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On the potential to predetermine dominant
tree species based on sparse-density
airborne laser scanning data for improving
subsequent predictions of species-specific
timber volumes
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Abstract

Background: Tree species recognition is the main bottleneck in remote sensing based inventories aiming to
produce an input for species-specific growth and yield models. We hypothesized that a stratification of the target
data according to the dominant species could improve the subsequent predictions of species-specific attributes in
particular in study areas strongly dominated by certain species.

Methods: We tested this hypothesis and an operational potential to improve the predictions of timber volumes,
stratified to Scots pine, Norway spruce and deciduous trees, in a conifer forest dominated by the pine species.
We derived predictor features from airborne laser scanning (ALS) data and used Most Similar Neighbor (MSN) and
Seemingly Unrelated Regression (SUR) as examples of non-parametric and parametric prediction methods, respectively.

Results: The relationships between the ALS features and the volumes of the aforementioned species were
considerably different depending on the dominant species. Incorporating the observed dominant species inthe
predictions improved the root mean squared errors by 13.3–16.4 % and 12.6–28.9 % based on MSN and SUR,
respectively, depending on the species. Predicting the dominant species based on a linear discriminant analysis had an
overall accuracy of only 76 % at best, which degraded the accuracies of the predicted volumes. Consequently, the
predictions that did not consider the dominant species were more accurate than those refined with the predicted
species. The MSN method gave slightly better results than models fitted with SUR.

Conclusions: According to our results, incorporating information on the dominant species has a clear potential to
improve the subsequent predictions of species-specific forest attributes. Determining the dominant species based
solely on ALS data is deemed challenging, but important in particular in areas where the species composition is
otherwise seemingly homogeneous except being dominated by certain species.
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Background
Forest ecosystem modelling requires inventory estimates,
which are traditionally acquired using stand-level (com-
partmentwise) forest inventories based on field assess-
ments or visual interpretation of aerial images (e.g. Eid
et al. 2004; Koivuniemi and Korhonen 2006; Ståhl et al.
2011). Due to species-specific growth and yield model-
ing, the inventories are required to provide species-
specific predictions (e.g. Maltamo et al. 2011). The
conventional inventories to provide stand-level estimates
are currently being replaced in Scandinavia, in particular,
by discrete-return Light Detection and Ranging (LiDAR)
data recorded by small-footprint airborne laser scanning
(ALS; for an overview, see Maltamo et al. 2014) incorpo-
rated with spectral data from aerial (Packalén and Mal-
tamo 2006, 2007, 2008) or satellite images (Wallerman
and Holmgren 2007) for species recognition. Extracting
species information has also been tested in North Amer-
ica (Hudak et al. 2008; van Ewijk et al. 2014) and Central
Europe (Latifi et al. 2010; Heinzel and Koch 2012; Tor-
abzadeh et al. 2014), and a detailed review on the topic
can be found from Vauhkonen et al. (2014a).
High species recognition accuracy is crucial for forest

management planning systems that involve different
treatment schedules depending on species and also im-
portant towards accurate growth and yield estimates.
According to the simulations Korpela and Tokola (2006)
carried out in forest conditions closely corresponding to
our study area, predictions of the total stand volume
based on tree-level, species-specific allometric depend-
encies had Root Mean Squared Errors (RMSEs) of 30 %
and about 15 %, when the species of the individual
trees were recognized at accuracies of 75 % and 80–
90 %, respectively, and the other measurements were
error-free. A similar result is reported by Tompalski
et al. (2014) in Canada, who nevertheless found pre-
dictions based on species-specific equations more ac-
curate than generic ones.
Using ALS data, high species recognition rates are

generally based on detecting individual trees (e.g.,
Holmgren and Persson 2004; Kim et al. 2009; Ørka et al.
2009; Suratno et al. 2009), which requires acquiring data
in a higher density than what is currently feasible from
an operational viewpoint (e.g., Maltamo and Packalen
2014; Næsset 2014). However, several studies have re-
ported successful predictions of the total (Woods et
al. 2011; Nord-Larsen and Schumacher 2012; Villikka et
al. 2012) and even species-specific forest attributes (Vauh-
konen et al. 2012; Ørka et al. 2013) based on ALS data
with pulse densities < 1 m−2 and other scanning parame-
ters not permitting individual tree detection.
The ALS inventories employing the sparse-density

