.

� Model calibration, i.e. local adaption of height
predictions and projections using height-diameter
measurements.

Data
Data from the Norwegian national forest inventory
(NFI) for the period 1986–2012 were available. For all
three tree species studied, steep gradients were evident
in the data for the potential covariates and their combi-
nations. This is extremely advantageous for the develop-
ment of statistical models, or rather for generating
generally acceptable, stable and plausible estimations of
model effects (Tables 1 and 2).
Annually, ca. one fifth of the sample plots are inventor-

ied in the NFI (inter-penetrating panel design). Below the
coniferous forest limit, the permanent sample plots are
laid out in a systematic 3 km× 3 km grid. Since 2005,
sample plots in high mountain areas above the coniferous
limit and in Finnmark are measured on a 3 km× 9 km
and 9 km× 9 km sampling grid, respectively. Sample plots

in Finnmark below the coniferous limit are measured on a
3 km× 3 km grid as in other parts of the country. Between
1986 and 1993 concentric circular plots of 100 m2 (for
trees with a dbh of less than 20 cm) and 250 m2 (for trees
with a dbh greater and equal to 20 cm) were used. From
1994 on, simple circular plots with an area of 250 m2 were
used. Over the complete inventory period only trees with
a dbh of 5 cm or greater were sampled. Tree height mea-
surements in the NFI are made with Vertex inclimeters
for a subsample of trees. The subsample of trees is
selected proportional to tree diameter. While the expected
number of height trees per sample plot was three per
species until 2004, the expected number of height trees
per plot was 10 independent of tree species from 2005
onwards. Therefore, and due to the inclusion of high
mountain areas and Finnmark, there was a clear increase
in the number of h-d value pairs with time (Fig. 1, left).
The greatest numbers of trees were sampled between 200
and 250 m above sea-level (Fig. 1, right). Spruce and birch
are more evenly distributed across the altitude gradient
than pine. The relatively small proportion of spruce in the
lower altitudes (predominantly coastal areas) and its dom-
inance between 300 and 600 m stands out, while above
800 m birch is the most frequently occurring species.

Table 1 Summary statistics of the continuous variables used in the development of the longitudinal height-diameter models.
Statistics for quadratic mean diameter (species specific) and stand age were calculated for sample plot/measurement occasion
means, statistics for altitude for sample plot means respectively

Minimum 25%-quantile Median Mean 75%-quantile Maximum

Norway spruce

dbh (cm) 5.0 11.8 18.1 19.4 25.5 75.5

Tree height h (m) 1.5 8.6 13.0 13.3 17.4 35.2

Basal area larger BAL (m2 per 250 m2) 0.0 0.086 0.215 0.281 0.410 2.255

Quadratic mean diameter qmD (cm) 5.0 11.7 15.4 16.4 20.0 64.3

Stand age (Y) 2 41 75 79 115 359

Altitude Alt (m) 2.0 205 355.0 394.1 555.0 1065.0

Scots pine

dbh (cm) 5.0 15.0 22.2 22.9 29.8 83.1

Tree height h (m) 1.6 8.5 12.5 12.5 16.0 35.0

Basal area larger BAL (m2 per 250 m2) 0.0 0.049 0.149 0.197 0.293 1.468

Quadratic mean diameter qmD (cm) 5.0 16.6 22.2 23.0 28.2 78.4

Stand age (Y) 1 55 98 92 125 359

Altitude Alt (m) 0.0 175.0 300.0 350.8 500.0 985.0

Silver birch

dbh (cm) 5.0 7.6 10.8 12.3 15.3 80.0

Tree height h (m) 1.9 5.8 7.7 8.4 10.3 30.8

Basal area larger BAL (m2 per 250 m2) 0.1 0.051 0.130 0.180 0.257 1.704

Quadratic mean diameter qmD (cm) 5.0 8.5 10.5 11.8 13.6 64.5

Stand age (Y) 1 48 75 78 105 359

Altitude Alt (m) 0.0 180.0 340.0 407.6 615.0 1130.0
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Birch has the greatest regional range, the highest nat-
ural tree line (Fig. 1, right) and the most northerly range
limit (Fig. 2, right) of the three species. Although pine
also has a large regional range (Fig. 2, middle) the nat-
ural tree line lies at a much lower altitude (Fig. 1, right)
and it occurs much less frequently in the provinces of
Nordland, Troms and Finnmark. The data for spruce
show that it has a higher natural tree line than pine
(Fig. 1, right) but the northern limit of its range lies at a
lower latitude (Fig. 2, left). More clearly than for the other
two species, a separation of spruce into two distinct
ranges can be seen, one in south-east Norway east of the
main watershed divide, the other lying in the province of
Nord-Trøndelag and parts of Sør-Trøndelag. The limited
spruce distribution in the coastal regions of south and
mid Norway is due to the fact that spruce is not part of
the potential natural vegetation in these regions. In total
there are 68,426 spruce, 50,852 pine and 59,112 birch h-d
data pairs and respective covariate vectors available
(Tables 1 and 2).

