
RESEARCH Open Access

Big data of tree species distributions: how
big and how good?
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Abstract

Background: Trees play crucial roles in the biosphere and societies worldwide, with a total of 60,065 tree species
currently identified. Increasingly, a large amount of data on tree species occurrences is being generated worldwide:
from inventories to pressed plants. While many of these data are currently available in big databases, several
challenges hamper their use, notably geolocation problems and taxonomic uncertainty. Further, we lack a
complete picture of the data coverage and quality assessment for open/public databases of tree occurrences.

Methods: We combined data from five major aggregators of occurrence data (e.g. Global Biodiversity Information
Facility, Botanical Information and Ecological Network v.3, DRYFLOR, RAINBIO and Atlas of Living Australia) by creating a
workflow to integrate, assess and control data quality of tree species occurrences for species distribution modeling. We
further assessed the coverage – the extent of geographical data – of five economically important tree families
(Arecaceae, Dipterocarpaceae, Fagaceae, Myrtaceae, Pinaceae).

Results: Globally, we identified 49,206 tree species (84.69% of total tree species pool) with occurrence records. The
total number of occurrence records was 36.69 M, among which 6.40 M could be considered high quality records for
species distribution modeling. The results show that Europe, North America and Australia have a considerable spatial
coverage of tree occurrence data. Conversely, key biodiverse regions such as South-East Asia and central Africa and
parts of the Amazon are still characterized by geographical open-public data gaps. Such gaps are also found even for
economically important families of trees, although their overall ranges are covered. Only 15,140 species (26.05%) had
at least 20 records of high quality.

Conclusions: Our geographical coverage analysis shows that a wealth of easily accessible data exist on tree species
occurrences worldwide, but regional gaps and coordinate errors are abundant. Thus, assessment of tree distributions
will need accurate occurrence quality control protocols and key collaborations and data aggregation, especially from
national forest inventory programs, to improve the current publicly available data.
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Background
Monitoring and understanding the distribution of tree
species in the world is a major research agenda in plant
ecology, especially under ongoing rapid global change
(Enquist et al. 2016; Franklin et al. 2016). Estimating tree
species distributions is ultimately needed in order to
provide better understanding of tree diversity, a key driver

of forest functioning (Paquette and Messier 2011;
Pichancourt et al. 2014) and forest ecosystem service pro-
visioning (Gamfeldt et al. 2013; Thompson et al. 2014).
Species distributions constitute, in addition, basic infor-
mation required in systemat;ic conservation planning and
forecast range dynamics under future climate change
(Franklin 2010; Serra-Diaz et al. 2012; Guisan et al. 2013;
Zhang et al. 2017). The extent to which populations will
respond to climate change is thought to depend upon
variation in geographic distribution, phenotypic variation,
response to CO2 fertilization, strength of selection,
fecundity, and degree of biotic interactions (Franklin et al.
2016). For example, certain geographic locations such as
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the Amazon basin, western United States, boreal forests,
southern Europe, and Australia appear to be more suscep-
tible to forest loss due to region specific heightened
changes in temperature and precipitation (Allen et al. 2010;
Choat et al. 2012). Further, widespread species with large
populations and high fecundity are more likely to persist
and adapt, but species with small populations, fragmented
ranges, or low fecundity, may be more at risk for popula-
tion collapse and may be candidates for facilitated migra-
tion. We currently lack a general assessment of global tree
distributions, which limits our understanding of forest
function, may dangerously over-simplify climate change
projections, and hampers effective conservation planning
under the ongoing planetary anthropogenic change.
In recent years biodiversity informatics research has

rapidly advanced (Graham et al. 2004; Botkin et al. 2007)
and forest ecology has swiftly benefited from it (Ash et
al. 2017; Zhang et al. 2017). Currently, regional forest
monitoring plans are being implemented worldwide,
scientific collaboration networks are being developed
and large-scale data infrastructures and tools for big-
data biodiversity research and ecological studies have
been developed (Franklin et al. 2017). While the future
of forest diversity research and monitoring is promising,
urgent efforts are still needed to properly document
worldwide tree distributions and diversity in order to
assess the relationship between species occurrence and cli-
mate and set up conservation plans. First, data are sparse
or absent in various regions (Sousa-Baena et al. 2014;
Meyer et al. 2016). Second, public data availability – a key
aspect of reproducible science (Hampton et al. 2015) – is
often limited as forests may represent key national re-
sources with huge economic impact. In addition, some
national forest inventories have not been fully integrated in
large-scale biodiversity infrastructures or registries (e.g.
Global Biodiversity Infrastructure Facility, Global Index of
Vegetation Databases, Botanical Information and Ecological
Network). Therefore, data on tree species distributions,
even when available, may be highly heterogeneous. The
result is that most insights on the role of biodiversity in
forest ecosystems come from certain well-studied regions
(Ruiz-Benito et al. 2014) or concentrate on certain biomes
for which research collaboration networks are in place
(ter Steege et al. 2006; Sullivan et al. 2017).
Despite such concerns related to geographic coverage