data are most often implemented using so-called area-
based approaches (Næsset 2002), in which (i) models to

predict the forest attributes of interest for the individual
areas-of-interest (AOIs) are fit based on a set of training
field plots; and (ii) the resulting models are applied to all
the AOIs of the entire inventory area to produce wall-
to-wall predictions. Operational implementations are
elaborated by White et al. (2013), Maltamo and Packalen
(2014), and Næsset (2014). In particular the modeling of
a multivariate response such as the species-specific attri-
butes is generally built upon non-parametric nearest
neighbor (NN) approaches, in which the predictions of
the considered forest attributes are simultaneously ob-
tained as (weighted) averages of the k most similar refer-
ence observations in terms of the considered distance
metric applied in the predictor space.
NN predictions require a considerably large database

of the reference observations (see Maltamo et al. 2009a),
although some studies have indicated that accurate
species-specific forest attribute estimates may be pro-
vided with a limited number of plots (Kotamaa et al.
2010; Villikka et al. 2012; Pippuri et al. 2013). Further,
an adequately representative reference data with respect
to the species and size distribution of the area may be
difficult to obtain using systematic sampling designs
(Maltamo et al. 2009b). The predictions could be im-
proved by a complementary inventory according to the
deficiencies of the initial estimation, as demonstrated by
Vauhkonen et al. (2012) complementing the data of Mal-
tamo et al. (2009b).
Due to the practical difficulties to obtain adequately

extensive and representative field reference data for the
NN predictions, parametric models such as those con-
structed by Seemingly Unrelated Regression (SUR) ap-
proaches could be seen as alternative methods (e.g.,
Lindberg et al. 2010; see also Maltamo et al. 2009c,
2012). Even if fitted with similarly limited data, the abil-
ity to linearly interpolate in between the observations
could be a practical benefit compared to the NN predic-
tions, which are, to some degree, always based on the
discrete data points. Beside ALS studies, the SUR and
other methods for fitting regression models based on
systems of equations are presented by Siipilehto et al.
(2007).
From a practical point of view, it is well-reasoned to

seek alternative implementations for ALS inventories
relying on the availability of both the ALS and image
data. Even though aerial images are usually available for
the purpose of visual forest stand delineation, using
them as additional data complicates the inventory sys-
tem due to the required co-registrations and calibrations
of the radiometric differences of multiple images. Plot-
level species-specific predictions based solely on ALS
data have also been tested (Ørka et al. 2013; Vauhkonen
et al. 2012, 2014b). The predictions related to the dom-
inant species in particular have been accurate based on
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ALS data (Ørka et al. 2013), but the availability of the
spectral data has generally improved the predictions
(Vauhkonen et al. 2012; Ørka et al. 2013).
Even if the main tree species were estimated correctly,

large errors may be related to the predictions of other
forest attributes, especially those of the non-dominant
tree species (e.g., Maltamo et al. 2009b). For example,
Packalén et al. (2009) proposed excluding species repre-
senting <10 % of the total volume from the accuracy
measures due to the insignificance of such species in the
compartmentwise inventory. Yet, even such “near to
zero” predictions may distort species proportions and
cause further problems in inventory areas with an un-
balanced species distribution such as strongly pine-
dominated areas typical to the boreal region (e.g.,
Maltamo et al. 2009b; Vauhkonen et al. 2012, 2014b).
However, whether known beforehand that a subject
stand was dominated by certain species with a pro-
portion of, say, >75 % or >95 %, the maximum error
level expected for the predictions of the minor spe-
cies could be confined. Based on this reasoning and
the encouraging results of successfully predicting the
dominant species based on ALS data alone (Ørka et
al. 2013; Vauhkonen et al. 2014b) and improving the
results of NN methods by pre-classifying the inven-
tory area (Maltamo et al. 2015), a test of using dom-
inant species information for the species-specific
predictions was motivated.
The purpose of the study is thus to predict dominant

species and species-specific timber volumes in a strongly
pine-dominated test area. Predictions of the dominant
species based on ALS features are evaluated. Prediction
models based on NN and SUR are formulated and com-
pared with respect to accounting for the a priori infor-
mation on the dominant species.