Methods
Model development was a multi-step process. In a first
step, gamm were parameterized in order to identify co-
variates with significant effects and to test model effects
for non-linearity. Based on this unrestricted model selec-
tion the model effects were tested for plausibility. If ne-
cessary, conditions such as monotonicity were specified
and scam parameterized. The scam were then validated
against the unconstrained models by comparing the

fitting statistics standard error, explained deviance and
Akaike information criterion (AIC). Because of the com-
putational intensity, a direct parameterization of shape
constraint additive mixed models (scamm) was only
possible for small datasets given the available computing
facilities. To develop models which can be locally
calibrated, generalized linear mixed models (glmm) are
therefore parameterized in which, on the basis of the
scam predictions, conditional expectation values are en-
tered as “a priori” information. The specification as a
mixed model enables the partitioning of the total vari-
ance on different levels, and thereby, the calibration of a
mean population model using additional h-d measure-
ments (Mehtätalo et al. 2015). Moreover the mixed
model approach accounts for the grouped structure of
the used NFI-data and the related correlated errors. The
integration of the qmD as a covariate gives the models
their longitudinal character and, consequently, the shift-
ing h-d relationship with time can be described as a
function of the developmental stage of a stand. Even if
the shift in the h-d relationship should not be confused
with incremental height growth, the approach opens up
the possibility of site-sensitive height projections in
growth simulations.
The choice of the basic model, or rather, of the specific

height-diameter function, is crucial for the longitudinal
h-d model that is developed from it. Here, a special form
of the Korf-function developed by Lappi (1997) is used,
which is distinguished by the biological interpretability
and comparatively low correlation of its parameters.

Table 2 Number of sample plots by soil depth category and tree species used in the development of the longitudinal
height-diameter models

Soil depth category (only mineral soil) SD

I (0–25 cm) II (25–50 cm) III (50–100 cm) IV (>100 cm) Sum

Norway spruce 622 1552 1203 2256 5633

Scots pine 1363 1342 653 1469 4827

Silver birch 1220 1987 1429 2516 7152

Fig. 1 Distribution of stem number by inventory year (left) and altitude level (50 m classes) (right)
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These qualities are particularly advantageous when, as is
the case here, the parameters, and thereby the realisation,
of height curves are to be described as a function of site,
stand, and single tree variables. Mehtätalo (2004, 2005)
built on the work of Lappi (1997) and adapted and
validated the model for spruce, pine and birch in Finland,
a country with partly similar growth conditions.
Additionally it is very important that the model is linear
which enables the estimation of site, stand and tree effects
and their validation for nonlinearity in a one-step proced-
ure using gamm. Finally in our application the modified
Korf-function showed an adequate flexibility which is
illustrated in the results chapter. The basic version of the
Korf-function used here (Eq. 1) is an alternative to the
more frequently used variant, in which breast height
(1.3 m) is subtracted from the tree height. In order to pre-
vent the expected height values from taking on the value
“zero” when the dbh is very small, Lappi added a small
constant λ to the dbh, where dbh + λ can be interpreted
as the diameter at ground height. Lappi (1997) then re-
parameterized the function (Eq. 2) because the expected
values and the standard error of the “linear” parameters A
and B are strongly correlated and the trend of B with age
is difficult to interpret. This re-parameterization, on the
basis of expected values of the logarithmic tree height for
trees with dbh of 30 and 10 cm (Eqs. 2 and 2.1), yields bio-
logically meaningful parameters, as well as a clear reduc-
tion in correlation. Parameter A can then be interpreted
as the expected value of the natural logarithm [ln(.)] of the
height of a tree with dbh = 30 cm, while parameter B is
the difference between the expected values of ln(tree
height) between trees with dbh = 30 cm and dbh = 10 cm
of the respective tree species. The parameters A, B, C and
λ are referred to in this paper as first order parameters (of
the Korf-function) in order to distinguish them from the
second order parameters which describe the effects of site,

stand, and single tree variables that are integrated into the
model later.

