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Abstract

Background: Attention has recently been drawn to the issue of transboundary invasions, where species introduced
and naturalized in one country cross international borders and become problematic in neighbouring countries.
Robust modelling frameworks, able to identify the environmental drivers of invasion and forecast the current and
future potential distribution of invasive species, are needed to study and manage invasions. Limitations due to the
lack of species distribution and environmental data, or assumptions of modelling tools, often constrain the reliability
of model predictions.

Methods: We present a multiscale spatial modelling framework for transboundary invasions, incorporating robust
modelling frameworks (Multimodel Inference and Ensemble Modelling) to overcome some of the limitations.

The framework is illustrated using Hakea sericea Schrad. (Proteaceae), a shrub or small tree native to Australia and
invasive in several regions of the world, including the Iberian Peninsula. Two study scales were considered: regional
scale (western Iberia, including mainland Portugal and Galicia) and local scale (northwest Portugal). At the regional
scale, the relative importance of environmental predictors sets was evaluated and ranked to determine the main
general drivers for the species distribution, while the importance of each environmental predictor was assessed at
the local scale. The potential distribution of H. sericea was spatially projected for both scale areas.

Results: Model projections for western Iberia suggest that a large area is environmentally suitable in both Portugal
and Spain. Climate and landscape composition sets were the most important determinants of this regional distribution
of the species. Conversely, a geological predictor (schist lithology) was more important in explaining its local-scale
distribution.

Conclusions: After being introduced to Portugal, H. sericea has become a transboundary invader by expanding
in parts of Galicia (Spain). The fact that a larger area is predicted as environmentally suitable in Spain raises
concerns regarding its potential continued expansion. This highlights the importance of transboundary cooperation

in the early management of invasions. By reliably identifying drivers and providing spatial projections of invasion at
multiple scales, this framework provides insights for the study and management of biological invasions, including the
assessment of transboundary invasion risk.
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Background

Invasion by alien species is a major threat to ecosystems
worldwide. Many invasive species cause substantial
changes to ecosystem structure and functioning (Vila et
al. 2011), provision of ecosystem services (Vila et al.
2010) and the broader economy (Pimentel et al. 2005;
Vila et al. 2010). Some invasive species potentially pro-
mote irreversible regime shifts (Gaertner et al. 2014),
and cause biotic homogenization synergistically with
other drivers of global change (Thuiller 2007). There-
fore, biological invasions as a global change process, and
a worldwide problem, must be managed through inter-
national cooperation.

The concept of transboundary pollution, where pollu-
tion originating in a given country negatively impacts
the environment in another country, has long been a
part of environmental sciences, with a history of applica-
tion and evaluation of practical measures which show
that international cooperation is key in dealing with this
problem (United Nations 1997; EEA 1999, EEA 2015).
The parallel concept of transboundary invasions, where
a species introduced in a given country expands into
neighbouring countries has so far received much less
attention, despite being discussed in recent publications
(e.g. Hulme 2015; Roques et al. 2016) and legislation call-
ing for concerted action between countries (European
Parliament and Council of the European Union 2014).
Therefore, progress in this area demands that traditional
risk assessment methodologies be expanded to include
multiple countries (Hulme 2015). In this paper we apply
species distribution models to predict invasion patterns in
a transboundary context.

Despite the conceptual similarities to other inter-
national environmental issues and concerns, biological
invasions are a very special case, and several particular-
ities of the phenomenon need to be taken into consider-
ation before addressing it. The invasion process involves
several stages (transport, introduction, establishment,
and spread), with sequential barriers (e.g. geographical,
survival, reproductive, dispersion) that must be over-
come by a species in order to reach, survive and spread
in a new non-native territory (Richardson et al. 2000;
Blackburn et al. 2011). The success of invasive species in
a new territory depends on their invasiveness (i.e. fea-
tures of the organism that define its ability to invade),
and on the invasibility of the local ecological systems
(i.e. characteristics of those systems that determine the
susceptibility to invasion; Richardson et al. 2011). Inva-
sion patterns and processes exhibit spatial dependence,
and the relative importance of different sets of environ-
mental factors (e.g. climate, landscape composition and
structure, disturbances) to explain species distributions
varies across spatial scales (Rouget and Richardson 2003;
Pearson et al. 2004; Guisan and Thuiller 2005; Vicente
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et al. 2014). Consequently, attempts to understand and
predict invasion processes must always consider the
spatial scale(s) of the study system (Pauchard and Shea
2006; Theoharides and Dukes 2007), and produce more
informative predictions of invasion than traditional
models (Vicente et al. 2011).