and sampling effort, another key challenge is the quality
of the data being used (Boyle et al. 2013; Enquist et al.
2016; Franklin et al. 2017). For instance, Wiser (2016)
found that a common issue in vegetation plot data bases
is incorrect or missing geo-coordinates. Other challenges
generally found in large aggregations of occurrence re-
cords are related to taxonomic miss-identification and
taxonomic shifts (Thessen and Patterson 2011), for which
tools have been specifically designed to harmonize naming

conventions (Boyle et al. 2013). A formal protocol for
quality assessment and quality control is still a challenge
(Franklin et al. 2017), although key recommendations are
in place (Costello et al. 2014; Enquist et al. 2016; Ander-
son et al. 2016).
In this study, we tackle the challenge of big-data assess-

ment for occurrence data for all 60,065 tree species identi-
fied in the world (Beech et al. 2017). Specifically, our aim is
to determine the current (1) geographical coverage and (2)
quality of big data of tree species occurrences publicly avail-
able in major biodiversity repositories. We aggregated four
major vegetation biodiversity occurrence data sources and
developed a workflow to categorize occurrence records ac-
cording to their quality for the purpose of macroecological
species distribution analysis – a major tool to explore the
exposure of species to climate change (Dawson et al. 2011;
Serra-Diaz et al. 2014).

Methods
Species selection and occurrence records
We selected species from the world tree species checklist
(GlobalTreeSearch; GTS; Beech et al. 2017) for use in our
analysis. In this list, a species is considered to have a tree
growth habit when it is “a woody plant with usually a sin-
gle stem growing to a height of at least two metres, or if
multi-stemmed, then at least one vertical stem five centi-
metres in diameter at breast height”— a definition from
the Global Tree Specialist Group of the International
Union for Conservation of Nature. The tree species check-
list is available through an online searching engine, which
provide tree species list by country (http://www.bgci.org/
global_tree_search.php, accessed June 2017). To avoid po-
tential taxonomic issues, we used the Taxonomic Name
Resolution Service (TNRS) online tool (Boyle et al. 2013).
This tool provides a method for species name stand-
ardization, resolving issues related to taxonomic semantic
heterogeneity. From the initial species checklist, we
selected species that TNRS rendered an ‘accepted
name’ taxonomic status. In order to maximize the in-
clusion of species, we also included species which name
was classified as ‘no opinon’ in the TNRS. The final set
includes 58,100 species.
We collected tree species occurrence data from five

major sources of widely used, easy to access and publicly
available data of species occurrences: the Global Biodiver-
sity Information Facility (GBIF; http://www.gbif.org), the
public domain Botanical Information and Ecological
Network v.3 (BIEN; http://bien.nceas.ucsb.edu/bien/),
Latin American Seasonally Dry Tropical Forest Floristic
Network (DRYFLOR; http://www.dryflor.info/; Banda et
al. 2016), RAINBIO database (http://rainbio.cesab.org/;
Gilles et al. 2016) and the Atlas of Living Australia (ALA;
http://www.ala.org.au/). These databases were selected
because they aggregate many different sources of species
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occurrence records, cover a wide range of ecosystems, and
constitute the main sources of information used in
biodiversity studies. GBIF was accessed using the rgbif
package (Chamberlain 2017), BIEN data was accessed
using the BIEN package (Maitner 2017), and ALA data was
accessed using the ALA4R package (Raymond et al. 2017)
developed in R v3.4.1(R Core Team 2017). DRYFLOR and
RAINBIO were accessed and downloaded online.