In hktið Þ ¼ Akt−Bkt dbhkti þ λð Þ −Cð Þ þ εkti ð1Þ
In hktið Þ ¼ Akt−Bktxkti þ εkti ð2Þ

xkti ¼ dbhkti þ λð Þ −Cð Þ− 30þ λð Þ −Cð Þ

10þ λð Þ −Cð Þ− 30þ λð Þ −Cð Þ ð2:1Þ

with:
hkti: height of tree i at time of inventory t at sample

plot k;
dbhkti: dbh of tree i at time of inventory t at sample

plot k;
xkti: re-parameterized dbh of tree i at inventory date t

at sample plot k;
Akt, Bkt, C, λ: first order parameters of the height-

diameter model at time of inventory t at sample plot k;
ln(.): natural logarithm.
In keeping with Lappi (1997), the function (Eq. 2) is sub-

sequently linearized by iteratively determining the combin-
ation of λ and C for which the corresponding model has
the lowest AIC. Differences in the underlying data result,
at this point, in a fundamental difference to the approach
of Lappi (1997) and Mehtätalo (2004). Lappi (1997) used
experimental plots and Mehtätalo (2004) a subsample of
the Finnish NFI which, because of the large or least suffi-
cient number of h-d value pairs, allow an ordinary least
squares estimate of separate h-d curves for each plot and
inventory date. From these individual parameterizations
Lappi (1997) derived not only the optimal parameter
combination of λ and C, but also the age trends for the
parameters A and B. In contrast, the choice of optimal
combinations of λ and C in this study was made using a
glmm based on the re-parameterized Korf-function (Eq. 2)

Fig. 2 Regional ranges of Norway spruce, Scots pine and silver birch in the Norwegian National Forest Inventory

Schmidt et al. Forest Ecosystems  (2018) 5:9 Page 5 of 17



because the number of measurements per plot in the
Norwegian NFI rarely allowed fitting of stable, separate
plot-specific models. This glmm includes plot-level random
effects with mean 0 and constant variance for the parame-
ters A and B (Eq. 2.2). Moreover during model development
it turned out that the variance of random effects for an in-
ventory date level nested within plot level was extremely
low and almost zero for all 3 tree species. Hence all further
model selection was restricted to plot level mixed models.

In E hkti½ �ð Þ ¼ A−Bxkti þ αk þ βkxkti ð2:2Þ

hkti ~ Gamma(μ,ν) with dispersion parameter
ϕ = 1/ν = σ2.
with additionally:
A, B: Fixed effects for the first order parameters of the

height-diameter model (re-parameterized Korf-function);
αk, βk: Random effects for sample plot k with the vec-

tor of random parameters bk = (αk, βk)′~N(0, D) and D
denoting the corresponding variance-covariance matrix.
In this study all models are paramaterized as glmm or

gamm with log-link function and Gamma as distribution
assumption. By employing the Gamma distribution we
assume a constant coefficient of variation σ with
[Var(hkti)]

1/2 = σ E(hkti) and Var(hkti) = ϕ [E(hkti)]
2. This

corresponds to a log-linear model, but, using generalized
models no transformation bias occurs when the predic-
tion is back-transformed. We show in the results chapter
that assuming a Gamma distribution leads to a sufficient
variance stabilization in our case and in contrast to
Lappi (1997) and Mehtätalo (2004, 2005) we did not
model the residual variance explicitly. However, the on-
going development of approaches like gam for location
and scale (Wood et al. 2016) will allow for a more flex-
ible variance modelling in the future.
The iterative search for the parameters λ and C for

spruce, pine, and birch, with respectively 5613, 5219,
and 7606 sample plots, proved to be too computationally
intensive given the available computing facilities. Instead
20 samples, each containing 500 sample plots, where
drawn from the dataset and models with different
combinations of λ and C were parameterized (Eq. 2.2).
Based on the optimal values determined by Mehtätalo
(2004, 2005) for spruce (λ = 7, C = 1.564) and birch
(λ = 6, C = 1.809), the value for λ was varied between 3
and 20 (in increments of 1), the value for C was varied
between 0.3 and 2.5 (in increments of 0.1) and all of the
resulting combinations tested. The AIC values of the
resulting 20 models for each parameter combination
were then averaged and the optimal parameter combin-
ation determined using the lowest average AIC value.
In contrast to Lappi (1997), further model selection in

this study followed in a one-step procedure with the
help of gamm, without the effects of the longitudinal

covariate (age or qmD) on the first order parameters A
and B being first approximated. Lappi (1997), on the
other hand, assumed that the effects of further covari-
ates would be linear and affect the before approximated
age effects. In this study, all further covariate effects are
estimated simultaneously with the effect of the longitu-
dinal covariate qmD, whereby, because of the log-link
function, the effects act multiplicative exponential on
tree height (Eq. 3). Model effects on the first order par-
ameter A are indicated by f1a…fna or fsp a the latter one
indicating a structured spatial effect. Terms affecting the
first order parameter B are described by the varying
coefficient terms f1....fnb. Through the simultaneous
estimation of the parameters of the 2-dimensional
trend function fsp a(eastk, northk) and the plot level
random effects (αk, βk), the spatial autocorrelation is
separated into a structured and an unstructured
spatial effect (Brezger and Lang 2006). The first cap-
tures the large-scale autocorrelation, while the second
describes the small scale correlation within sample
plots. The models were fit using software default
values (R package mgcv, Wood 2006) for the spline
basis dimensions of k = 10 for the 1-dimensional and
k = 30 for the 2-dimensional splines.

