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An imputation/copula-based stochastic
individual tree growth model for mixed
species Acadian forests: a case study using
the Nova Scotia permanent sample plot
network
John A. Kershaw Jr1*, Aaron R. Weiskittel2, Michael B. Lavigne3 and Elizabeth McGarrigle4

Abstract

Background: A novel approach to modelling individual tree growth dynamics is proposed. The approach combines
multiple imputation and copula sampling to produce a stochastic individual tree growth and yield projection system.

Methods: The Nova Scotia, Canada permanent sample plot network is used as a case study to develop and test the
modelling approach. Predictions from this model are compared to predictions from the Acadian variant of the Forest
Vegetation Simulator, a widely used statistical individual tree growth and yield model.

Results: Diameter and height growth rates were predicted with error rates consistent with those produced using
statistical models. Mortality and ingrowth error rates were higher than those observed for diameter and height, but
also were within the bounds produced by traditional approaches for predicting these rates. Ingrowth species
composition was very poorly predicted. The model was capable of reproducing a wide range of stand dynamic
trajectories and in some cases reproduced trajectories that the statistical model was incapable of reproducing.

Conclusions: The model has potential to be used as a benchmarking tool for evaluating statistical and process models
and may provide a mechanism to separate signal from noise and improve our ability to analyze and learn from large
regional datasets that often have underlying flaws in sample design.

Keywords: Nearest neighbor imputation, Copula sampling, Individual tree growth model, Mortality, Ingrowth, Mixed
species stand development, Acadian forests, Nova Scotia

Background
Forest management planning requires long-term forecasts
of resource flows (Baskerville 1986). Whether the forest
management plan is focused on timber flows (Clutter et
al. 1983; Baskerville 1986), carbon offsets (Birdsey 2006;
MacLean et al. 2014), or other ecosystem services
(Pretzsch et al. 2008), forest growth and yield models play
a key role in the forest management process (Clutter et al.
1983; Weiskittel et al. 2011a). In addition to providing
forecasts of long-term resource flows, growth and yield
models are used to design silviculture interventions

(Maguire et al. 1991; Barrett and Davis 1994), and to as-
sess changes in factors such as fire risk (Keyes and O’Hara
2002) or wildlife habitat (MacLean et al. 2010). Because
growth and yield models have such diverse applications,
numerous types of models evolved over the years (Leary
1988; Weiskittel et al. 2011a). For much of the last
30 years, growth and yield research has concentrated on
developing individual tree growth and yield models
(Adlard 1995; Fox et al. 2007; Weiskittel et al. 2011a).
All individual tree growth models function similarly. A list

of trees, usually representing some small areal extent (i.e., a
“plot”) are inputted into the model and the model predicts
how those trees change over some time horizon. Changes in
tree diameter at breast height (DBH) and total height (HT),

* Correspondence: kershaw@unb.ca
1University of New Brunswick, Fredericton, NB, Canada
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Kershaw et al. Forest Ecosystems  (2017) 4:15 
DOI 10.1186/s40663-017-0102-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s40663-017-0102-2&domain=pdf
mailto:kershaw@unb.ca
http://creativecommons.org/licenses/by/4.0/


as well as survival rates, are typically predicted (Weiskittel
et al. 2011a). Some models may predict changes in other
tree attributes such as height to crown base, crown ratio,
crown width, and so on. Some models also predict new trees
entering the list (i.e., ingrowth), but these equations are often
highly imprecise due to the stochastic nature of regeneration
processes (e.g., Li et al. 2011). Models differ primarily in
terms of (1) what tree-level and stand-level information is
required, and (2) how the underlying growth, survival, and
ingrowth functions were derived (Flewelling et al. 1986;
Dixon et al. 1991; Adlard 1995; Weiskittel et al. 2011a).
Dixon et al. (1991) suggest three components that are es-

sential for any modelling system: 1) an understanding of the
process or relationships being modelled; 2) mathematical,
statistical, and computational techniques and equipment cap-
able of handling the problem; and 3) experimental or survey
data. Many of the individual tree models used in forest man-
agement planning are statistically derived (Weiskittel et al.
2011a), Most of the more widely used statistical models are
derived from large regional growth and yield permanent plot
networks (e.g., Flewelling et al. 1986; Dixon 2002; Woods
and Robinson 2008; Weiskittel et al. 2013). Although these
extensive datasets allow for developing robust equations that
potentially extrapolate well, the parametric model forms and
covariates generally used are relatively simplistic and may not
fully leverage the available data. As a result, forest modellers
are often accused of having the above list of components in
reverse order (Adlard 1995).
More sophisticated statistical methods for deriving growth