Methods
Study area and field data
The data studied were originally collected for crown
base height assessments (Korhonen 2012). Two test
areas within a geographical distance of 30 km were
established in Kuhmo, northeastern Finland. The area is
very homogenous and strongly dominated by Scots pine
(Pinus sylvestris L.) trees. The other species to be distin-
guished are Norway spruce (Picea abies [L.] H. Karst.)
and a group of deciduous trees consisting of mainly
birches (Betula spp. L.) and aspen (Populus tremula L.),
which form minor proportions and typically occur below
the dominant canopy. Altogether 265 field sample plots
with co-located ALS and field data were studied.
Circular sample plots with radii of 9 m were used in

the field data collection. Every tree with a diameter at
breast height (Dbh) >5 cm was measured for the Dbh and
crown base height (CBH). Trees with a Dbh corresponding

to the basal area-weighted median tree of each species oc-
curring on a plot were determined in the field and mea-
sured for tree height. The Dbh and height of these trees
were used as the median tree diameter and height (DgM

and HgM, respectively) of the corresponding species per
plot, and the maxima of the values were used as the DgM

and HgM of the entire plot. Plot basal area (G) was calcu-
lated by summing from the tree-level basal areas, deter-
mined as π

4D
2
bh. The missing tree heights were predicted by

calibrating the prediction models for the parameters of
Näslund’s (1936) height curve presented by Siipilehto
(1999) using the species-specific DgM and HgM estimates.
The volumes of the individual trees were predicted by
models of Laasasenaho (1982), employing the Dbh, height,
and tree species as predictors. The models for birch were
used for all deciduous trees. Central characteristics of the
field measurements aggregated for the field plots are
shown in Table 1.

ALS data and the extracted features
ALS data
The ALS data were acquired on September 4–7,
2011, under a leaf-on period of the deciduous vegeta-
tion. Leica ALS50-II scanner was operated from an
altitude of 2000 m using a field-of-view of 30°, a
scanning rate of 52 Hz, and a pulse frequency of
58.9 Hz. These scanning parameters resulted in a
nominal measurement density of 0.52 observations m−2.
The analyses were focused only on the first echoes
(i.e., “only” and “first of many” echoes per pulse),
aiming to obtain the main information from the data,
while retaining most generalization abilities over sen-
sors that record a different number of echo categories
(e.g., Næsset 2014). The ALS data were acquired, pre-
processed and co-located with the field data as a part
of an operational data acquisition campaign by Arbo-
naut, Ltd., and the accuracies and error sources of
this process are expected to correspond with those
reported in the literature (see, e.g., Maltamo and
Packalen 2014; Næsset 2014).
The predictor features extracted for the study (Table 2)

were selected based on the earlier studies (e.g., Vauhkonen
et al. 2014b). However, since a prediction of the CBH of a
tree has been found a useful indicator of its species based
on tree-level studies (Holmgren and Persson 2004;
Holmgren et al. 2008) and we had rich field data for exam-
ining the accuracies of these predictions, we focused a
particular attention on examining whether the field meas-
urement or an area-based estimate of the CBH could dis-
tinguish plots dominated by various species. The CBH
was predicted by extracting connected alpha shape com-
ponents from the lowest parts of the point cloud accord-
ing to the method of Maltamo et al. (2010), which is a
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variant of a tree-level method described by Vauhkonen
(2010).
The other ALS features considered were the mean and

standard deviation of the intensity values and the pro-
portion of the different echoes (Vauhkonen et al. 2014b).
Following Ørka et al. (2012) and Vauhkonen et al.
(2014b), the intensity features were calculated separately
based on all, only, or first-of-many echoes. The most
common ALS-based predictor variables (Magnussen and
Boudewyn 1998; Næsset 2002), i.e., the maximum, the
mean and standard deviation of the height values; pro-
portion of echoes above 2 m vegetation threshold; the
5th, 10th, 20th, …, 90th, and 95th percentiles and the
corresponding proportional densities of the ALS-based
canopy height distribution were calculated according to
Korhonen et al. (2008, p. 502–503). The ALS features
are listed in Table 2.