Species distribution models (SDMs) statistically relate
the distribution of a given species with environmental
factors, improving the understanding and prediction of
the potential distribution of species in a specific territory
(Elith and Leathwick 2009). SDMs have been widely
used in the field of biological invasions (e.g. Peterson
2003; Broennimann et al. 2007; Vicente et al. 2010, 2011;
Fernandes et al. 2014). Despite their usefulness, a recur-
rent difficulty in applying SDMs is the likelihood of
model overfitting due to a high ratio between the num-
ber of environmental predictors and the often-scarce
species occurrence data (Guisan and Thuiller 2005). To
overcome this problem, information-theoretic approaches
such as Multimodel Inference (Burnham and Anderson
2002) can be applied. Multimodel Inference allows the
comparison of different hypotheses on invasion predictors,
by comparing and ranking a series of competing models
that reflect different hypotheses for explaining the species’
distribution, and by measuring each model’ contribution
to explain the observed data. Additionally, weighting each
model by its importance to explain the original dataset
(i.e. model averaging) allows us to obtain a consensus
spatial projection (Vicente et al. 2010). Overall, this
procedure paves the way for more accurate models and
projections while testing the effect of a larger set of envir-
onmental predictors.

Another important difficulty when applying species
distribution models arises as different modelling tech-
niques can produce very different outputs, even when
models are calibrated with the same occurrence and en-
vironmental data (Pearson et al. 2006). A panoply of
modelling techniques is currently available (Aratjo and
New 2007; e.g. Guisan et al. 2002; Olden et al. 2008),
confounding the choice of the most appropriate tech-
nique to reach a given goal. To avoid variability in pre-
dictions, ensemble-forecasting modelling can be applied,
by fitting a series of models using multiple techniques
and then combining the predictions into a consensus
prediction (weighted by the accuracy of the different
methods; Aratijo and New 2007).

The shortage of data on the distribution of invasive
species can to some extent be overcome by supplement-
ing data from research and monitoring programs with
data acquired from citizen science initiatives (Crall et al.
2010). However, data from citizen science programs, as
exemplified by the web mapping platform available at
www.invasoras.pt (invasoras.pt 2014), are often collected
only in the form of presence records, making it
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necessary to generate pseudo-absence records, following
the most consensual procedures to avoid biasing the
accuracy of model predictions (Wisz and Guisan 2009).

We propose a modelling framework to identify and
rank multiscale environmental predictors of transbound-
ary distribution of invasive species based on scarce
occurrence data (a common limitation in biodiversity
modelling studies; Lomba et al. 2010; Vicente et al.
2011). This allows the use of data from a more invaded
country (Portugal in our example) to predict areas of
potential risk in neighbouring countries with slight or
no current invasion (Spain in our example), provided
that model transferability principles are observed (Elith
and Leathwick 2009). In the proposed framework, the
first step is to identify areas of high invasion risk or of
particular conservation importance at a regional scale
(western Iberian Peninsula in our study case). The sec-
ond step involves zooming in to the areas selected in
step 1 (northwest Portugal in our study) in order to ob-
tain more fine-grained predictions of potential invasion
and to rank its driving factors. A key feature of the ap-
proach is that the different scales of analysis are con-
nected in that equivalent variables are used, each
analysis does not try to be a scaled version of the other,
allowing the use of more suited techniques and predic-
tors for each scale. We illustrated the framework for the
transboundary invasion by Hakea sericea Schrad., an in-
vasive shrub invading mainland Portugal and currently
spreading to neighbouring areas in Spain. We obtained
spatial projections of potential distribution for both
scales, and implications for transboundary management
of invasive species are discussed.

Methods

Study areas

The proposed framework was applied in two nested geo-
graphic areas (Fig. 1): a regional-scale area including
Portugal and Galicia, covering ca. 133 000 km? and a
local area in the Minho region, Northwest Portugal, cov-
ering ca. 2972 km?. The use of nested areas, with differ-
ent grain and extent, allows for the identification of the
main factors underlying species distributions at multiple
spatial scales (e.g. see Lomba et al. 2010; Vicente et al.
2011, 2014).

The regional-scale area, located in the western part of
the Iberian Peninsula, includes the transition between
the Eurosiberian and the Mediterranean biogeographic
regions of Europe, with Galicia and northwest Portugal
representing the Eurosiberian areas (Rivas-Martinez et
al. 2004). The large variability in topography, geology,
soils and land cover, along with the transitional biogeo-
graphic situation, results in a highly heterogeneous area
in terms of environmental and socio-ecological contexts.
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The Minho region, in northwest Portugal, is a particu-
larly well-studied and data-rich area for both invasive
species occurrence and environmental data (e.g. Vicente
et al. 2010, 2011; Fernandes et al. 2014). It is located
within the area predicted as suitable for the study spe-
cies by the regional scale model (see below), hence its
choice for the fine-scale component of this work. This
area has high climatic heterogeneity, with gradients that
constrain not only native biodiversity (e.g. Lomba et al.
2010) but also invasive plant species richness (Vicente et
al. 2010) and the potential distribution of individual
invaders, with climate acting as the primary driver
(Vicente et al. 2011). To allow for the identification
of potentially important non-climatic predictors, a
climatically homogeneous area (Fig. 2c) was selected
within the region, as performed in Vicente et al.
(2010); see “Model Calibration” section.