Quality assessment of occurrence records
We used a workflow to assess the quality, quantity and
coverage of occurrence data for each species (Table 1;
Fig. 1). The quality control workflow follows a hierarch-
ical procedure and labels each occurrence record with

an alphabetic code from A to H (Fig. 1). These labels
broadly categorize positional as well as biological charac-
teristics of the record and are fit for the purpose of big
data macro-ecological analysis. That is, some labels re-
flect the precision of the occurrence data with respect to
the resolution of the environmental spatial layers used
for analysis. Therefore, a label for a given record may
vary if input environmental data used for the workflow
is different. In this study, we used worldclim v. 1.4, a col-
lection of climate environmental layers at 0.5 arcsec
spatial resolution (Hijmans et al. 2005).
The workflow starts with a table of species presence

records in latitude-longitude WGS84 geographic coord-
inate system. This table results from the integration of
the sources listed above with the following fields: ‘x’
(longitude), ‘y’ (latitude), ‘elevation’, ‘country’, and
‘locality’. In step 1, we identify those species for which
we have no spatial data, and we categorize them as
quality label H. In step 2, we identified duplicate records.
This step is important because data aggregators may use
the same sources of information and data integration
and subsequent analysis may lead to pseudo-replication
or overestimation of sampling intensity. Two types of
duplicates were identified and flagged: records with
identical coordinates –true duplicates—and those

Table 1 Occurrence categories identified by our data cleaning
workflow. A list of potential actions (non-comprehensive) are
outlined to emphasize the potential of the workflow to improve
current datasets

Label Label name Label information (I) and potential
actions to be developed (A)

H Missing coordinates (I) No detected coordinates.

(A) Trace back record and assign
coordinates.

G Duplicated records (I) If record is duplicated within
the environmental grid cell,
it may give information of
sampling effort.

F Unknown range (I) Not known range.

(A) Double check country-level
databases and invasive registries
of countries where the record
occurs. If present, update
database.

(A) Re-check common coordinate
errors (Yesson et al. 2007).

E Missing environmental
information or unlikely
environment
(botanic garden)

(A) Check suitability of spatial
layers.

(A) Confirm botanic garden
location.

(A) Re-check common coordinate
errors (Yesson et al. 2007).

D Geographic coordinate issues
and environment issues

(A) Re-check common coordinate
errors (Yesson et al. 2007).

(A) Check values in environmental
layers.

C Geographic coordinate issues (A) Re-check common coordinate
errors.

B Environmental space issues (A) Check values in environmental
layers.

A No issues detected (A) Send a ‘thank you’ email to
the database custodian.

AA High precision (A) Send a ‘thank you’ email to
the database custodian.

AAA High precision and low
environment uncertainty

(A) Send a ‘thank you’ email to
the database custodian.

Fig. 1 Simplified decision-making workflow for occurrence data
quality assessment and control. Black rhomboids represent data, blue
rectangles represent processes and ovals represent decisions. Arrow
represent flow of data. If arrows starts in a decision, purple arrows
indicate Yes (Y) whereas green arrows indicate No (N) to the decision
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records that fall in the same grid cell of the environmen-
tal spatial layers – geographical duplicates. These re-
cords where assigned the quality label G. Subsequently,
in step 3, the workflow performs an environmental con-
gruence analysis: it checks that occurrence records are
not located in the sea or lakes. Due to accuracy of pres-
ence records or the environmental data used, some tree
species occurrences located in shorelines may wrongly
be assigned to such environments. To avoid such spuri-
ous effects we use the function nearestcell in package
biogeo in R (Robertson et al. 2016), which checks
whether neighboring environmental cells have congruent
(e.g. terrestrial) environments. If that is the case, the
function assigns new coordinates to the record and cre-
ates a new field with the names ‘x.orginal’ and ‘y.original’
to keep track of the transformation. Records with trans-
formed coordinates are evaluated again for duplicates, as
outlined previously in step 2.
In step 4, we identified potential geolocation issues

based on known species ranges. We used the GTS data-
base (Beech et al. 2017) to identify countries where the
target species is considered native. Additionally, we
identified countries where the species is considered in-
troduced and naturalized through a database merging
the global invasive species database (GISD; Invasive
Species Specialist Group ISSG 2017) and the global
register of introduced and invasive species (GRIIS;
Invasive Species Specialist Group ISSG 2017). The latter
provide a conservative assessment of the naturalized
range, as areas where the species only has sparse nat-
uralized occurrences may not be registered. If the lo-
cation of the record did not fall in the combined list
of countries in which a species is known to occur,
the record was assigned a quality label E. Country
spatial layer was obtained from the Global Adminis-
trative database v.2.8 (GADM 2015).
After these four steps, several independent tests were

performed with the remaining records – i.e. those with-
out assigned quality label. These tests consist of:

1) Missing environment checks: Identification of
locations for which the spatial environmental
layer has no information, which precludes the
use of such records for environmental modeling.