Predicting the dominant species using ALS
The species proportions were determined as the per-
centages of each species from the total plot basal area

(G). The dominant species were subsequently deter-
mined based on these proportions. Several alternatives
to determine the exact percentage values for the domin-
ant species were tested (Table 2) to analyze whether pre-
dicting this information was feasible using ALS. First,
the species with the highest percentage were set as the
dominant species of the plot, yielding three dominant
species classes (pine, spruce, and birch dominated). Sec-
ond, the dominant species were determined using a
threshold of 75 %: whether a species had a proportion
higher or equal to this level, it was set as the dominant
species of the plot. Whether no species reached this
threshold, the plot was labeled as ‘mixed’, i.e. this classifi-
cation yielded the dominant species classes of pine,
spruce, birch, and mixed. Finally, since the area was
known to be strongly dominated by the pine species, it
was tested whether information on pure pine plots im-
proved the results. Such plots were selected using a
threshold of 95 % and tested along the aforementioned
alternatives. The definition alternatives for the dominant
species are listed in Table 3.

Table 1 Species-specific volume characteristics of the 265 sample plots. Min: minimum, Max: maximum, Sd: standard deviation

Attribute Population Mean Min Max Sd

Volume (m3 ha−1) Total 131.5 6.3 434.9 85.3

Scots pine 87.2 0.0 295.6 66.4

Norway spruce 28.6 0.0 401.6 53.7

Deciduous trees 15.8 0.0 178.1 24.3

Basal area (m2 ha−1) Total 17.5 0.1 45.8 9.1

Scots pine 11.1 0.0 38.1 7.6

Norway spruce 4.0 0.0 39.5 6.6

Deciduous trees 2.4 0.0 18.7 3.2

Basal-area weighted mean diameter (cm) Scots pine 18.4 0.0 42.3 9.3

Norway spruce 9.8 0.0 38.0 8.6

Deciduous trees 4.0 0.0 51.4 6.9

Basal-area weighted mean height (m) Scots pine 13.6 0.0 28.3 6.3

Norway spruce 7.7 0.0 26.3 6.6

Deciduous trees 3.7 0.0 28.7 5.9

Table 2 The response and predictor variables and the principles of relating these. The modelling principles (MSN: Most Similar
Neighbor, SUR: Seemingly Unrelated Regression) are detailed in Section 2.4

Modelling principle

Response variables Predictor variables1 MSN SUR

- Total plot volume
- Species-specific
volumes

- ALS-based CBH estimate
- Maximum, mean, standard
deviation and proportion
- Percentiles 5, 10, 20, …, 90, 95
- Densities 5, 10, 20, …, 90, 95
- Mean and standard deviation
of intensity values2

NN search based on canonical correlation
analysis between all response and predictor
variables. The dominant species are included
as restrictions to the NN search.

System of linear regression equations
based on 1–2 ALS features and a
categorical predictor indicating the
dominant species on the plot.

1Computed using height values > 2 m ground threshold
2 Computed separately based on only, first-of-many and both the return types
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The scatter plots of the ALS-based predictors were
first assessed with respect to their abilities to discrimin-
ate between species and invariance with respect to tree
size, quantified in terms of the DgM and HgM characteris-
tics. A linear discriminant analysis (LDA) implemented
in the MASS package (Venables and Ripley 2002) of R
(R Core Team 2013) was used to classify the data by tree
species. The principle of LDA is to form linear combina-
tions which maximize the ratio of the between-class to
within-class variance based on the data of the original
feature vectors (see, e.g. Venables and Ripley 2002). LDA
was run with a leave-one-out cross validation, in which
the priors were adjusted to give an equal probability for
each species. The predictors used were selected manu-
ally according to the graphical assessments. First, the
discriminant functions were fitted with one predictor
variable at the time. The variables resulting to best ac-
curacies were added with a second variable and the ac-
curacies of these combinations were further ordered.
The procedure was repeated until the number of predic-
tors was 4, which was considered as an adequate upper
limit given the number of classes considered.