Study species and occurrence data

Hakea sericea Schrad. (silky hakea; Proteaceae) is a
woody shrub or small tree that is native to south-
eastern Australia where it occurs in areas of dry
sclerophyll forest and heathlands on coastal regions
and adjacent ranges, from south-eastern Queensland
to south-eastern New South Wales (Barker et al.
1999). This fire-adapted species is invasive in New
Zealand, mainland Portugal and islands (Madeira),
and South Africa (Rejmanek and Richardson 2013).
The invasion dynamics of the species have been in-
tensively studied in South African fynbos vegetation
(e.g. van Wilgen and Richardson 1985; Richardson et
al. 1987; Le Maitre et al. 2008). Invasion by H.
sericea in fynbos causes major changes to the fuel
characteristics of this fire-prone shrubland vegetation
(van Wilgen and Richardson 1985). Due to the cap-
acity to sustain and promote fire, invasion by H. seri-
cea can lead to severe ecological and socioeconomic
regime shifts (Gaertner et al. 2014). Although such
major impacts have yet to be quantified outside South
African fynbos, H. sericea has the potential to become
more widespread and abundant in Southern Europe
and other areas with Mediterranean-type climate, as
suggested by its aggressive invasiveness in South
Africa.

H. sericea is a serotinous species, whose seeds are
retained in woody fruits. Once mature, the fruit’s
thick woody walls offer protection to the seeds
against heat (Brown and Whelan 1999) and granivores
(Groom and Lamont 1997). This, together with a slow de-
crease in germination rates over time (Richardson et al.
1987; Brown and Whelan 1999), results in a large canopy-
stored seed bank formed by seeds produced in a
given year and viable seeds from previous vyears,
which are released only after the death of the plant



Martins et al. Forest Ecosystems (2016) 3:17

Page 4 of 14

300 600 km

preAcir::::tlion h Foliated metamorphic
L (mm) rocks (%)
B e s :
= 5 466-1599 Y 0-100
0 15 30 km
b | o o wim | —

Galicia (northern subdivision)

Fig. 1 Study areas for the determination of the drivers of distribution of Hakea sericea in the context of the Iberian Peninsula (a), regional-scale
area with values of annual precipitation (b) and local-scale study area with values of the percentage area of foliated metamorphic rocks
per cell (c). For the regional-scale area (light grey, b) the administrative divisions are presented as Portugal (southern subdivision) and

(Richardson et al. 1987). Therefore, an event such as
a wildfire can result in the sudden release of a very
large number of seeds.

Hakea sericea has been cultivated in Portugal as a
hedge plant at least since the 1930s, and is known to
have naturalized in natural vegetation in the 1940s
(Espirito Santo and Arsénio 1999). It has become
highly invasive in some areas (Marchante et al. 2014)
and has spread to at least one location in northwest
Spain (Pulgar Safudo 2006), thereby becoming a
transboundary invasion. Hakea sericea is listed in
Portuguese legislation as an invasive species (Minis-
tério do Ambiente 1999), and is considered a

potential invader in Spain (Ministerio de Agricultura
Alimentacion y Medio Ambiente 2011). Brunel et al.
(2010) consider H. sericea as an emerging invasive
alien plant in the Mediterranean Basin, with a poten-
tially severe impact on the environment.

Occurrence records for H. sericea were obtained from
previous field surveys, from published studies (Vicente
et al. 2010), and from the citizen science web platform
invasoras.pt (2014). A total of 53 presence records for
the regional scale (10 km x 10 km grid cells) and 108
records for the local scale (37 presences and 71 ab-
sences; 1 km x 1 km grid cells) were obtained and used
to calibrate the models.
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Fig. 2 Multi-scale modelling framework for the analysis of drivers and patterns of Hakea sericea distribution in the Iberian Peninsula. The analysis
was performed at two spatial scales (step a, regional and local). Multimodel inference analysis was applied at the regional scale analyses (b, c)
to infer the importance of each set of predictors in determining the distribution of the species, for spatial projection (d), and in a downscaling
exercise to establish a local-scale area (c). At the local scale an ensemble model was calibrated using the biomod?2 R package (c), and predictor
importance scores were obtained (d). For both areas, spatial projections for the potential distribution of H. sericea were obtained (d)

Analytical framework

The proposed multi-scale modelling framework was
applied to assess the transboundary invasion by Hakea
sericea as described in Fig. 2.

Starting from an initial dataset of 65 environmental
predictors (step a), a subset of 16 predictors was selected
(step b) and classified into four groups that reflect differ-
ent types of environmental factors (see below). The four
groups of predictors were used to calibrate competing
models in a multimodel inference analysis using H.
sericea presence records and multiple sets of randomly
selected pseudo-absences (Wisz and Guisan 2009; see
below). The models were then used (step c) to determine
which environmental sets were most important in
explaining the distribution of H. sericea in the regional
study area and to perform a spatial projection of the spe-
cies” distribution (step d). This projection supported the
selection of the local study area, by applying a downscal-
ing procedure for the local scale area using the regional
scale models (step c). Since a larger number of occur-
rence records were available for the local area (including

confirmed absences), it was possible to apply ensemble
modelling using the biomod2 package (Thuiller et al
2009, 2015), implemented in the R software (R Develop-
ment Core Team 2014; step c). The ensemble modelling
was also used to obtain an importance score for each en-
vironmental predictor, and to project the potential
spatial distribution of the species for the local study area
(step d).