2) Potential botanical garden locations: Identification
of records in botanical gardens, for which local
conditions may widely differ from environmental
conditions in environmental spatial layers at large
scales. Locality data, if available, is used to check
whether the location contains words that could be
identified as a botanical garden location: ‘botanic’,
‘botanische’, ‘botanico’, ‘jardin’, ‘garden’, ‘botanical’.

3) Centroid detection: During data digitization, a
well-known error is the automatic assignation of

a specimen to the centroid country or its capital.
We used the World Factbook (CIA 2014) for
information of countries and capital centroids.
The data can freely be downloaded from packages
speciesgeocodeR (Zizka 2015).The workflow identifies
records that fall within the environmental grid cell
of the country or capital centroid, or an adjacent
8-cell neighbor.

4) Hyper-anthropogenic environment: This analysis
identifies records in highly urbanized landscapes, for
which global environmental layers may not suitably
portray the conditions on site, and where occurrence
records may reflect planted specimens.We overlay
the record location with the human influence index
v2 spatial layer (Wildlife Conservation Society - WCS
and Center for International Earth Science
Information Network - CIESIN - Columbia University
2005). The human influence index is a value that
integrates several spatial layers (land use, population,
etc.) to estimate the level of anthropogenic impact.
We determined a high human influence record those
records with an index greater than 45. This threshold
was set because it enables the characterization of
large, highly-dense metropolitan areas.

5) Geographical outlier: We identify potential errors
in coordinates using an alpha-hull methodology.
This technique has been used to determine species
distribution and respective range sizes under data bias
(Hui et al. 2011; Capinha and Pateiro-López 2014).
Using this methodology, a convex-hull is drawn in the
coordinate plane using record locations; and an alpha
parameter is used to split the polygon in places where
few records are present. Alpha-shapes have been used
to identify potential outliers in species ranges. We
used an alpha parameter of 2 for this analysis –
chosen based on preliminary analysis in ALA. If
there is not enough information to compute alpha
hull, then the geographic outlier analysis is not
performed.

6) Environmental outlier: We identified potential errors
in presence records by identifying records located in
environments considered an outlier in the environmental
space. These locations may significantly affect
environmental analysis using species distributions
(Soley-Guardia et al. 2014). The environmental
outlier detection was performed by running a
reverse-jackknife method on six climatic variables:
Annual mean temperature, maximum temperature
of the warmest month, minimum temperature of
the coldest month, annual precipitation, precipitation
of the wettest month, precipitation of the driest
month. These variables were selected to reflect
the averages as well as the climatic boundaries
of the species range. The method consists of
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identifying outlier samples (e.g. occurrences)
based on a critical threshold calculated based on
mean, standard deviation and range of the whole
set of samples (e.g. all occurrence points). This
method has been applied to detect outliers (Chapman
2005). Potential outliers were identified if more than
20% of the variables were estimated as outliers
(minimum of two variables in our case). If there
is not enough information to compute this analysis,
then the environmental outlier analysis is not
performed.

The six independent tests outlined above allow classifi-
cation into five quality categories (A to E; highest to
lowest). Label E is assigned to records for which there
was not environmental information (analysis 1) or the
occurrence was likely to be in a botanical garden
(analysis 2). Label D is assigned to records with at least
one issue in the environmental (analysis 3–5) and at
least one issue in the geographical space (analysis 6),
thus compromising potential macroecological analysis.
Label B indicates records with issues only in geograph-
ical space (analysis 3–5), whereas label C was assigned
to records with potential issues in the environmental
space (analysis 6). Label A was assigned for records with
no apparent issues.
Finally, we further differentiated several categories

among the highest quality records (Label A). Specifically,
we add two more high-quality categories: AA and AAA.
These labels determine the geographic precision of the
data and may be especially useful in climate-distribution
analysis. Precision was determined by the location of the
record with respect to the gridded environmental data.
Low precision records are identified when presence
record was located exactly at the top-left corner or center
of the spatial resolution of a grid cell (Robertson et al.
2016). AA label is assigned to already classified A records
with good environmental precision Subsequently, AAA
label was assigned to already classified AA records which
had suitable altitudinal precision (100 m). This is import-
ant in locations with topographic heterogeneity, where
climate may differ greatly within a coarse-resolution grid
cell of a climate spatial layer. We compared the recorded
altitude of the presence to the elevation derived from
digital elevation model used to obtain the environmental
variables (Hijmans et al. 2005). If mismatch was less than
250 m, we reassigned AA record to an AAA record.