In E hkti½ �ð Þ ¼ f 1a x1ð Þ þ f 2a x2ð Þ þ…þ f na xnð Þ
þ f sp a eastk ; ; northkð Þ þ f 1b x1ð Þxkti
þ…þ f nb xnð Þxkti þ αk þ βkxkti ð3Þ

hkti ~ Gamma(μ, ν) with dispersion parameter
ϕ = 1/ν = σ2.
with additionally:
x1…xn: Covariates with 1-dimensional effects on the h-d

relationship;
eastk, northk: Easting and northing of sample plot k

(UTM-coordinates);
f1a(x1)…fna(xn): 1-dimensional penalised regression P-

splines describing the level of the h-d relationship (first
order Parameter A);
f1b(x1)…fnb(xn): 1-dimensional penalised regression P-

spline describing the slope of the h-d relationship (first
order Parameter B);
fsp a: 2-dimensional isotropic penalised thin-plate

regression spline capturing the structured spatial ef-
fect on the level of the h-d relationship (first order
Parameter A).
The estimated model parameters were checked for lo-

gical validity. If deemed necessary, monotonicity con-
straints were defined to enforce plausible patterns. A
scamm describing the h-d relationship under conditions
of monotonicity for all 1-dimensional effects can be
written as follows, with all monotonic model effects
denoted by m instead of f:
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Fig. 3 (See legend on next page.)
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In E hkti½ �ð Þ ¼ m1a x1ð Þ þm2a x2ð Þ þ…þmna xnð Þ
þ f sp aðeastk ; northkÞ þm1b x1ð Þxkti
þ…þmnb xnð Þxkti þ αk þ βkxkti ð4Þ

hkti ~ Gamma(μ, ν) with dispersion parameter
ϕ = 1/ν = σ2.
with differing to Eq. 3:
m1a(x1)…mna(xn): 1-dimensional monotonic penalised

regression P-splines describing the level of the h-d rela-
tionship (first order Parameter A);
m1b(x1)…mnb(xn): 1-dimensional monotonic penalised

regression P-splines describing the slope of the h-d rela-
tionship (first order Parameter B).
Due to the extensive dataset, with many thousand

sample plots, a parallelization is necessary. The para-
meterization of all plot-level gamm was made using the
R (R Core Team 2016) package mgcv (Wood 2004, 2006,
2011), which can handle parallel calculations. The
investigations concerning 2-level gamm with additional
inventory date level were conducted by combining
functions from packages mgcv, nlme (Pinheiro et al.
2013) and MASS (Venables and Ripley 2002). The para-
meterization of the scam was done using the R package
scam (Pya 2015), which is based on the mgcv library and
also allows a parameterization of scamm. Parallel com-
puting has not been supported by the scam package up
to now, so in this study a 2 step procedure is used. In a
first step scam were parameterized (Eq. 5) whose esti-
mates of conditional expected values of ln(tree height)
were the only covariate in subsequent glmm (Eq. 6). The
resulting glmm makes possible a local calibration using
height-dbh measurements, by which the pattern of the
fixed shape constrained model effects remain the same.
Because the glmm builds on the scam, it will henceforth
be labeled as scam_m.

In E hkti½ �ð Þ ¼ m1a x1ð Þ þm2a x2ð Þ þ…þmna xnð Þ
þ f sp aðeastk ; northkÞ þm1b x1ð Þxkti
þ…þmnb xnð Þxkti ð5Þ

In E hkti½ �ð Þ ¼ In E hkti½ �ð Þd scam þ αk þ βkxkti ð6Þ

hkti ~ Gamma(μ, ν) with dispersion parameter
ϕ = 1/ν = σ2.
with additionally:

In E hkti½ �ð Þd scam : Prediction of ln(tree height) using scam

(Eq. 5) of tree i at inventory date t and sample plot k.