Statistical procedures throughout the whole workflow
were performed using R 3.1.0 (R Development Core
Team 2014). Spatial operations were performed using
ArcMap 10.2 (ESRI 2014) and QGIS 2.2 (QGIS Develop-
ment Team 2014). Further methodological details on
model development are provided in the following
sections.

Model calibration, evaluation and spatial projection
Predictor selection

For the regional scale, we started with 65 environmental
predictors reflecting four main types of environmental
conditions: climate, landscape composition, landscape
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structure and lithology. Based on ecological expert
knowledge of the species and the study area, and apply-
ing a pairwise Spearman correlation analysis (to avoid
multicollinearity), a final dataset of 16 (Spearman correl-
ation < 0.7) environmental predictors (four per type) was
obtained (Table 1). To allow comparability across scales,
a dataset with equivalent predictors was obtained for the
local scale. At this scale, data on fire history was avail-
able, and so a predictor reflecting burnt area was added
to the final dataset. The following set of variables was
available: maximum burnt area of each cell in the
last 10 years, average fire recurrence, and total num-
ber of fires, all of which presented correlation values
(Spearman rho) above 0.9 among them. As such, the
first variable was selected, as it provides information
on both the burnt area and an indication of fire re-
currence when the cell is completely burned more
than once (by having a value over 100 %). The 17
predictor dataset was tested using a pairwise Spear-
man correlation analysis, and all predictors with
Spearman correlation <0.7 were selected, retaining
those predictors with the greatest ecological rele-
vance for the species. A final dataset of 13 predictors
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was obtained for the local-scale area, including at
least two predictors from each set from the regional-
scale, and the fire predictor (Table 1).

Regional scale model

Multimodel Inference was applied to determine the rela-
tive importance of a set of predictors (see Appendix II
for the list of predictors used in each model) on the dis-
tribution of the test species, by calibrating Generalized
Linear Models (GLMs, calibrated with Poisson variance
and log link function), using the Akaike Information
Criterion (AIC) to assess how much each model was
supported by the initial occurrence data. An adapta-
tion of AIC for small sample sizes (AIC, was used;
for each candidate model, the AIC, difference was
calculated (Ai=AIC, jiga — AIC. minimum) allowing
the comparison among all competing models. Finally,
the Ai values were used to derive Akaike weights (w;),
representing the likelihood that a given model is the
best approximating model, given the model and data
sets. To assess explanatory accuracy, Nagelkerke’s R
was calculated (Nagelkerke 1991). The w; values were

Table 1 Predictors used in model calibration by predictor class, their description and ecological rationale for the selection

Class Predictor Description Ecological rationale
Climate MinTemp Minimum temperature of the Climate is expected to be the main factor in shaping
coldest month species’ distribution at large scales (Pearson et al. 2002),
TembRan Temperature annual range and previous studies have indicated climate predictors as
P peratu u 9 the most important drivers of invasive species richness in
AnnPrec Annual precipitation the local-scale study area (Vicente et al. 2010).
PrecSea Precipitation seasonality (Coefficient
of variation)
Landscape composition  pUrbanA Urban areas cover (%) Land cover/use determine suitable habitat availability,
Aari Agricult %) thereby controlling alien invasion, and more invasive
PAgrico griculture cover (% species find suitable conditions in man-made habitat
pArtFor Artificial forests cover (%) (Song et al. 2005). Also, the greater the compositional
. diversity of a landscape, the more alien invasive species
pShrubs Shrubland cover (%) can find suitable conditions there (Pino et al. 2005).
Landscape structure NumPatc Number of patches Spatial configuration and variability of the landscape
affect species richness (Dufour et al. 2006), with landscape
mShalnd Mean Shape Index fragmentation increasing vulnerability to invasion
mPerAreR  Mean Perimeter-to-Area Ratio (Le Maitre et al. 2004).
shDilnd Shannon Diversity Index of Land
Cover classes
Lithology IgnRock Felsic and intermediate Igneous The test species has adaptations related to nutrient
Rocks (%) absorption (Sousa et al. 2007). We expect that this might
) : be reflected in differential suitability and invasive potential
0,
MetRock Foliated metamorphic rocks (%) among different bedrocks, an expectation supported by
DetSedD Detritic sedimentary rocks and empirical observations in some locations within our study
superficial sedimentary deposits (%) area.
lithSDI Shannon Diversity Index of lithological
categories
Fire pMaxBurn  Maximum burnt area per cell (%) Hakea sericea possesses fire adaptations (Groom and Lamont

1997; Brown and Whelan 1999), and invasion by this species
potentially causes impacts on fire regimes (van Wilgen and
Richardson 1985).

All predictors were used for the regional scale analysis, predictors in bold were selected for the local scale analysis (for more information see Appendix )
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used as weights to obtain an average model, for
spatial projection of the outputs.