and yield models (e.g., Bayesian approaches or Big Data
Analytic approaches) have seen more limited applications to
date, but may result in more robust model behaviour as well
as allow better insights into the underlying processes driving
tree and stand development. However, no matter how com-
plex the underlying equations, statistical models generally
predict the average growth conditions given a realization of
a set of independent variables. While their deterministic out-
put has been particularly useful for forest management plan-
ners (Flewelling et al. 1986; Weiskittel et al. 2011a), this
deterministic nature also has been one of the main criti-
cisms of statistically derived models (Dixon et al. 1991;
Vanclay 1991; Johnsen et al. 2001). Assessment of uncer-
tainty and the propagation of prediction errors through the
various equations over time is a complicated undertaking
(Vanclay 1991; Fox et al. 2007). This complexity of ad-
equately quantifying uncertainty is the result of the number
of equations involved, the various sources of uncertainty
(e.g. measurement vs. model error), and the questionable as-
sumption of error independence among the equations.
However, the uncertainty in growth and yield models can be
quite high. For example, Weiskittel et al. (2016) found that
standard error for total stand volume ranged from 4 to 6%
after forty years of projection for relatively homogeneous
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var.

menziesii) plantations in the Pacific Northwest using an in-
dividual tree growth and yield model. Likely, this projection
uncertainty is even higher for more complicated stand struc-
tures, forest types, and management regimes.
Vanclay (1991) reviewed approaches used to incorporate

stochasticity into growth projection systems, and consid-
ered many approaches to be either naïve attempts or ad
hoc swindles. Vanclay (1991) proposed that change be
expressed using probabilistic functions. Deterministic
predictions can be obtained by using these functions to
represent proportions of populations, while stochastic
predictions can be obtained by using these functions to
represent probabilities for individuals. Vanclay’s (1991) ap-
proach produced a system of compatible deterministic-
stochastic predictions. Fox et al. (2007) reviewed the use
of hierarchical mixed effects models to incorporate struc-
tured spatial and temporal stochasticity directly into
growth equations. They argue that the very nature of the
data used in growth and yield modelling (i.e., trees mea-
sured within plots, repeatedly over time) necessitates the
need to incorporate structured stochasticity into models
and discuss several ways this may be accomplished.
In an alternative approach to incorporating stochasti-

city into growth models, McGarrigle et al. (2013) devel-
oped a stand-level model based on what they call
informed random walks. In their approach, a large re-
gional growth and yield database, assembled for the for-
ests of northeastern North America (Weiskittel et al.
2013), was compiled into a stand-level reference data-
base, and the resulting stand-level model alternately uti-
lizes imputation-based selection of nearest neighbors
from the reference database and copula sampling to
grow stands through time. The structure of the model
was fairly simple, but was able to produce a wide range
of stand trajectories and behaviors across a range of
stand conditions defined within Reineke’s (1933) stand
density space (McGarrigle et al. 2013). This model pro-
vided some unique insights into the variability in predic-
tion uncertainty across the stand trajectory space.
McGarrigle (2013) further demonstrated how this model
could be useful for model evaluation and benchmarking.
In this study, we propose an individual tree imputation/

copula model similar to the stand-level model developed by
McGarrigle et al. (2013). The model structure and develop-
ment is presented, and the model behavior is compared
with the Acadian variant of FVS (Weiskittel et al. 2014)
using a set of stand ideotypes and the extensive Nova Sco-
tia, Canada permanent sample plot network. Potential appli-
cations of this model and future extensions are discussed.

Methods
Study area
The data used in this study is a subset of the Acadian
Forest growth and yield dataset (Weiskittel et al. 2013).
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In this study, we only used data from the Nova Scotia
Permanent Sample Plot (NSPSP) system (Fig. 1) as it is
comprehensive in terms of species and stand structure,
has used a consistent measurement protocol, and has a
long history of establishment. Nova Scotia forests con-
tain a diverse group of species growing on a wide range
sites resulting from the varied soils, climate, and eleva-
tion (NSDNR 2008). Nova Scotia is in the Acadian For-
est region (Rowe 1972; Loo and Ives 2003), a transitional
forest region between the northern hardwoods to the
south and boreal forests to the north.