Modelling the species-specific volumes
Prior to the modeling, the predictors based on the ALS
data were evaluated with respect to their relationships
with the species-specific volumes in a similar way than
described in the previous section. Two modeling strat-
egies, namely a non-parametric nearest neighbor and a
parametric regression based approach, were tested for
obtaining the prediction models. The methods are de-
scribed in the sub-sections below and their main differ-
ences are presented by Table 2.

k-Most Similar Neighbor (k-MSN)
In the NN approach, the predictions of the forest attri-
butes were based on an average of k-NN observations in
terms of the ALS features. The NNs were determined
according to the Most Similar Neighbor (MSN) distance
metric (Moeur and Stage 1995), in which a canonical
correlation analysis is used to produce a weighting
matrix for selecting the NNs from the training data. The
total and species-specific volumes and all the ALS fea-
tures were employed in the correlation analysis.

The dominant species information (Table 3) was taken
into account in the prediction step. Instead of using the
k-NNs solely based on the predictor feature space, those
NNs which were of a different dominant species than
the target plot were not considered in the predictions. In
practice, up to 1–10 NNs meeting the dominant spe-
cies condition were selected from an initial neighbor-
hood consisting of all the reference plots. The total
and species-specific volumes were predicted simultan-
eously as arithmetic averages of the restricted k-NNs.
The MSN imputation was implemented using the
yaImpute package (Crookston and Finley 2007) of R
(R Core Team 2013).

Seemingly Unrelated Regression (SUR)
Alternatively, the species-specific volumes were pre-
dicted as a simultaneously fitted system of equations
based on the Seemingly Unrelated Regression (SUR)
modeling implemented using the systemfit package
(Henningsen and Hamann 2007) of R (R Core Team
2013). The main idea of SUR (Zellner 1962) is to ac-
count for the interactions between residual structures of
different linear regression equations such that every re-
gression model will be affected (Henningsen and
Hamann 2007). The coefficients of the SUR model were
based on generalized least squares (GLS) estimation. A
presumption for the GLS method is that the matrices
which are constructed from the regression models
should be correlated but unequal (Henningsen and
Hamann 2007).
In the SUR modelling, the dominant tree species

(Table 3) were accounted for by introducing a categor-
ical predictor variable with levels corresponding to the
tree species considered. ALS features were added as fur-
ther predictors of the model based on the coefficient of
determination (R2) values. Individual predictors were
added attempting to maximize the R2. However, a new
predictor was included only if it affected the model sig-
nificantly according to the p-value of a Student’s t-test.

Accuracy assessment
The accuracies of the predictions were assessed separ-
ately at the model fitting and prediction stage. In the lat-
ter, the dominant species predicted according to the

Table 3 The different definitions used for the dominant tree species in this study

Abbreviation Definition for the dominant species Classes1

Spmax Highest species-specific proportion of G per plot. P, S, D

Spmax+95 Highest species-specific proportion of G per plot + separately labeled plots with G≥ 95 % of pine. P95, P, S, D

Sp75 Species-specific proportion of G≥ 75 %; plots with a lower dominant proportion pooled in a separate class. P75, S75, D75, M

Sp75+95 Species-specific proportion of G≥ 75 %; plots with a lower dominant proportion pooled in a separate
class + separately labeled plots with G≥ 95 % of pine.