To calibrate the regional model, pseudo-absences were
randomly selected in the study area. To avoid the model
being skewed due to the pseudo-absence selection, a
bootstrapping procedure, where the full presence set
was used together with a random set of pseudo-absences
(with the same size as the presence set), was applied to
calibrate the GLMs. This process was repeated 5000
times (each time with a different pseudo-absence set).
The AIC, and related values were calculated for each
repetition, and averaged over the 5000 repetitions.
Furthermore, a null competing model (random model)
was calibrated assuming that the considered hypotheses
have no effect over the species’ distribution.

Model evaluation was performed through the widely
used Area Under the Receiver Operating Characteristic
curve (ROC-AUC), as well as with the recently devel-
oped Boyce Index (Hirzel et al. 2006), implemented in
the ecospat R package (Broennimann et al. 2015). The
model predictions were finally converted into presence/
absence using a ROC plot-based approach (threshold
value corresponding to the point where the ROC curve
is closest to the (0, 1) coordinates as discussed in Liu et
al. (2005). ROC plot was performed using the pROC R
package (Robin et al. 2011).

Finally, the projected average model was used for the
selection of the local-scale area, by applying direct
downscaling (e.g. Aradjo et al. 2005; Fernandes et al.
2014). This was performed using models calibrated at
the regional scale (10 km x 10 km grid) to perform a
spatial projection at the local scale (1 km x 1 km grid),
and using this projection to predict potential presence
areas at the local scale.

Local scale model
A single class of model (GLMs) was applied at the re-
gional scale, while ensemble models were used at the local
scale, developed using the biomod2 package (Thuiller et
al. 2009, 2015; see Additional file 1 for details on
ensemble modelling and its implementation) implemented
in R. A total of 310 models for H. sericea were calibrated/
fitted, using the 10 modelling techniques available in bio-
mod2: GLM generalised additive models (GAM; Hastie
and Tibshirani 1990), multivariate adaptive regression
splines (MARS; Friedman 1991), classification tree analysis
(CTA; Breiman et al. 1984), mixture discriminant analysis
(MDA; Hastie et al. 1994), artificial neural networks
(ANN; Ripley 1996), generalised boosted models
(GBM; Ridgeway 1999), random forests (Breiman
2001), Surface Range Envelope (SRE; Busby 1991) and
MaxEnt (Phillips et al. 2004).

Model evaluation was performed using the AUC
metric using a cross-validation procedure (80 % of the
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data used for calibration/20 % for evaluation), with 30
repetitions.

The final model was obtained by an ensemble of the
predictions of models with AUC above 0.7, using a
weighting approach (Thuiller et al. 2015). A final evalu-
ation of the ensemble model performance was based
both on the AUC value and on the Boyce Index.

The importance of each predictor was estimated for the
ensemble model prediction using the “variables_im-
portance” function available in biomod2 (Thuiller et
al. 2015).

Results

Potential distribution of Hakea sericea

Figure 3 presents the potential distribution, based on the
model results, for both the regional (a) and local (b)
scales. The regional scale prediction was obtained by
projecting the average model over the study area and
converting this into a binary presence/absence predic-
tion. At local scale the prediction was obtained from the
projection of the ensemble of models from biomod2. Of
a total of 1330 grid cells at the regional scale, 304
(22.9 %) were identified as having suitable conditions for
H. sericea (Fig. 3a). These potential presences are located
mostly in the western part of the study area, especially
in the western half of central and northern Portugal (250
grid cells), extending northward to southwest Galicia
(Spain, 54 grid cells — versus a single currently docu-
mented occurrence). Overall, the projection of the aver-
aged regional model held very good predictive power
(AUC =0.882; Boyce Index=0.713; Liu et al. 2005;
Hirzel et al. 2006).

Only 180 cells (6.1 %) were predicted as potential pres-
ence of H. sericea in the local study area (Fig. 3b). The
majority of these predicted presences are located in the
northwest corner of the area, characterised by the pres-
ence of schist lithology (see Fig. 1c). The evaluation of
model performance again indicates a high predictive
power (AUC =0.9; Boyce Index = 0.958; Liu et al. 2005;
Hirzel et al. 2006).

Multi-scale drivers of the distribution of Hakea sericea
Table 2 indicates the importance of each set of predic-
tors (for the regional scale) and each predictor (for the
local scale). The importance of each set at the regional
scale is reflected by the w; of the model calibrated with a
given set of predictors, while the local scale predictor
importance is an output of biomod?2.

The best performance for the regional study area was
obtained with the climatic model (M1, w;=0.820,
Table 2). The second best model, as supported by the
occurrence information, was related with landscape
composition (M2, w; =0.174). The null model presented
the lowest values of w; (M5, w;=1.91 x 107°).
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Fig. 3 Potential distribution of Hakea sericea in the regional-scale study area obtained by binarization of the average model projection (a), and in
the local-scale study area, obtained as an ensemble forecast in biomod2 (b)