Data compilation
The NSPSP contains 2897 plots with 2 to 8 remeasure-
ment periods spanning a time range of 5 to 40 years. Plots
were 0.04 ha circular plots (11.28 m radius). Plot centers
are permanently monumented and global position system
(GPS) coordinates archived to facilitate relocation and re-
measurement. At plot establishment, all trees ≥10.0 cm in
diameter at breast height (DBH; BH = 1.3 m) and within
the 11.28 m radius where tagged with a unique tree num-
ber and measured, as described below. At subsequent
measurements, dead or cut trees were noted and any new

trees ≥10.0 cm DBH (i.e., ingrowth) were tagged with a
unique tree number and measured. Species was identified
for all tagged trees, DBH was measured to the nearest
0.1 cm, and total height (HT) was measured to the nearest
0.1 m. The plot data were compiled into two reference da-
tabases to be used in the individual tree growth model de-
veloped in this study.
The first reference data base was the individual tree

growth and survival database (TREE). Each tree on each
plot in each measurement interval was a potential record
for the TREE database. Survivorship status was noted (1 if
survived, 0 if died) and any cut trees were removed from
the TREE database. DBH and HT at the beginning and
end of each measurement interval were used to calculate
individual tree growth. Growth was annualized by dividing
by the number of years in the measurement interval.
Several one-sided and two-sided competition factors were
calculated and the importance of these variables for
growth was evaluated using a generalized boosted regres-
sion model (Kuhn 2008) which helped identify a subset of
competition factors to be used during the imputation step
in the growth model. All competition measures were
calculated at the beginning of the measurement interval.

Fig. 1 Map showing the location of Nova Scotia, Canada in northeastern North America and a detailed map of Nova Scotia showing permanent
sample plot locations
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The final set of competition measures used in this study
were: basal area per ha:

BAPHA ¼ 0:00007854
Xn
i¼1

DBH2
i �TFi

� � ð1Þ

where, BAPHA = basal area per ha (m2 ha−1), DBH = diam-
eter at breast height (cm), and TF = tree per ha expansion
factor (Kershaw et al. 2016, Chap. 9); basal area of trees of
larger DBH than subject tree:

BALD ¼ 0:00007854
Xn
i¼1

DBH2
i �TFi �I DBHi > DBHsð Þ� �

ð2Þ
where, BALD = basal area of trees of larger DBH than
subject tree (m2 ha−1), I is an identity function (I = 1 if
DBHi > DBHs, otherwise I = 0), and s denotes the sub-
ject tree; stand density index (McCarter and Long 1986)
of trees taller than the subject tree:

SDITT ¼
Xn
i¼1

TFi �I HTi > HTs½ �ð Þ
 !

DBHQ

25

� �1:6

ð3Þ
where SDITT = stand density index of trees taller than
the subject tree (stems/ha), DBHQ = quadratic mean
diameter of tree taller than the subject tree:

DBHQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

DBH2
i �TFi �I HTi > HTs½ �� �

Pn
i¼1

TFi �I HTi > HTs½ �ð Þ

vuuuut ð4Þ

1.6 is the power coefficient of Reineke’s (1933) stand
density index, and 25 is the reference DBH; relative
DBH:

relDBH ¼ DBHs

max DBHið Þ ð5Þ

where relDBH = relative diameter; and a climate-based
site index value (CSI, Weiskittel et al. 2011b). The final
TREE database was composed of Species, DBH, HT,
BAPHA, BALD, SDITT, relDBH, CSI, Survivor Status, an-
nualized DBH growth (AGDBH), and annualized HT
growth (AGHT). There were 4,235,533 records in TREE
(See Additional file 1: Table S1 for example reference and
target tree records).
The second reference database was for Ingrowth

(INGROW). Ingrowth, defined as trees growing across the
minimum DBH measurement threshold of 10.0 cm, was
summarized at the plot-level for each measurement inter-
val and the ingrowth trees were extracted. As for the indi-
vidual tree growth reference database, several stand-level

variables were compiled and boosted regression was used
to screen variables important for predicting number of in-
growth trees per ha per year (ANINGR). Basal area per ha
(BAPHA), net basal area growth per ha per year (AGBA),
basal area mortality per ha per year (MortBA), and BA for
balsam fir (Abies balsamea (L.) Mill. ), black spruce (Picea
mariana (Mill.) B.S.P.), red spruce (Picea rubens (Sarg.)),
white pine (Pinus strobus L.), red maple (Acer rubrum L.),
sugar maple (Acer saccharum Marsh.), aspen (Populus
spp.), white birch (Betula papyrifera Marsh.), and yellow
birch (Betula alleghaniensis Britt.) were identified as im-
portant predictors by the boosted regressions. In addition
to these basal area measurements, stand density index
(SDI), quadratic mean diameter (Dq), maximum DBH,
and maximum HT were selected as important stand-level
variables.
The INGROW reference database was composed of two