Results
The data integration performed in this study gathered a
total number of 36.69 M occurrence records of tree spe-
cies, corresponding to a total 1.28 M unique locations in
the world (Table 2). Our quality assessment indicated
that 6.40 M were found in the highest quality category

(AAA +AA +A) (Table 2). Among these three high
quality categories, AA was the most frequent indicating
a good match between the environmental data used
(worldclim 30 arcsec) and the occurrence records (Table 2).
The occurrence quality with the most records correspond
to label G (duplicates) with 23.18 M records (63.17%) and
the label with the fewest records corresponds to label C
(environmental outliers; 6880 occurrences; 0.02%; Table 2).
The number of records without coordinates represent
13.57% of the total records (4.98 M), almost equaling the
amount of high quality records (Table 2).
The number of species analyzed were reduced from

60,065 species to 58,100 species after the taxonomic
name filtering and cleaning process (see Methods).
Among the species analyzed, 49,206 (84.69%) had at least
one occurrence record, and 45,797 (78.82%) had at least
one record of high quality. Only 15,140 species (26.05%)
had at least 20 records of high quality (AAA to A), which
could be regarded as a minimum to perform an SDM. In
general, most of the species had low occurrence record
numbers (Fig. 2). The number of species with less than 10

Table 2 Number of occurrence records per quality category in
the dataset

Category No. occurrences Percentage

AAA 968,884 2.64

AA 5,059,644 13.79

A 377,063 1.03

B 1,212,822 3.31

C 6,880 0.02

D 17,580 0.05

E 32,698 0.09

F 859,433 2.34

G 23,177,564 63.17

H 4,979,574 13.57

Total 36,692,142

Fig. 2 Histogram of the number of occurrences per species for all
quality records (red) versus only high-quality records (blue; categories
A, AA, AAA)
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records only constitutes 14.29% of the species analyzed
(8,307 species). Past the threshold of 10 records per spe-
cies, the number of species decreases sharply with the
number of occurrence per species (Fig. 2). That is, fewer
and fewer species exist with higher number of occurrences.
The quality of the records varied largely among species.
Crucially, a low number of species (1,109) were cha-
racterized by more than 90% of the records without
coordinates (label H), and only 65 of these had all records
in this category.
The patterns of the different quality labels change be-

tween the percentages over the total number of occur-
rences, and the percentages of quality at the species
level (Table 2 vs. Fig. 3, respectively). At the species
level, the majority of tree species had a high percentage
of duplicate records (label G; Fig. 3) followed by records
without coordinates (label H; Fig. 3). This was somewhat
expected given the combination of large aggregated da-
tabases that may share the same data sources. Across
species, these account for 38.4% and 31.3% respectively
(Table 3), but the variation across species is large in
these categories (Fig. 3). High-quality records show a
remarkable percentage of the records per species. To-
gether (AAA +AA +A), high-quality records represent
the 18% of the records per species (median values; Fig. 3
and Table 3). Among these categories, AA is the most
prominent category showing that these occurrences tend
to have good precision. However, the low values of AAA
compared to AA show that most of the elevation accur-
acy data is not present in the records. Label B records –
potential geographical outliers – represent around 10%
of the records per species, almost half of the high-
quality records.
The species with highest number of records is Pinus

taeda (Pinaceae) with 1.48 M records – 38,938 consid-
ered high quality for SDMs. In general, the species with

the highest records were North American trees. The sec-
ond and the third species in number of occurrences
were Acer rubrum (Sapindaceae) and Liquidambar
styraciflua (Altingiaceae), both accounting for more than
0.5 M occurrence records. European and North American
species dominate the top-100 list. Other ‘important’ trees
outside these geographical areas are orders of magnitude
lower than the top three species. For instance, Faramea
coffeoides (Rubiaceae) in South America had a total of
51,698 occurrence records, but only 20 of those had
enough quality for macroecological SDM (AAA-A). In
New Caledonia, Amborella trichopoda (Amborellaceae)
had a total of 51,348 occurrences, but only 67 records us-
able for macroecological SDM. In New Zealand, higher
levels of occurrence records were found for some key tree
species. Griselinia littoralis (Griseliniaceae) – with 68,182
total occurrences, and Coprosma foetidissima (Rubiaceae) –
with a total of 49,184 occurrences, maintained a large num-
ber of high quality occurrence records (AAA-A): 12,236
and 10,090 records, respectively.
The geographical coverage of the occurrences showed