Results and discussion
Within the studied parameter boundaries the optimal
combination for spruce was λ = 20 and C = 2.5, for pine
λ = 19 and C = 2.5 and for birch λ = 16 and C = 2.4
(Fig. 3). For each of the 3 tree species studied several dif-
ferent parameter combinations resulted in AIC values
near the minimum. The optimal values were, depending
on species, for one or both of the parameters near the
upper boundary of the studied parameter ranges. It can,
therefore, be assumed that the true optima lie at higher
values of λ and C. However, further improvements
would be marginal as can be seen from the development
of the AIC values within the studied parameter boundar-
ies (Fig. 3). There were relatively large differences be-
tween the optimal parameter combinations and those
determined by Mehtätalo (2004, 2005), although those
optima would also lead to relatively low AIC values if
applied to the NFI data (Fig. 3). For pine, Mehtätalo
(2005) modelled parameter C dependent on qmD, so
that in this case there were no constant value-pairs avail-
able for comparison.
In the course of model selection of the unrestricted

gamm, quadratic mean diameter qmD, the competition
index BAL (basal area larger; the sum of basal areas of
all trees larger than the reference tree), altitude Alt, soil
depth SD, as well as regional location (easting, northing)
were all selected as covariates with a significant effect on
the first order parameter A. Only qmD showed an add-
itional significant effect on the slope of the h-d relation-
ship, the first order parameter B.

In E hkti½ �ð Þ ¼ f 1a qmDktð Þ þ f 2a Altkð Þ
þ f 3a BALktið Þ þ SDT

k ΦSD

þ f sp aðeastk ; northkÞ
þ f 1b qmDktð Þxkti þ αk þ βkxkti ð7Þ

hkti ~ Gamma(μ, ν) with dispersion parameter
ϕ = 1/ν = σ2.
with additionally:
qmDkt: Quadratic mean diameter of the tree species at

inventory date t at sample plot k;
Altk: Altitude of sample plot k;

(See figure on previous page.)
Fig. 3 AIC values of the glmm (Eq. 2.2) used in the iterative search for the optimal parameter combination of λ and C and for spruce, pine, and
birch. Each dotted line represents outcomes for a constant value of λ, which vary between 3 and 20 upwards (increment = 1). The parameter
C was varied between 0.3 and 2.5 (increment = 0.1). The large black circles mark the parameter combination with the species specific minimum
AIC-values. The black diamonds mark the AIC-values which would result if the optima determined by Mehtätalo (2004, 2005) in Finland would
be applied
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Fig. 4 (See legend on next page.)
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BALkti: Basal area larger (sum of the basal area of all
trees larger than the reference tree) of tree i at inventory
date t at sample plot k;
SDk: Soil depth category of sample plot k: I (0–25 cm),

II (25–50 cm), III (50–100 cm), IV (> 100 cm);
eastk, northk: Easting and northing of sample plot k

(UTM-coordinates);
f1a(.)…f3a(.): 1-dimensional penalised regression P-splines

describing the level of the h-d relationship (first order
Parameter A);
f1b(.): 1-dimensional penalised regression P-spline

describing the slope of the h-d relationship (first order
Parameter B);
ϕSD: Vector of the regression coefficients for soil depth

categories;
fsp a: 2-dimensional isotropic penalised thin-plate regres-

sion spline capturing the structured spatial effect on the
level of the h-d relationship (first order Parameter A);
αk, βk: Random effects for sample plot k with the vec-

tor of random parameters bk = (αk, βk)′~N(0, D) with D
denoting the corresponding variance-covariance matrix.
Two level mixed models were excluded from the

further process of model selection since the estimated
variances of random effects for an additional inventory
date level nested within plot level for all 3 tree species
were extremely low and hence irrelevant. For all three
tree species the 1-dimensional effects of all continuous
covariates on the first order parameters A and B were
more or less non-linear whereas the effects of BAL
showed only minor deviations from linearity (Fig. 4).
Based on expert knowledge the flexibility of the 1-
dimensional splines was validated as sufficient and the
default spline basis dimension of k = 10 was not

increased. In modeling using scam an assessment of the
unrestricted model effects is part of the model building
process, as a decision must be made as to what degree
plausible model effects could be forced by imposing re-
strictions. Since h-d curves are fitted the model effects
have to be validated with regard to their effects on tree
height as a surplus to the effects on diameter growth.
For all three tree species the effect of qmD on the first

order parameter A decreases in the range of large values
(Fig. 4). This was seen as unfeasible since for spruce
from a qmD of ca. 25 cm and for pine and birch from a
qmD of ca. 40 cm onwards, a decreasing level of the
height curve with increasing qmD would be predicted
(Fig. 4). It is assumed that the cause of this frequently
occurring pattern is that the share of unfavourable sites
is much higher in stands in advanced development
stages than in younger stands, because such sites have
on average poorer access, lower management intensity
and a lower timber felling rate. It can also be assumed
that, because of lower tree heights, unfavourable sites
are less vulnerable to storm damage and that their share
will therefore increase with advancing stand develop-
ment stage.
The effects of BAL, Alt and the different categories of