data tables. The first table was INGROW.PROB, and con-
tained the annualized per ha ingrowth rates and the plot-
level variables described above. The number of ingrowth
trees per ha was calculated by counting the number of in-
growth trees per plot and multiplying by TF, and subse-
quently was annualized by dividing by the number of
years in the measurement interval. INGROW.PROB had a
record for each plot over each measurement interval and
contained 14,143 data records. The second table,
INGROW.LIST, contained the individual ingrowth tree re-
cords, coupled with their associated plot-level variables
described above. INGROW.LIST contained 60,611 records
(See Additional file 1: Tables S2 and S3 for example refer-
ence and target ingrowth probability and tree list records).
The two reference databases were used in the imput-

ation steps in the model described below and constitute
the data drivers behind the imputation/copula individual
tree model developed in this study.

Model development
The model developed here is an individual tree extension
of the stand-level informed random walk model developed
by McGarrigle et al. (2013). The imputation/copula indi-
vidual tree model (I/C model) was developed in R (R De-
velopment Core Team 2016) using parallel processing
extensions on a Linux operating system. Inputs into the
model include a compiled tree list, number of replicates to
run, number of years to forecast, and number of nearest
neighbors to select in the imputation steps. The model
uses multiple imputation via the yaiImpute package
(Crookston and Finley 2008) to select nearest neighbors
to the subject tree or subject plot. Empirical distributions
based on the “k” nearest neighbors are built and copula
sampling used to estimate average growth and ingrowth
rates. The general flow of the algorithm is shown in
pseudocode in Fig. 2. Details of each component of the
algorithm are described in the following sections.
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Individual tree survival and growth
Individual tree survival and growth are estimated from
the TREE reference database described above. For each
year in the simulation cycle, a specified number of near-
est neighbors (Knn) are selected from the TREE refer-
ence database for each tree in the tree list.
Tree survival probability is estimated from the Knn

nearest neighbors. The proportion of trees surviving, PS, is
calculated by counting the number of nearest neighbors
that survive the measurement interval divided by Knn.
This proportion is converted into and annualized prob-
ability using:

p Survivalð Þ ¼ P1=Y
s ð6Þ

where p(Survival) = the annualized tree survival probabil-
ity; PS = proportion of Knn neighbors surviving measure-
ment intervals; Y = number of years in measurement
intervals. For the NSPSP, Y = 5 years for all measurement
intervals. Tree survival is determined by generating a uni-
form (U[0,1]) random number. If U[0,1] > p(Survival),
then the tree dies, otherwise the tree survives and growth
is determined.
Tree growth is estimated using random sampling from a

Normal copula (Genest and MacKay 1986; Nelsen 2006) as
implemented by McGarrigle et al. (2013). Copulas are
constructed for each tree at each time step using the annu-
alized DBH and height growth observed on the surviving

Knn nearest neighbors. The copula marginals are modelled
as empirical kernel density estimates (Scott 1992) and the
correlation between annualized DBH and height growth is
estimated using Pearson’s correlation coefficient (Zar 2009).
Following McGarrigle et al.’s (2013) algorithm, estimates of
annualized DBH and height growth are obtained as follows:

1) Two sets of n standard Normal variates are
randomly generated (Nd(0,1), Nh(0,1)) and column
bound to form matrix [N]

2) A partial correlation matrix is formed using
Pearson’s correlation coefficient estimated from the
annualized DBH and height growth values:

P½ � ¼ 1 ρ Δdbh;Δhtð Þ
ρ Δdbh;Δhtð Þ 1

� �
ð7Þ

3) The columns of [N] are correlated by matrix
multiplying [N] by Choleski’s (Andersen et al. 1999)
upper decomposition of [P]:

C½ � ¼ N½ �%�%chol P½ �ð Þ ð8Þ
4) The Normal marginal distributions are converted

into U[0,1] distributions by applying the inverse
Normal distribution to the columns of [C]:

U½ � ¼ N−1 C1ð Þ;N−1 C2ð Þ	 
 ð9Þ
[U] is the Normal copula (Genest and MacKay 1986).