strong spatial patterns (Fig. 4). A huge area of the world
has accessible survey records at relatively high intensity.
Continents like North America, Western Europe and
Australia show large geographical space of surveyed area
(Fig. 4, shaded areas). Conversely, the Russian boreal
forests are very under-represented by the databases
assessed in this study. Regional inspection also showed
different focal regions of sampling. In Southeast Asia
clear differences in sampling intensity arise between high
occurrence areas in forests of Vietnam, Laos, Cambodia
and Thailand, and low levels in Northern Myanmar and
Bangladesh (Fig. 4, Inset 1). Similarly, country-level dif-
ferences also arose within Europe (Fig. 4, Inset 2), and a
clear West-East gradient of occurrence density is appar-
ent in central African tropical forests (Fig. 4, Inset 3).
Australia had high levels of occurrence data, even in
places of low tree cover (Fig. 4, Inset 4). In addition,
we found that the Amazon forest samples were also

Fig. 3 Distribution of the percentages of occurrences per species in
each quality category

Table 3 Species’ (median) percentage of occurrence in each
quality category, shown for the whole dataset and for five
economically important tree families

Family A-type B C D E F G H

All 18.0 10.6 1.2 1.3 0.3 2.9 38.4 31.3

Pinaceae 11.6 ↓ 3.3↓ 0.4↓ 0.4↓ 0.0↓ 2.0↓ 44.9↑ 25.2↓

Arecaceae 12.8 ↓ 9.1↓ 1.3↑ 1.0↓ 0.4↑ 3.2↑ 41.3↑ 35.3↑

Myrtaceae 20.6 ↑ 7.4↓ 0.9↓ 0.7↓ 0.3= 1.8↓ 42.2↑ 29.4↓

Dipterocarpaceae 7.3 ↓ 4.6↓ 0.6↓ 1.1↓ 0.8↑ 2.2↓ 7.4↓ 88.9↑

Fagaceae 19.5 ↑ 8.3↓ 0.8↓ 0.8↓ 0.1↓ 1.7↓ 42.9↑ 25.0↓

Arrows represent an increase or decrease with respect to the percentages for
the whole dataset. Red arrows indicate an increase or reduction of more than
50% with respect to the reference of percentages of all dataset
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highly clustered (Fig. 4, Inset 5), reflecting that re-
search efforts in this region are still concentrated in
its more accessible areas.
We did not capture any general deviation between the

percentage of quality records between all tree species
and tree species in families of economic importance
(Table 3), except in the case of Dipterocarpaceae. This
family consistently showed a high number of records
without coordinates, and fewer high-quality records,
likely reflecting the general dearth of accessible records
from Southeast Asia. Other economically important
families showed higher levels of duplications, which is
due to the high sampling intensity in some regions.
However, we cannot rule out that it could be to the

relatively low resolution of the environmental grids used.
Spatial distributions of such families were consistent
with previously known distribution of such taxa (Fig. 5),
but some exceptions arose. For instance, trees of the
family Pinaceae are present in Australia and New Zea-
land (Fig. 5), which reflect introduced species in the con-
tinent from Europe and North America.
Geographical ‘holes’ for these families are similar to

those found for the entire dataset (Fig. 4 vs Fig. 5),
highlighting regions like Russia, Central Africa and
to some extent the Amazon region as key data gaps.
For instance, relatively lower quality percentages were
found Dipterocarpaceae, a family distributed in the
tropics.

Fig. 4 Geographical coverage of tree occurrence data. Shaded grey areas show areas of general sampling in the databases integrated. Numbers
in map represent insets where regional occurrence data (black dots) is shown: (1) South and Southeast Asia, (2) Northeast Europe, (3) Central Africa, (4)
South-Southwest Australia and (5) Pacific coast of South America and Amazon
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Discussion
Our study highlights the wealth of information – 6.4 M
high quality records and 57,849 species – in public
databases of tree species occurrence and discovers geo-
graphical gaps in the data that need to be filled in order

to improve our understanding of tree distributions and
diversity on Earth.
Several aspects of the geographical coverage of tree dis-

tribution share similarities with the geographical coverage
of plants in big-data biodiversity databases. For instance,
around six orders of magnitude difference in occurrence
data are found among species considered (Meyer et al.
2016). In addition, significantly high occurrence densities
are biased towards North America, Europe and Australia
(Meyer et al. 2016), reflected also in the native countries
of the tree species with most records. Geographical cover-
age patterns of tree species in some areas mimic sampling
intensity of seed plants (Stropp et al. 2016), with a west to
east gradient of decreasing sampling intensity (Fig. 4). In
the case of trees, important data gaps exist in key biodi-
verse areas, especially in the Central African tropics, with
highly heterogenous sampling (Fig. 4, Inset 3). These dif-
ferences result from colonial history, but also from incom-
plete digitization of existing records (Figueiredo et al.
2009; Sosef 2016; Gilles et al. 2016; Sosef et al. 2017). In
addition, important conflicts in such biodiverse regions
make ongoing data collections difficult (Hanson 2011).
On the other hand, the geographic gap in Russia may be
due to the databases selected, urging for an integration of
Asian boreal forest data in future studies. This picture of
geographical gaps was also present even in the case of key
economic families.
Filtering large amounts of records due to potential