P95, P75, S75, D75, M

1 Dominated by pine (P), spruce (S), deciduous trees (D), or the aforementioned species with the proportion given in the subscript; or mixed (M)
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Section (Predicting the dominant species using ALS)
were used to replace those observed in the field and
used for model fitting (Section Modelling the species-
specific volumes).
The accuracy of the species classification was assessed

by means of the overall accuracy and kappa (κ) scores.
The overall accuracy gives the number of correctly classi-
fied cases as a proportion of all observations. The κ coeffi-
cient (Eq. 1) can be interpreted as a proportion of chance-
expected disagreements which do not occur (Cohen
1960). In our case it presents how much better an LDA-
classification is compared to the material which is classi-
fied by chance. The κ coefficient was obtained as:

κ ¼ po−pe
1−pe

; ð1Þ

where po is proportion of correctly classified observa-
tions and pe is probability of correct classification by
chance.
The accuracy of the species-specific volume predic-

tions was assessed by means of the root mean squared
error (RMSE, Eq. 2) and mean difference (BIAS, Eq. 3)
between the observed and estimated values,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

p−rð Þ2
n

r
and ð2Þ

BIAS ¼
X

p−rð Þ
n

; ð3Þ

where p is the observed value based on field measure-
ments, r is the predicted value, and n is the number
sample plots. The relative RMSE and bias were calcu-
lated by dividing the absolute RMSE and bias values by
the mean value of the reference attribute.

Results
In this section, we first present the results of explanatory
analyses on the relationships between the ALS features
and species-specific attributes (the Section of relation-
ships between ALS features and species-specific attri-
butes) and the development of the SUR models based on
these analyses together with the performance of the SUR
and k-MSN predictions using the field-observed domin-
ant species (the Section of models for species-specific
volumes). The results of predicting the dominant species
and the prediction accuracies when combining this in-
formation with the models developed with the field data
(the Section of models for species-specific volumes) are
presented in the Sections of Classification of the domin-
ant species and Prediction accuracies, respectively.

Relationships between ALS features and species-specific
attributes
The CBH predicted by ALS had RMSEs of 1.58 and
1.47 m and biases of −0.93 and 0.07 m, when evaluated
against the arithmetic and basal-area weighted means of
the field measurements, respectively. These accuracies
suggest that the area-based prediction of the CBH is
a reliable estimate of this measure particularly with
respect to the largest trees. The results are on the
same accuracy level as in the earlier studies (see
Maltamo et al. 2012).
The CBH was however not an appropriate indicator of

the tree species proportion (Fig. 1). Instead, other ALS
features produced a better discrimination between the
dominant species considered. For example, the features
based on the proportions and intensities of the different
echoes (Fig. 1) indicated a difference in the leveling be-
tween pine and spruce dominated plots. This difference
was also invariant to the size according to the DgM

measure. For deciduous dominated plots it was difficult
to find ALS features which could separate them from
the other species groups.
The height and density metrics had a quasi-linear rela-

tionship between the total and main species volumes, as
illustrated in Fig. 2 using a product of a height percentile
and the ratio of echoes reflected above ground to all
echoes, i.e. the canopy cover. However, the volumes of
the other-than-dominant species were not favorably re-
lated to these metrics (Fig. 2). Because the proportions
of the minor species and the related ALS metrics consid-
erably vary depending on the main species (Fig. 2), in-
corporating this information in the species-specific
prediction appears strongly justified.

Models for species-specific volumes
To analyze the goodness-of-fit of the species-specific
volume models, the predictor variables were inserted
systematically based on the earlier analyses (e.g., Fig. 2).
Although the final composition of the predictor variables
slightly varied depending on the species, the ratio of the
echoes reflected above ground to all echoes combined
with a height percentile were the most frequent predictors
included in the models. This is reasonable, since their
product (density × height) forms an approximation of the
growing stock volume. However, for sample plots domi-
nated by the deciduous trees, other variables performed
better as predictors.
The SUR models were typically composed of two ALS

features and a group of dummy variables for the domin-
ant species (Tables 4 and 5). In the latter groups, one of
the coefficients using the Spmax+95 (Table 4) or 1–3 coef-
ficients per model using the Sp75+95 strategy (Table 5)
were not significant according to the t-tests for the
model coefficients. The models presented in Tables 4
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and 5 were fitted using the plots dominated by pine as
the reference level, i.e. applying the models without the
species-specific coefficients predicts the species-specific
volumes of a pine-dominated plot. Similar to the results
obtained previously in this study, the combination of the
predictor features differed depending on the dominant
species in question. The plots dominated by other than

pine species in particular affected the total volume and
species-specific volumes of spruce and deciduous trees
in these data. According to the statistical significance of
the t-test on including the respective coefficient in the
models (Tables 3 and 4), separating the plots with G ≥
95 % of pine significantly affected the model predictions
based on Spmax+95 (Table 4), whereas this information