Fig. 2 Pseudocode for the general individual tree imputation/copula model algorithm
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5) The annualized growth samples are then obtained
by applying a quantile function, derived from the
kernel density estimates, based on the surviving
nearest neighbors, to the columns of [U]:

Δ½ � ¼ qkerneldbh U1ð Þ; qkernelht U2ð Þ½ � ð10Þ

DBH growth is estimated as the average of the first col-
umn of [Δ] and HT growth is estimated as the average of
the second column of [Δ]. New estimates of DBH and HT
are obtained by adding the growth estimates to the
current values of DBH and HT. The average of 10 random
samples from each copula was used in this study; however,
the model structure allows users to change this value.

Ingrowth
As described above, the ingrowth reference database is
composed of two reference tables: INGROW.PROB and
INGROW.LIST. The first table, INGROW.PROB, is used
to determine if ingrowth occurs and how many ingrowth
trees to add. The Knn nearest plots to the plot being
grown are selected from INGROW.PROB using yaIm-
pute package in R. One nearest neighbor plot is ran-
domly selected from the Knn plots with probability
inversely proportional to neighbor distance. The annual-
ized number of ingrowth trees on the selected plot rec-
ord is used as the density parameter, λ, and a random
Poisson variate (Inn) is generated and used as the num-
ber of ingrowth records to add to the plot at the current
year in the projection cycle.
Individual ingrowth tree records are then selected from

the INGROW.LIST reference table. Similar to the process
describe above, 2*Inn nearest tree records are selected from
INGROW.LIST using the yaImpute package in R. Inn tree
records are randomly selected with probability inversely
proportion to nearest neighbor distance from current plot.

Selection is carried out with replacement, thus the same in-
growth record may be added to the tree list more than once
for any given year in the projection cycle.
Once all ingrowth trees are added, the plot is updated,

calculating all of the required one- and two-side competi-
tion measures and stand composition measures required
for the next year in the projection cycle. The tree list at
the end of each cycle is stored separately so that trends
over time can be analyzed after all cycles and replicates
are completed. Replicates were completed in a parallel
processing loop significantly reducing the computation
time required to carry out all of the simulations.

Stand Ideotypes
Standard input tree lists, that we term “ideotypes”, were cre-
ated. The idea behind creating ideotypes was to have stan-
dardized stand structures that only varied by Dq, mean HT,
species composition, and density. We used 100 tree records
as the basis of our ideotypes. These 100 trees are replicated
the required number of times to create a tree list for any
density (trees/ha), and a small amount of random noise is
added to each DBH and HT, to make each tree record
unique without substantially changing the distribution. DBH
and HT of the 100 base records were simulated using a Nor-
mal copula with a correlation coefficient of 0.60. The uniform
marginals are then removed by applying “standardized” Wei-
bull quantile functions. For the DBH distribution we used a
three parameter Weibull distribution with a location param-
eter of 0.5, scale parameter of 1.0 and a shape parameter of
2.0 (right skewed. Negative exponential-like distribution). For
HT, we used a two parameter Weibull distribution with a
scale parameter of 1 and a shape parameter of 3.6 (symmetric
distribution). The standardized distributions for DBH and
HT are shown in Fig. 3. Species are then assigned to the
resulting standardized DBH-HT pairs using a finite mixture
distribution (Zhang et al. 2001; Liu et al. 2002) based on

A B

Fig. 3 Standardized DBH (a) and height (b) distributions for the tree list ideotypes
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relative DBHs of the species mixtures. Four different stand
types, based on species composition, were created (Table 1).
Densities and quadratic mean diameters were applied to the
standard 100-tree tree list to produce a set of stand structures
that covered the range of conditions observed across
Reineke’s (1933.) stand density index space (Fig. 4).

Model calibration and comparison
To determine optimum number of nearest neighbors for
the imputation step (bandwidth, McGarrigle 2013), 100 of
the oldest intact plots were selected. Plot selection criteria
included: no cutting during the entire plot measurement
period; no catastrophic mortality (> 30% BAPHA in any
one measurement cycle); and minimum BAPHA
≥10 m2 ha−1. The initial plot measurements were used as
the input tree lists in the I/C model and each plot was
grown for the same period over which observed measure-
ments were available. Five bandwidths (K) were used for
nearest neighbor selection in the imputation step: 25, 30,
40, 50, and 60 nearest neighbors. Sample size for the cop-
ula step was held at 10 samples (McGarrigle et al. 2013).
For each bandwidth, percent error was calculated for mor-
tality rate, DBH growth, HT growth, ingrowth rate, and in-
growth species composition. Species composition errors
were measured using:

%ErrorSpecies ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPs
i¼1 Oi−Pið Þ2

q
Ps

i¼1 Oi
ð11Þ

where, s = number of different species; Oi = number of ob-
served ingrowth trees of species I; Pi = number of predicted
ingrowth trees of species i. The number of species, s, is the
unique set of species in both the observed and predicted

ingrowth trees. Optimal bandwidth was determined to be
the bandwidth that minimized these percent errors.
For model performance comparisons, each stand ideo-

type combination (stand type × Dq × density) was grown
in the I/C model for 25 years with 25 replicates. These
tree lists were also projected using the Acadian variant
of FVS (Weiskittel et al. 2013). Comparisons of model
performances were based on visual assessments of
stand-level trajectories. Bandwidths of 25 and 40 (the es-
timated optimal bandwidths) were used for selection of
nearest neighbors in the imputation step.

Results
Bandwidth selection
Average percent mortality error ranged from about 24% to
32% across the bandwidths used in the study (Fig. 5a). Both
the range in mortality error and average mortality error
were minimized with K = 40 nearest neighbors. Average
DBH growth error ranged from about 12% to 18%, and was
relatively unaffected by bandwidth until it exceeded 40 (Fig.
5b). DBH growth error increased steadily and sharply for
K = 50 and 60. The minimum average DBH growth error
was observed at K = 30; however, the minimum range in
error was observed at K = 50. Average HT growth errors
ranged from 12% to 17% (Fig. 5c), and was unaffected by
bandwidth; however, the range in error generally increased
with increasing bandwidth.
Similar to the average HT growth errors, ingrowth rate

errors were not greatly influenced by bandwidth (Fig. 6a);
however, ingrowth errors were almost double the error
rates observed for DBH and HT growth, yet were similar
to the error rates observed in mortality. Average ingrowth

Table 1 Species composition (per cent stems/ha) of the four
ideotype stand types

Species Name Stand Typea

Common Scientific INHW IHMW BS TSW

balsam fir Abies balsamea 11 27 1 6

black spruce Picea mariana 91

red spruce Picea rubens 12 21 71

eastern white pine Pinus strobus 1 1 3

northern white-cedar Thuja occidentalis 1 2

eastern hemlock Tsuga canadensis 1 3

red maple Acer rubrum 41 27 4 8

yellow birch Betula alleghaniensis 1

white birch Betula papyrifera 30 13 3 5

white ash Fraxinus americana 1 2

bigtooth aspen Populus grandidentata 2 1 1

quaking aspen Populus tremuloides 3 5 1
aINHW intolerant hardwood, IHMW intolerant hardwood, mixedwood, BS black
spruce, TSW tolerant softwood

Fig. 4 Location of stand ideotype combinations in Reineke’s (1933)
stand density space
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errors ranged from about 28% to 31% and generally in-
creased slightly across the range of bandwidths. Errors in
ingrowth species composition ranged from about 20% to
almost 50% across the range of bandwidths (Fig. 6b). Both
the average error and range in error increased rapidly with
increasing bandwidth.

Copula sample intensity
As long as sample size was >1 and not excessive (generally
<30), the number of samples selected from the copula, and
averaged to produce the DBH and HT growth estimates, had
very little influence on model behavior and stand trajectories
(not shown). A single sample produced extremely variable
individual tree and stand trajectories. As sample size in-
creased, the variability in individual tree and stand trajectories
decreased. For all analyses shown in this paper, we used a
sample size of 10 as a compromise between large variations
in tree and stand development and smoothing out the vari-
ability completely. Sample size had much greater effect on
ideotypes at the lowest densities and greatest Dq; however,
trends were similar across the entire range of density and Dq.

Model comparisons
Figure 7 compares observed plot trajectories for five plots
from the NSPSP database with predictions from FVS-
Acadian and the I/C Model developed here. Plots were
chosen based on observation longevity and to highlight in-
teresting differences in behavior between the FVS model
and the I/C model. For Plot 700, both models predict tra-
jectories that are very close to the observed plot trajectory.
This stand was similar in structure and composition to
the intolerant hardwood-mixedwood ideotype. For Plot 2
the two models have similar predictions; however, neither
reflect the observed plot trajectory very well. Plot 2 is a
softwood dominated type and during the first two meas-
urement cycles experienced significant balsam fir mortal-
ity, most likely due to natural stand breakup or possibly
spruce budworm defoliation. In Plots 44 and 479, the I/C
model produces predictions that very closely agree with
the observed trajectories, while the FVS predictions devi-
ate substantially. Plot 44 is an intolerant hardwood type
and the FVS model predicted substantial mortality in this
stand while the I/C model did not predict much change in