Discussion
Overcoming scarce occurrence data in invasive species
distribution modelling
Scarcity of occurrence data is often a constraint for the
calibration of Species Distribution Models, reducing the
number of predictors that may be used with confidence
(Guisan and Thuiller 2005). This can represent an
important limitation to the study and management of
biological invasions (Crall et al. 2010). Citizen science
programs offer a way of overcoming this problem, by
having the interested public participating in data collec-
tion. However, while these programs are useful, the
resulting data often comprise presence records only,
thus yielding unbalanced datasets (Crall et al. 2010).
While ideally situations of low data availability would
be addressed by increased sampling, this is not always
possible due to economic, temporal or other constraints,
and the shortage of high-quality species occurrence data
requires the development of improved modelling frame-
works, with targeted modifications to deal with specific
problems (Lomba et al. 2010; Vicente et al. 2011). For
example, the lack of confirmed absence records makes it
necessary to use randomly selected pseudo-absences to
fit Generalized Linear Models, which require both pres-
ence and absence information. To overcome any

possible bias created by the random selection of pseudo-
absences, the modelling framework was improved
through the application of a bootstrapping procedure
with a large number of random iterations (5000). More-
over, multimodel inference helped to mitigate the limita-
tion on the number of predictors used to fit the models.
Multimodel Inference also provided a way of ranking
the importance of predictor sets to explain the distri-
bution of the test species and to generate a robust
spatial prediction of regional potential distribution
(Vicente et al. 2010).

While useful in situations of deficient species occur-
rence datasets, the use of a single modelling technique is
not ideal; it is well known that different modelling tech-
niques can yield very different results, even when using
the same data (Pearson et al. 2006). In cases where more
occurrence data is available, as for our local-scale study
area, ensemble forecasting may be safely applied (Aradjo
and New 2007). Applying ensemble modelling allowed
us not only to project the potential distribution of H.
sericea based on a consensus approach, but also to rank
the relative importance of the individual environmental
predictors, instead of a rank by predictor types obtained
with multimodel inference. In our local area, the ranking
obtained with biomod?2 identified the presence of foliated
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Table 2 Results of Multimodel Inference (MMI) for the regional
study area, and importance of each predictor calculated with
biomod? for the local-scale study area

Regional scale  Local scale

Regional MMI biomod2 ensemble
W; Predictor  Importance
M1 - Climate 0.820 TempRan  0.138
AnnPrec 001
M2 - Landscape composition 0.174 pUrbanA  0.009
pArtFor 0.015
pAgrico 0.074
M3 - Landscape structure 0.005 shDilnd 0.059
NumPatc ~ 0.033
mShalnd  0.021
mPeAreR 001
M4 — Lithology 0.001 MetRock  0.613
DetSEdD ~ 0.014
lithSDI 0.01
M5 — Null model 1.91E-06
Fire pMaxBurn  0.067

The values of w; (always sum up to 1) indicate the likelihood that the model is
the best, given the full model and data sets, allowing for a comparison of the
importance of each model in explaining the observed distribution of the
species. For biomod2, the relative importance was calculated for each
predictor, indicating its importance in explaining the distribution of Hakea
sericea in the study area (for more information see Appendix IIl)

The predictor with the highest importance explaining the local-scale distribution
of H. sericea was the percentage of foliated metamorphic rocks, or schists
(MetRock = 0.613; Table 2). This lithological predictor was followed in
importance by temperature annual range (TempRan =0.138), percentage
of agriculture cover (pAgrico = 0.074), Shannon Diversity Index of land cover
classes (shDilnd = 0.059), and maximum burnt area per cell (pMaxBurn = 0.067)

metamorphic rocks as the most important predictor
explaining the current distribution of H. sericea. This
was followed in importance by a climatic predictor, con-
firming the importance of climate conditions in deter-
mining the distribution of species (Pearson et al. 2002),
even in relatively small areas but with very heteroge-
neous climate conditions (Vicente et al. 2010).
Measurements of the model’s predictive power indi-
cated high accuracy in both the multimodel inference
and the ensemble forecasting outputs. By combining the
strengths offered by these different modelling ap-
proaches, and taking spatial scale into consideration, our
framework provides the means of overcoming common
difficulties related to data quality and modelling tech-
niques. Such problems include: the risk of over-fitting
due to lack of occurrence records (Guisan and Thuiller
2005; addressed here by using Multimodel Inference);
uncertainty in model outputs from different techniques
(Pearson et al. 2006; addressed here by applying ensem-
ble modelling); variation in the importance of different
drivers across spatial scales (Rouget and Richardson
2003; Pearson et al. 2004; Guisan and Thuiller 2005;
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addressed here by using nested study areas); and diffi-
culty in identifying drivers of distribution masked by
stronger gradients (Vicente et al. 2010; dealt with by
selecting a local study area based on downscaled predic-
tions of regional distribution models).

As different techniques and variables, better suited for
each scale, were used in each analysis, it is important to
note that the local-scale analysis cannot be considered a
“scaling” of the regional scale, and vice-versa, and it is
better interpreted as two different but linked and com-
plementary analyses. With this caveat, our modelling
framework enabled us to identify the main sets of drivers
of invasion by an aggressive plant species at a coarse
spatial scale, and then to rank the importance of individ-
ual predictors at a finer scale. It also provided robust
spatial predictions of potential distribution for the spe-
cies at both scales. Considering that prevention is the
most cost-effective approach for managing invasive spe-
cies (Davies and Sheley 2007), the spatial projections ob-
tained in this study provide the means for guiding
prevention efforts in environmentally suitable but not
yet invaded areas (e.g. large areas of Galicia), thereby
providing guidance to efforts directed at surveillance,
rapid response and mitigation that are needed to manage
transboundary invasions (Hulme 2015). The multiscale
nature of our framework means that it may be
applied in a workflow where major environmental
effects are first identified at a regional scale, and then
smaller areas of particular concern (i.e. local scale)
are modelled to identify detailed areas and predictors,
thus providing insights to inform more directed con-
trol efforts (Vicente et al. 2010).