Fig. 1 Species-specific differences in selected ALS features, when the field-measured DgM is used in the x-axes to assess the invariance of the
features to the size. CBH: crown base height, H90: the 90th height percentile, Prop_first: the proportion of the first-of-many returns to all returns
above 2 m vegetation threshold, Imean_all: mean intensity value of all returns above the vegetation threshold. Plots dominated by Scots pine,
Norway spruce and deciduous trees are illustrated using circles, squares and triangles, respectively, and open or solid symbols refer to a proportion of
either ≥50 % or ≥75 % of the dominant species
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was insignificant using the Sp75+95 strategy to stratify the
species (Table 5).
The performance of the SUR models and the MSN im-

putation in the training data are compared in Table 6.
Further, Figs. 3 and 4 show the predicted versus ob-
served values of the total and species-specific volumes
based on the SUR and MSN predictions, respectively.
The MSN predictions were generally more accurate than
those obtained by SUR except when including the dom-
inant species information from the deciduous dominated

plots. However, the comparison is based on the MSN
applied with k = 5, which produced the most accurate
predictions with this method.
Using both the methods, the predictions regarding the

total volume and the volume of pine on pine-dominant
plots were well in line with the observed values (Figs. 3
and 4). However, the predictions of the minor species
had lower accuracies with both the methods. Due to the
coefficient structure of the SUR model (Table 4), the
predictions could not show values between 50 and

Fig. 2 Relationships between the species-specific volumes and the ratio of echoes above the 2 m vegetation threshold to all echoes (Vegeratio)
× the 30th height percentile (H30). For the interpretation of the symbols used, see Fig. 1
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100 m3∙ha−1 of the spruce volume (Fig. 3). The predic-
tions also saturated at certain values (150 m3∙ha−1 for
spruce), whereas the true observed volumes were
considerably higher (e.g. 400 m3∙ha−1 for spruce).
Also the predictions using k-MSN were more in-
accurate for the groups of spruce and deciduous
plots than for total and pine plots (Fig. 4), but con-
siderably more in line with the observed values com-
pared to the SUR models.
The inclusion of the main species improved both the

prediction types considerably. Using Spmax+95 as the in-
formation on the dominant species, the RMSEs of the
pine, spruce, deciduous, and total volumes improved by

28.9, 25.4, 12.6, and 1.9 %, respectively, using SUR,
whereas the corresponding species-specific figures for k-
MSN were 16.4, 13.3, and 13.6 %, respectively. However,
using the k-MSN method with the species restriction de-
graded the accuracy of the total volume by 2.4 %. In the
case of k-MSN, the species-specific improvement was
particularly due to removing close-to-zero observations
from the plots dominated by certain species employing
the dominant species restriction for the neighborhood.
This restriction however reduced the number of poten-
tial nearest neighbors for some plots and therefore had a
degrading effect on certain accuracy levels.

Classification of the dominant species
The accuracies to predict the dominant species (Table 3)
using LDA are summarized in Table 7 and the full con-
fusion matrices of the classifications are presented as
Appendix I. The species stratification with only three
classes (Spmax) was most simple to predict and these
predictions also yielded the highest overall accuracies of
73.6 and 76.2 % and kappa coefficients 0.40 and 0.48
using 3 and 4 predictors, respectively. When the plots
were classified according to the ≥75 % species propor-
tion, the most problematic case was the ‘mixed’ class in-
cluding plots of lower dominance of the various species.