A B C

Fig. 5 Bean plots of percent error by bandwidth (k) for: a) mortality; b) DBH growth; and c) height growth

A B

Fig. 6 Bean plots of percent error by bandwidth (k) for ingrowth: a) number; and b) species composition
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either mortality or ingrowth, especially at optimal band-
width (k = 40). Plot 479 is balsam fir dominated and expe-
rienced substantial mortality through the measurement
period, again most likely due to spruce budworm defoli-
ation. Unlike Plot 2, in this case, the I/C model was able
to chose appropriate nearest neighbor trees to capture the
mortality dynamics. Plot 479 was much more heavily
dominated by balsam fir while red spruce was the domin-
ant species in Plot 2. Plot 1359 represents a case where
the observed trajectory, the FVS predicted trajectory, and
the I/C model trajectory are all very different. Plot 1359 is
another intolerant hardwood-mixedwood stand with a
large amount of red maple. It appears that small-diameter
red maple and red spruce mortalities are over-predicted in
the FVS model. It also appears that the ingrowth of red

spruce is generally under-observed (at least relative to the
rates observed in Plot 1359) in the NSPSP database (i.e.,
this may reflect a lack of younger stands in the database).
Figure 8 shows the development trajectories from FVS-

Acadian and the I/C model for the IHMW and BS stand
ideotypes and k = 25 and 40. For both ideotypes, k = 25 re-
sulted in trajectories from the I/C model that were substan-
tially different from those obtained using FVS-Acadian. For
the lower relative density stands, differences were less pro-
nounced; however, as relative density approach the max-
imum size-density line, the trajectories from the I/C model
had increasing deviations from the FVS-Acadian projec-
tions. Most of the source of deviation at the higher relative
densities was due to errors in mortality predictions
(Fig. 5a), resulting in trajectories that were much flatter

Fig. 7 Comparison of observed plot trajectories versus predictions from FVS-Acadian and the I/C Model for 5 selected NSPSP plots
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(i.e., higher mortality rates and lower changes in Dq) than
what were associated with the FVS-Acadian projections.
When k = 40, these flat trajectories were almost completely
eliminated, and the two models more closely agreed with
one another. The lower ideotype densities and the upper
quadratic mean DBHs were notably exceptions. When
Dq = 28 cm, all ideotypes had trajectories from the I/C
model that often went in opposite directions from the tra-
jectories obtained from FVS-Acadian.
Trajectories for the intolerant hardwood ideotypes (not

shown) were very similar to those for the intolerant hard-
wood - mixedwood type, while the tolerant softwood ideo-
types (not shown) were more similar to those for the BS
type. However, the tolerant softwood type did not have as
flat trajectories as those observed for the other types when
k = 25, suggesting that mortality predictions for tolerant
species might be less sensitive to bandwidth.

Discussion
The model developed here is purely data-driven with min-
imal assumptions that include: 1) that the set of nearest

neighbors is adequate to predict the growth and survival
of individual trees and the number and species compos-
ition of ingrowth trees; and 2) there is an optimal or pre-
ferred set of covariates from which to match nearest
neighbors. Given these simple assumptions, the model de-
veloped here was capable of producing complex stand tra-
jectories, generally consistent with those obtained from
FVS-Acadian, a statistically derived model with several
complex equations. The results obtained here are very
similar to those obtained by McGarrigle et al. (2013) and
McGarrigle (2013) for stand-level modelling dynamics.
While model performance was generally good, and in

agreement with predictions from FVS, a widely accepted
statistical model, there is still room for improvement. Errors
associated with DBH and HT growth were similar to error
levels obtained by other growth studies in the region using
nonlinear mixed effects models (Russell et al. 2011; Russell
2012; Russell et al. 2014) and are consistent with error
levels commonly observed in many growth and yield stud-
ies (e.g., Ek and Monserud 1979; Bragg 2003; Weiskittel et
al. 2011a). DBH growth was not strongly influenced by