SD on the first order parameters seem plausible. All
three species show monotone decreasing effects with
increasing Alt (Fig. 4). Under Norwegian growth
conditions it can be assumed that Alt is primarily a
proxy variable for temperature, which decreases with in-
creasing Alt. Precipitation, which increases with increas-
ing Alt, is not able to fully compensate for the limiting
factor of the temperature-sum. The weak gradient be-
tween 0 and 150 m Alt for all three tree species seems

(See figure on previous page.)
Fig. 4 1-dimensional model effects of non-shape-constrained gamm (Eq. 7) on the first order parameters A and B [f1b(qmD)] for spruce, pine and
birch. Additionally, an estimate of tree height (m) under constant predictors (dbh = 20 cm, Alt = 300 m, qmD = 25 cm, BAL = 0.5 m2 per 250 m2,
SD = III) but varying regional locations is shown in order to display the 2-dimensional effect fsp a(eastk, northk) (for each species on the bottom
line, right)

Fig. 5 Model effects of stand age on the first order parameter A (left) and B (right) of a non-shape-constrained gamm, for Norway spruce where
stand age instead of the quadratic mean diameter has been used as the longitudinal covariate (Eq. 7.1)
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plausible, because it can be assumed that the growth
conditions at these altitudes are relatively uniform, if all
other influence factors are constant.
All three tree species show increasing effects with

increasing soil depth SD (Fig. 4), although for pine
and birch between categories III and IV and for
spruce between categories II, III and IV the differ-
ences were not significant. The ranking is plausible,
because with increasing soil depth better conditions
with respect to water regime and nutrient supply can
be assumed. Also the much lower level of the SD-
category I sites with very shallow soils can be judged
to be plausible.
The effect of BAL is uniformly monotone increasing

with a, depending on the tree species, more or less weak
degressive tendency, which is most pronounced for pine
(Fig. 4). BAL is a simple index describing the social rank
and competition pressure of a tree within a sample plot.
In assessing the effect it was assumed, that with increas-
ing BAL (or increasing competition), light would become
a growth-limiting factor. Thus, with increasing BAL the
relation of height-growth to diameter-growth shifts in
favour of height growth and greater tree heights are pre-
dicted, if all other factors remain constant (Fig. 4). With
decreasing BAL the social rank of a tree increases and
lower tree heights are predicted, if all other variables are
equal because dominant, and as extreme cases solitary
trees, invest more into diameter than height growth
for stability reasons. Another way of interpreting the
BAL effect is to compare trees that grow under equal
site conditions but under different competition. These
trees will have similar heights but different dbh as a
function of growing space. Hence larger h-d ratios can
be assumed in denser stands and for higher competi-
tion (Zhang and Burkhart 1997; Zeide and Van-
derschaaf 2002; Calama and Montero 2004). The
model effect of competition is in accordance with sev-
eral investigations about the effects of stand density
on the h/d ratio (Calama and Montero 2004). Through
the choice of BAL as the competition index it is im-
plied that the h-d relationship is not influenced by the
harvest or death of trees which are smaller than the
reference tree.
The effect of qmD on the first order parameter B is

montone increasing with an asymptotic tendency from
ca. qmD 45 cm for spruce (Fig. 4). For pine this effect is
nearly linear increasing, while for birch it is monotone
increasing with a degressive tendency.

The spatial trend-function fsp a(eastk, northk) captured
large-scale correlated differences of the h-d relationship
which were not described by the other covariates and
lead to a clear improvement of the model accuracy for
all tree species (Fig. 4). Apart from the north-south gra-
dients of temperature-sum and length of the vegetation
period, it is perhaps above all the effect of distance to
the coast and the resulting site differences that are
modelled by this effect. It can also be supposed that the
effects of further causal factors like, for instance, large
scale geological differences, are accounted for by the
regional location proxy variable. No further investiga-
tion concerning optimal variance partition between
spatial trend-function and random plot effects was
made at this point.
If stand age was used instead of the mean basal tree

area as the longitudinal covariate (Eq. 7.1) there is a
clear decrease in the model accuracy for all tree species.
This is illustrated here using spruce as an example
(Fig. 5).