errors was similar between our study of tree species and
a study of all plant species when applying ‘strict’ filtering
procedures (e.g. ~40%, Meyer et al. 2016). Conversely,
occurrence data for trees shows higher levels of taxo-
nomic confidence, with 96% of species classified taxo-
nomically with at least one record, than for all plants,
where this number decreases to 66% (Meyer et al. 2016).
That is likely because our initial list is based on an
already curated list of tree species.
Our global screening of tree species occurrences

showed that only 13% of the records did not contain any
geographical coordinates; and that the selected databases
hold 6.4 M records of high quality, representing 17.4%
of the total data available data on tree occurrences.
Although these numbers may seem low, we argue that
these are actually high numbers for big data analysis of
species distributions. Part of this ‘low’ percentage corre-
sponds to the fact that our data integration and quality
control workflow not only reflect the properties of the
occurrence data, but also the resolution of the environ-
mental data. That is, in our framework duplicates may
be originated by duplicated museum records, but also by
data aggregators and by the spatial resolution of the en-
vironmental layers. For instance, BIEN3 aggregates large
botanical databases, including GBIF. In addition, because
our workflow is aimed at the eventual production of

Fig. 5 Geographical distributions of high-quality records (labels: AAA,
AA, A) of major economically important tree families (green dots).
Note that this does not imply native ranges (Fig. 1)
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SDMs, two different locations may be considered dupli-
cates if they occur within the same grid cell. It is thus
not surprising to find high levels of quality G records in
our analysis.

From scrubbing to profiling and corrections
The filters applied in our workflow reflect that, for trees,
major barriers to classifying high-quality records were
due to the geographical space analysis (label B) as well
as the range of the species (label F). These two labels
held 1,212,822 and 859,433 records, respectively.
Label B reflects issues related to the geographical co-

ordinates. That is, records within the environmental
space of the species, but found in either the country cen-
troid, the capital centroid, highly urbanized areas, or
areas outside a typical alpha-shape extent of occupancy.
Whether to include these records in an SDM or not may
require further scrutiny and will largely depend on the
question being addressed. These records, even if not cor-
rect, are unlikely to strongly bias estimates of the envir-
onmental space, although that will depend on total
species sample size and model complexity (Merow et al.
2014). For example, such records would have little to no
effect on delimiting range boundaries (depending on the
modeling algorithm used) although they may have stron-
ger effects on continuous estimates of habitat suitability.
Sample biases may inflate the number of records under
label B, despite the record being correct. For example,
for a given species, sampling in two different countries
may be very different and records in countries with
lower sample intensity may appear as a geographical
outlier. Therefore, we suggest that records under such
profile (label B) should be considered in species with
low sample sizes when the record is identified to be out-
side the alpha hull. In such cases, the risk of inclusion
may be lower than the benefit of being able to fit an
SDM with higher number of occurrences.
Issues with coordinates have long been discussed in

occurrences (Yesson et al. 2007; Anderson et al. 2016)
and new tools have been recently developed to correct
them. This is of utmost importance for rare species or
for species in scarcely sampled locations. Robertson et
al. (2016) developed an R package capable of implement-
ing alternative geographic coordinates for a sample
based on common errors encountered in GBIF. Errors
like substitution between latitude and longitude or
wrong hemisphere recording are some of these common
errors. An automated and scalable form of this would
qualitatively advance the use of such records, currently
being filtered (or scrubbed) from analysis.
Great care should be taken when correcting or identi-

fying such geographical issues. We use alpha-shapes
because they have been used to capture extent of occur-
rences and may be preferred over other methods to

delineate species range boundaries (García-Roselló et al.
2015). However, the method may be misleading for rare
species or may tend to identify geographical outliers for
rare species, even though these may be widely distrib-
uted (Zizka et al. 2017).
Unknown status of a species in a country (native, inva-