A B

C D

Fig. 8 Comparisons of stand development trajectories of stand ideotypes by bandwidth (k): a) intolerant hardwood, mixedwood ideotype with
k = 25; b) intolerant hardwood, mixedwood ideotype with k = 40; c) black spruce ideotype with k = 25; d) black spruce ideotype with k = 40.
Grey lines are replicate projections from the I/C model and the thick black line is the projection from the Acadian variant of FVS. The clusters of
projections represent the ideotype starting points shown in Fig. 4
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bandwidth except when bandwidth was greater than 40
nearest neighbors. HT growth was not influenced by any of
the bandwidths tested in the study.
On the other hand, both mortality and ingrowth had

substantial error rates (Figs. 5 and 6) with ingrowth species
composition being poorly predicted (Fig. 6). Mortality and
ingrowth were very sensitive to bandwidth choice (Figs. 5
and 6). Percent mortality error was reduced from about
30% to around 20% as bandwidth increased from 25 to 40
nearest neighbors and remained more-or-less constant for
bandwidths greater than 40. The larger errors associated
with small bandwidths most likely reflects the influence
each tree has on mortality probability. When k = 25, each
tree represents 4% of the population, and, since survival
probability is calculated as the proportion of trees surviv-
ing the measurement interval, each dead tree represents a
4% reduction in survival. At k = 40, this reduction is re-
duced to 2.5%. Overall mortality in the database averaged
about 2.8% annually. Larger bandwidths would reduce the
impact individual trees have on mortality rates; however,
selecting individuals that are increasingly more different
than the target tree might increase error rates in other
ways, which might be what is contributing to the small in-
crease in mortality error when k = 60 (Fig. 5a).
Ingrowth rate was not influenced greatly by the band-

widths explored in this study (Fig. 6a); however, ingrowth
species composition prediction was very sensitive to band-
width, with errors increasing steadily with increasing band-
width. The primary source of species composition errors
was due to species not found on the plot being selected
during the imputation and sampling process. Even though
plot-level species composition was included in the reference
variables used in the imputation step, this only represents
local seed source availability (Ek et al. 1996; Archambault et
al. 2009; Arseneault et al. 2011), and does not include any
consideration of nearby seed sources. More explicit geore-
ferencing of the plots and inclusion of a physical distance
from target plot may reduce the incidence of stray species
appearing as ingrowth. Additionally, the climate-based site
index (CSI) was the only site factor included in the I/C
model in this study. CSI, like all site index measures, is a
composite measure of site productivity based on height
modified by climate (Weiskittel et al. 2011b) and there are
many other factors that influence regeneration species
composition (Bakken and Cook 1998; Bataineh et al. 2013).
Incorporation of local climatic variation and edaphic factors
might improve ingrowth species composition.
Finally, the data used in this study came only from Nova

Scotia, a relatively narrow portion of the range associated
with many of the species. This relatively narrow range of
data may explain some of the differences in predictions
between the Acadian FVS model, developed from a much
larger regional database, and the I/C model developed
here. Additional testing of the model approach using the

full Acadian Forest database is required, but will also re-
quire substantial increases in computational resources.
The current model formulation was run on a minicom-
puter with 2 quadcore processors and 128Gb of RAM
using the multiprocessing capability in R (R Development
Core Team 2016). Twenty-five year projections with 25
replicates required 15–20 h to run depending upon band-
width. The imputation step was the most time-consuming
portion of the algorithm and increased with increasing
bandwidth. Obviously, while this complexity and required
computing time might limit application of the I/C model,
potential gains in efficiencies are likely in the future.
Multiple imputation has found many applications in for-

estry and ecology over the past several years. Random for-
est imputation has become the standard analytical tool for
LiDAR analyses (e.g., Hudak et al. 2008; Dassot et al. 2011;
Gregoire et al. 2011; Hayashi et al. 2015). Imputation tech-
niques are also widely used in forest inventory to estimate
missing values (Eskelson et al. 2009b), and to spatially allo-
cate forest inventory data over the landscape (McRoberts
2001; McRoberts and Tomppo 2007; Eskelson et al. 2009a;
Falkowski et al. 2010). While imputation techniques have
found many applications for static forest inventory esti-
mates, growth and stand dynamics applications have seen
much less attention. To our knowledge, this is only the sec-
ond model to apply an imputation-copula approach to
model forest stand dynamics (see McGarrigle et al. 2013 for
the other example), and the first to apply it to individual
tree dynamics.

Conclusions
Over the past several decades there has been much debate
over the appropriateness of statistical versus process
models (e.g., Dixon et al. 1991; Adlard 1995; Johnsen et al.
2001). While it is generally scientifically appropriate to en-
gage in debate regarding model approach/philosophy,
model structure, and model complexity, the role these
large regional datasets play should not be downgraded or
ignored. Even given many underlying experimental and
sampling design flaws, these datasets contain a wealth of
information on forest change that only now are we more
fully understanding. Big data analytics, which has been
utilized widely in other fields, may enable forest modellers
to gain new insights into the underlying processes and
better separate signal from noise.
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