Implications for managing plant invasion in a
transboundary context — Hakea sericea in the Iberian
Peninsula as an illustration

Invasive species management, including prevention and/
or control plans, can only be effective if the entire po-
tential distribution of the species in the invaded region
is considered (Wilson et al. 2007). In many cases this de-
mands a transboundary approach, when the potential
distribution of an invasive species covers two or more
neighbouring countries or federal regions, a situation
common in many ecological settings (Dallimer and
Strange 2015). With this transboundary focus, our work
responds to recent calls for the consideration of unaided
invasion pathways in the study of invasion (Hulme
2015). This is illustrated in our study by the potential
distribution of H. sericea, which includes Portugal,
where the species is already widespread and considered
an aggressive invader, but also Spain, where it is only
considered a species with invasive potential. While, to
our knowledge, there is only a single reported occur-
rence of the species in Spain (Pulgar Saiiudo 2006), the
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spatial projection of our models indicates a considerably
larger potential distribution, highlighting the need for
investing in surveillance as well as in collaborative preven-
tion and management between the two countries. This is
in agreement with the demands of recent European legis-
lation on invasive species (European Parliament and
Council of the European Union 2014), demonstrating how
modelling frameworks such as ours can offer valuable
input for policy and management decisions.

The results obtained regarding the invasion by H. seri-
cea in our study area demonstrate the kind of insights a
modelling approach such as ours can offer for the trans-
boundary management of an invasive species. Alien spe-
cies with their native range in areas with mild climates,
as is the case of H. sericea (Barker et al. 1999), are often
limited in newly invaded areas by their frost sensitivity,
and for that reason are absent at high elevations (Vicente
et al. 2010). Under climate change scenarios, this con-
straint is expected to be relaxed in the future (Walther
2002) which means that these areas may become more
susceptible to invasion. At the same time, the importance
of landscape composition predictors, at both regional and
local scales, suggests that future shifts in land use could
further drive expansion (or contraction) of H. sericea’s
range in mountainous areas, where some of the most im-
portant protected areas in the region occur.

Previous field observations by the authors in Portugal
suggest that the species has a preference for areas with
schistose bedrock, an observation corroborated by the
results presented here. The ability to produce proteoid
roots means that H. sericea is well adapted to
phosphorus-poor soils (Sousa et al. 2007). This may have
contributed to its ability to invade by outcompeting
native vegetation in areas where phosphorus availability
is a key limiting factor, such as those derived from some
schists, arenites and large floodplain deposits (Salminen
et al. 2005). Felsic rocks in northern Portugal, such as
most of the granites, are rich in phosphorus minerals
(Neiva et al. 2000). Soils that evolved from these rocks
are often juvenile soils or, in some cases, they are still in
an early stage of development, mainly in higher areas,
where weathering mantles are common. The phosphorus
minerals from this rocks, mainly apatite, under wet con-
ditions and under low pH values (typical in granite
weathering mantles), release phosphorus by slowly
weathering of several phosphorus minerals (such as
fluoroapatite), in a well know geochemical alteration
process (Bernasconi et al. 2011). Therefore, it is expected
that these areas have higher concentrations of phosphor-
ous than lower areas dominated by schistose bedrocks,
where soils are often thicker, older and more rich in
organic matter. According to the theory of soil develop-
ment, total soil P and available amounts of mineral P
tend to decrease with time (Walker and Syers 1976;
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Wardle et al. 2004; Menge et al. 2012). For this reason,
areas around granitic rocks tend to be less vulnerable to
H. sericea invasion. The fact that several endemic plants
of conservation concern, such as the Dipsacaceae Suc-
cisa pinnatifida Lange, have a similar preference for
areas with schistose bedrock and open scrub vegetation
further highlights the need for effective management of
H. sericea.

While the ranking of predictor importance for the
local scale area did not indicate fire as being one of the
most important predictors, previous studies have shown
an important relationship between Hakea sericea and
fire, as this species has been observed to cause changes
in fire-related variables in some environments (van
Wilgen and Richardson 1985), and is at the same time a
fire-adapted serotinous species (Groom and Lamont
1997; Brown and Whelan 1999) that releases a large
number of seeds after fires. These are mainly dispersed
over short distances (Le Maitre et al. 2008), suggesting
that fire may be more important in driving local invasion
dynamics in the invasive range. The current local inva-
sion of H. sericea in Spain is thought to have been trig-
gered by a major fire (Pulgar Safiudo 2006). Exposure to
intense natural fires (following a period of fire exclu-
sion) was shown to trigger the invasion of an
ecologically-similar serotinous shrub in the Proteaceae
family (Banksia ericifolia) in South African fynbos
(Geerts et al. 2013). The low importance of fire in
our models is therefore puzzling, and may be attributable
to the particular variable that was used in the model to in-
dicate fire (see discussion in the section on “Predictor
selection” above). More work is needed to elaborate the
role of fire as a driver of H. sericea invasions at different
spatial scales in the Iberian Peninsula.