In E hkti½ �ð Þ ¼ f 1a Agekt
� �þ f 2a Altkð Þ

þ f 3a BALktið Þ þ SDT
k ΦSD

þ f sp aðeastk ; northkÞ
þ f 1b Agekt

� �
xkti þ αk þ βkxkti ð7:1Þ

hkti ~ Gamma(μ, ν) with dispersion parameter
ϕ = 1/ν = σ2.
with differing to Eq. 7:
Agekt: Non species-specific stand age at inventory date

t at sample plot k.
The effects of stand age on the first order parameters

A and B are not very sensitive and display implausible
patterns (Fig. 5). In this context it must be mentioned
that the specification of conditions in scam should only
be applied in those cases in which the patterns of un-
constrained effects seem basically plausible. The specifi-
cation of conditions serves solely to suppress a too great
and implausible flexibility, especially at the boundaries
of the covariate data ranges. The problem of insensitive
model effects and entirely implausible patterns, espe-
cially in those data-ranges with many available data-
points, cannot be solved using the scam approach.
Hence, the subsequent integration of shape-

constraints in scam to ensure plausible model effects is
done on the basis of the gamm, in which qmD (Eq. 7) in-
stead of stand age (Eq. 7.1) is used as the longitudinal
covariate. For this monotone increasing effects of qmD

(See figure on previous page.)
Fig. 6 1-dimensional model effects of the scam (Eq. 8) on the first order parameter A and the first order parameter B [m1b(Dg)] for spruce, pine
and birch. Additionally, an estimate of tree height (m) under constant predictors (dbh = 20 cm, Alt = 300 m, qmD = 25 cm, BAL = 0.5 m2 per
250 m2, SD = III) but varying regional locations is shown in order to display the 2-dimensional effect fsp a(eastk, northk) (each time on the bottom
line, right)
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on the first order parameters A and B and a monotone
increasing and concave effect of BAL on the first order
parameter A were parameterized. The remaining model
effects were included without shape-constraints in the
model (Eq. 8).

In E hkti½ �ð Þ ¼ m1a qmDktð Þ þ f 2a Altkð Þ
þmcc3a BALktið Þ þ SDT

k ΦSD

þ f sp aðeastk ; northkÞ
þm1b qmDktð Þxkti ð8Þ

hkti ~ Gamma(μ, ν) with dispersion parameter
ϕ = 1/ν = σ2.
with differing to Eq. 7:

m1a(qmDkt): 1-dimensional penalised regression P-
spline describing the effect of qmD on the level of the h-
d relationship;
mcc3a(BALkti): 1-dimensional monotone increasing,

and concave, penalised regression P-spline describing
the effect of BAL on the level of the h-d relationship;
m1b(qmDkt): 1-dimensional monotone increasing pena-

lised regression P-spline describing the effect of qmD on
the slope of the h-d relationship.
In addition to the forced monotone or monotone-

concave patterns clearer, and mostly significant, con-
trasts of the effects of the soil depth categories for all
tree species occur as a side-effect of this process. Now,
solely the soil depth categories III and IV display for
spruce no significant differences. The clearer contrasts
in the effects of the soil depth categories can be seen as
an indication that, with respect to the combinations of
qmD and SD the data base is unbalanced. Only after
monotonic restriction of the effect of qmD more dis-
tinct, significant differences in the h-d relationship are
depicted by the causal covariate SD. The basic pattern of
the unconstrained effects of Alt and of regional location
is scarcely changed by the shape constrains (Fig. 6).
The prediction accuracy of the models (standard error

of tree height estimation) is only slightly influenced by the
specification of shape constraints (Table 3). If only the
fixed effects are taken into account (mean population
model), the standard error of the gamm (Eq. 7) differs only
slightly from the standard error of the scam (Eq. 8). For
spruce and pine the scam standard errors are even a little
lower. For the purpose of comparison, additional general-
ized additive models (gam) were parameterized, because
the prediction accuracy of the mean population model of
mixed models is normally a little lower. When compared
to the scam, the prediction accuracy of the gam is only
marginally higher (spruce, pine) or the same (birch).
A comparison of the prediction accuracy of the gamm

and scam_m, taking both fixed and random effects into

Table 4 Estimated parameters for the variance components (standard deviation SD) and dispersion parameter for shape constrained
and unconstrained generalized h-d models for spruce, pine and birch in Norway. Lower and upper limits for the 0.95% confidence
intervals are given in brackets

SD(αk) SD(βk) Dispersion parameter ϕ

Spruce

gamm (Eq. 7) 0.1159 (0.1129, 0.1189) 0.1330 (0.1287, 0.1375) 0.0132 (0.0130, 0.0133)

scam_m (Eq. 6) 0.1102 (0.1074, 0.1131) 0.1339 (0.1296, 0.1383) 0.0134 (0.0133, 0.0136)