sive, naturalized) was another label (F) that led to profil-
ing a large amount of occurrences (859,433). Generally,
this filter is imposed to account for the fact that, in some
cases, occurrence records may have coordinates in coun-
tries where the collection is located, rather than where
the specimen was collected. We acknowledge that this
filter may be overly conservative, however it remains
useful as a globally comprehensive registry of native,
naturalized and invaded country-level ranges are lacking.
We integrated global registries and species checklists
(GTS, GIISD, GRIIS), but these are unlikely to be
complete, and are under constant updates and may not
cover other important sources, like alien species used in
plantations. In addition, while checklists are key political
instruments for conservation, they may be of limited use
for quality control, especially in the case of large
countries or countries with complex geographies. For in-
stance, archipelago-countries may be composed of species
endemic to an island and not necessarily to others; or
large countries covering large variation in climates (e.g.
Brasil, USA, China) may not be able to capture erroneous
records that are endemic to some biomes, but not others.
Current biodiversity informatics is performing large efforts
and key developments given the need for plant range
status information to increase the quality of the data. For
instance, developing curated lists of native ranges of
species (http://bien.nceas.ucsb.edu/bien/tools/nsr/).
The workflow developed in this study is not only aimed

at filtering data, but rather at emphasizing and flagging er-
rors and potentially increasing discoverability – the degree
to find information associated with the occurrence data
(Table 2). For instance, a record with a profile F may help
cross-check species-country checklists. We expect that
profiling may enhance the quality of species occurrence
data but may also be useful when implementing work-
flows for geo-correction.

Collaboration, networks and mobilization in the forest big
data era
The data aggregators used here include many different
sources of information and researchers that have
participated in this large collaborative effort. Yet, our
geographical coverage analysis shows that geographical
data gaps are yet to be filled for tree species (Fig. 4). This
was somewhat surprising because trees are among the
best studied groups of organisms in the world. Issues re-
lated to funding for data production and mobilization
(Bradley et al. 2014; Nowogrodzki 2016) and proper
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acknowledgement of investigators still need to be fully
resolved to ‘uncover’ data for species distributions
(Costello et al. 2014; Franklin et al. 2017). We encourage
scientists to acknowledge the effort of those scientists
and data infrastructures that support high-quality data
(Table 2), but we are aware that a full system recognition
of data work recognition is still to be developed.
Scientific networks have increased the availability of
some regions and to some extent under-sampled forests,
while allowing recognition (co-authorship) of the net-
work participants. However, these tend to be restricted
to forest types of biomes of the research focused group
(e.g., Amazon tree Network, etc.).
In the case of trees, national forest inventory programs

offer good opportunities for expansion of tree occur-
rence data. Assessment of wood resources has historic-
ally been performed in many countries (Vidal et al.
2016) and may offer good temporal and geographical
coverage for many forest species. In addition, they may
lack some of the typical spatial biases present in
museum records collected rather opportunistically (Pyke
and Ehrlich 2010). Some forest inventories are readily
incorporated in the big data aggregators. For instance,
BIEN3 incorporates the United States of America Forest
Inventory and Analysis (FIA) data, and the Spanish
Forest Inventory dataset is incorporated in GBIF. How-
ever, a larger mobilization (e.g. incorporation into digital
format) of forest inventory data into biodiversity data-
bases is lacking, probably due to difference in the trad-
ition of specimen collections versus assessment of wood
resources. Initiatives like the Global Forest Biodiversity
Initiative (http://www.gfbinitiative.org/) world forest plot
data will be key for improving tree coverage.
It is important to note that mobilization of data

may increase geographical biases, sometimes in sur-
prising ways. For instance, Yang et al. (2016) found
that vascular plants were relatively well sampled in
mountains in China, but densely-populated areas were
under-sampled. It is likely that forest inventories
could increase geographical bias, towards countries
with certain economic status. That said, new tech-
niques to overcome such biases are in place for
overcoming such unintended consequences of data
mobilization (Phillips et al. 2009; Merow et al. 2016).
Therefore, the issue of data sparsity may be more
critical than the biases incurred when mobilizing data.
Under this context, forest inventories and capacity
building performed by the FAO-forestry in certain re-
gions is an important effort that could significantly
contribute to global biodiversity datasets.

Conclusions
Big data for tree species occurrence is abundant and
readily useable for macroecological analysis of species

distributions, despite geographical gaps which are still
present in some regions. We identified geographical
coordinate errors in many records and therefore suggest
that future data analysis and filtering of occurrences
should be coupled with a workflow for profiling and
geo-correction. While data mobilization for published
datasets is always beneficial, we expect that in-
corporation of forest national inventories to biodiversity
databases will enhance the quality of world tree distribu-
tion assessments.
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