Conclusions

By identifying the potential distribution and its main de-
terminant factors for a given invader, even based on
scarce occurrence data, the framework presented here
provides the foundation for prioritizing the early man-
agement of invasions over large regions. In fact, it allows
using the data from a heavily invaded country to predict
potential risk areas in a neighbouring country with little
or no invasion, provided that model transferability prin-
ciples are observed (Elith and Leathwick 2009). It is then
possible to use the second step of the framework to
zoom in areas of particular risk or ecological interest.
This may be combined with additional knowledge about
the biology of the target species to direct specific man-
agement interventions. For example, for H. sericea spe-
cial attention should be given to wildfire occurrence and
post-fire invasion dynamics in schistose areas, with man-
agement targeted at preventing ecological regime shifts
(Gaertner et al. 2014).
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Appendix 1

Table 3 Predictors classified into each environmental set, their format and sources for each scale

Class Predictor  Regional scale Local scale
Format Source Format Source
Climate MinTemp  Raster (1 km? pixel) http://www.worldclim.org Raster (1 km? pixel) http://www.worldclim.org
TempRan
AnnPrec
PrecSea
Landscape  pUrbanA  Raster CORINE Land Cover Map (2006)  Vector (Polygon) COS 2007
composition pAgrico http://www.dgterritorio.pt/
e e
pShrubs carta_de_ocupacao_do_solo__cos_/
cos__2007
Landscape  NumPatc Raster CORINE Land Cover Map (2006)  Vector (Polygon) COS 2007
structure mShalnd http://www.dgterritorio.pt/cartografia_
mPerAreR e_geodesia/cartografia/cos/cos__2007/
shDilnd
Lithology IgnRock ~ Raster (2500 m? pixel) OneGeology Europe http://www. Raster (2500 m? pixel) OneGeology Europe http://www.onege
MetRock onegeology-europe.org/home ology-europe.org/home
DetSedD
lithSDI
Fire pMaxBurn Vector (polygon) ICNF http://www.icnf.pt/portal/florestas/
dfci/inc/info-geo
Appendix 2

Table 4 Predictors used in each of the models calibrated for multimodel inference (MMI) to evaluate the relative importance of
each set of predictors in determining the distribution of Hakea sericea

MinTemp
TempRan
AnnPrec
PrecSea
pUrbanA
pAgrico
pArtFor
pShrubs
NumPatc
mShaind
mPeAreR
shDilnd
IgnRock
MetRock
DetSEdD
lithSDI
Random
predictor

M1. Climate

M2.
Landscape
composition

M3.
Landscape
structure

M4. Lithology

M5. Null Model

Predictors (see detailed information in Table 1 and Annex Il) are represented in the columns, and models in the rows. The first four models (M1, M2, M3, and M4)
reflect each set of environmental predictors, and the last (M5 Null Model) corresponds to a random model used for comparison purposes
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http://www.worldclim.org
http://www.dgterritorio.pt/cartografia_e_geodesia/cartografia/cartografia_tematica/carta_de_ocupacao_do_solo__cos_/cos__2007
http://www.dgterritorio.pt/cartografia_e_geodesia/cartografia/cartografia_tematica/carta_de_ocupacao_do_solo__cos_/cos__2007
http://www.dgterritorio.pt/cartografia_e_geodesia/cartografia/cartografia_tematica/carta_de_ocupacao_do_solo__cos_/cos__2007
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http://www.onegeology-europe.org/home
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http://www.onegeology-europe.org/home
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Table 5 Results of Multimodel Inference for the Regional and Local study areas, detailing number of model parameters (k), Akaike
weights (wy), the AlCc differences (Ai), and Nagelkerke's R squared (R?)

Regional-scale area

Local-scale area

k w, A R w; Ai R?
M1 - Climate 10 0.820 1.241 0.548 0.278 1.908 0.346
M2 - Landscape composition 10 0.174 14329 0444 0.722 0 0.361
M3 - Landscape structure 10 0.005 33.719 0.264 1.04E-07 31.510 0.117
M4 — Lithology 10 0.001 41544 0.181 541E-06 23.603 0.178
M5 = Null model 4 1.91E-06 47461 0.008 8.25E-09 41.159 0.021
Additional file Barker RM, Haegi L, Barker WR (1999) Hakea sericea. Flora of Australia Online,
http://www.environment.gov.au/biodiversity/abrs/online-resources/flora.
[ Additional file 1: Ensemble modeling. (DOCX 16 kb) | Accessed 29 Aug 2014
ftiona’ file 1: tnsemble modeting. Bernasconi SM, Bauder A, Bourdon B, Brunner |, Biinemann E, Christl |, Derungs N,
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