Pine

gamm (Eq. 7) 0.1611 (0.1572, 0.1650) 0.1733 (0.1663, 0.1805) 0.0141 (0.0139, 0.0142)

scam_m (Eq. 6) 0.1578 (0.1540, 0.1617) 0.1849 (0.1776, 0.1925) 0.0144 (0.0142, 0.0146)

Birch

gamm (Eq. 7) 0.1349 (0.1317, 0.1383) 0.0833 (0.0798, 0.0870) 0.0174 (0.0172, 0.0176)

scam_m (Eq. 6) 0.1345 (0.1313, 0.1379) 0.0864 (0.0829, 0.0901) 0.0175 (0.0173, 0.0177)

Table 3 Standard errors, explained deviance and AIC of shape
constrained and unconstrained generalized h-d models for
spruce, pine and birch in Norway

Spruce Pine Birch

Standard error (m)

gam 2.06 2.33 1.64

scam (Eq. 8) 2.07 2.34 1.64

gamm (Eq. 7) prediction based
on fixed-effects

2.09 2.36 1.64

gamm (Eq. 7) 1.38 1.30 1.04

scam_m (Eq. 6) 1.40 1.33 1.01

Explained deviance (%)

gam 87.8 80.3 78.0

scam (Eq. 8) 87.7 80.2 77.8

gamm (Eq. 7) 94.1 93.3 90.4

scam_m (Eq. 6) 94.0 93.1 90.4

AIC

gam 284,162.3 225,179.1 215,256.8

scam 284,307.9 225,267.6 215,701.0

AIC scam in proportion to gam (%) 100.05 100.04 100.21
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Fig. 7 Residuals on response scale of the scam_m (Eq. 6) over 0.2 interval classes of plot-wise standardized dbh for spruce, pine and birch
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Fig. 8 Residuals on logarithmic scale of the scam_m (Eq. 6) over 2 cm interval classes of dbh for spruce, pine and birch
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account, also shows only minimal differences. The stand-
ard errors of the gamm for spruce and pine are slightly
lower, and for birch slightly higher, than those of the
scam_m. Comparing the gam and scam (or gamm and
scam_m) based on their explained deviance confirms
again, that shape constraints only result in marginal differ-
ences. The AIC-values of the gam are also only slightly
lower than those of the scam (Table 3). Because of the
stepwise parameterization of the scam_m, a comparison
of scam_m and gamm by means of AIC is not possible.
The standard errors of height prediction applying only

fixed effects are the highest in pine followed by spruce
and birch (Table 3). In comparison the reduction in
standard error using the full mixed models are about
1 m for pine, 0.7 m for spruce and 0.6 m for birch. The
standard errors of the mixed models are rather similar
for spruce and pine and the lowest for birch. The ex-
plained deviance using only fixed effects is considerably
higher for spruce compared to pine and birch whereas
the values of the mixed models are similar for spruce
and pine and the lowest for birch.
A comparison of variance components shows that pine

has the highest inter-plot variability for both first order
parameters A and B and birch has a higher variability in
A than spruce whereas the variability in parameter B is
higher for spruce than for birch (Table 4). However the
plot-level variance components estimated by Mehtätalo
(2004, 2005) for the same tree species in Finland are
considerably lower even if our linear predicator is more
flexible. This might be a result of the much more vari-
able growth conditions in Norway with its mountain
ranges and complex coastal lines.
Based on a residual analysis the predictions of the

scam_m can be validated as more or less unbiased
(Fig. 7) which confirms the suitability of the modified
Korf-function as basic model. Only for Scots pine a very
slight overestimation is present for standardized dbh
greater than or equal to 1, whereas the unsystematic de-
viations at the edges of the dbh ranges are assumed to
be random because of very few underlying observations.
The analysis of residuals on logarithmic scale indicates

that the assumption of a Gamma distribution stabilizes
the variance sufficiently (Fig. 8). However, this finding is
in contrast to the investigations of Lappi (1997) and
Mehtätalo (2004, 2005).

Conclusions
Based on h-d models for spruce, pine and birch in
Norway a model comparison of unconstrained gamm
and scam_m was made. For the h-d models it was
shown that scam_m combines the flexibility of gamm
with the assurance that all model effects will be plaus-
ible. Plausible model effects can be forced by setting
conditions such as monotonicity, convexity, concavity or

combinations thereof. The full flexibility of additive re-
gression models remains within the constraint conditions.
As was shown in the cases studied, constrained and un-
constrained effects can be combined within the same
model. There were only marginal differences in the pre-
dictive accuracy of h-d models which had been parameter-
ized as gamm or scam_m. At the same time, the scam_m
models are made more generally applicable, especially for
predictions based on external data, by the ability to take
expert knowledge into account. Because forest growth
data is normally more or less unbalanced, the number of
potential uses for scam_m models is large.
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