Table 4 The SUR model for the plot volume based on the
Spmax+95 strategy to stratify the dominant species1

Predictora Vtotal Vpine Vspruce Vdeciduous

Intercept −83.1778 *** −72.1165 *** −11.8327 −11.8591 *

Species

P95 −17.0412 * 12.47493 * −13.6919 ** −14.5252 ***

S 21.61634 * −89.1431 *** 99.7402 *** 7.486791 *

D −41.1525 ** −87.2537 *** −0.87776 44.85359 ***

ALS

Vegeratio 167.1603 *** 113.0326 *** 54.32393 *** –

H30 12.73679 *** – – –

H40 – 10.46561 *** – –

H95 – – −0.1767 –

Hmean – – – 2.173142 ***

Imean, first – – – 0.175805 .
1 Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’
aSpecies: pine with G ≥ 95 % (P95), spruce (S) or deciduous trees (D). The I, D,
and H refer to intensity, density, and height metrics; Vegeratio is the ratio of
echoes above 2 m height to all echoes; and Prop_first is the proportion of first
echoes to all echoes. The subscript indicates which descriptive statistic or
percentile value was used and whether it was applied to a proportion of the
echoes (sd = standard deviation, first = first-of-many echoes)

Table 5 The SUR model for the plot volume based on the Sp75+95 strategy to stratify the dominant species. For the abbreviations
used, please refer to Table 4

Predictor Vtotal Vpine Vspruce Vdeciduous

Intercept −99.86995 *** −63.060416 *** −32.585827 ** −15.382497 **

Species

P95 −12.04051 0.247694 −3.370746 −8.13935 **

S 30.36624 * −108.00624 *** 129.469296 *** 5.270839

D −14.26998 −117.48788 *** −0.555964 100.272105 ***

M 9.99804 −42.385164 *** 35.570611 *** 15.234861 ***

ALS

Vegeratio 147.73339 *** 87.519629 *** 56.8353 *** –

H30 15.05592 *** 13.061476 *** – –

Hsd – – 2.170459 * –

Hmean – – – 1.632179 ***

Isd, first – – – 0.413249 *

Table 6 RMSEs (m3 ha−1) of the MSN/SUR predictions with
different strategies to stratify the main species when evaluated
in the training data. With the MSN method, k = 5 was applied

Tree species
Dominant species information

– Spmax+95 Sp75+95

Pine 42.6/52.9 35.6/37.6 39.0/41.9

Spruce 36.0/47.6 31.2/35.5 33.2/39.3

Deciduous trees 21.3/21.5 18.9/18.8 18.4/17.1

Total 50.2/53.5 51.4/52.5 52.2/52.2
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Without this class, i.e. using the plots that had a domin-
ant species with ≥ 75 % proportion (n = 158), the overall
accuracy and the kappa of the classifier were 87.3 % and
0.56, respectively, using 3 predictors.
The inclusion of the pine plots with ≥ 95 % species

proportion also complicated the classification and low-
ered the success rates. Instead of increasing the number
of classes in LDA, however, it was found equally accur-
ate to distinguish the plots with ≥ 95 % species

proportion separately based on thresholding of the pre-
dictor variables and adding the result manually to the
LDA solution. Selecting the plots with ≥ 95 % species
proportion manually was implemented and tested using
the classification of Spmax and Sp75 provided by LDA. In
both cases, selecting the plots which had a standard de-
viation of the intensity values of all pulses < 30, a propor-
tion of first pulses < 0.6 and a density in the 10th height
percentile < 0.2 increased the overall accuracy by 4–6 %

Fig. 3 Predicted vs. observed species-specific volumes in the training data based on the SUR model structured in Table 4. For the interpretation
of the symbols used, see Fig. 1
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compared to including a class with the plots with ≥ 95 %
species proportion in the LDA. Applying these rules
mainly resulted in confusion between plots with less
pine, but of pine-dominance anyhow. The result could
be related to the priors applied with LDA, which should
however yield balanced predictors of each class consid-
ered. For these reasons, the manually composed classifi-
cation of Spmax+95 and Sp75+95 is presented in Table 7
and used later in this study.

Prediction accuracies
To obtain indications of accuracies obtainable in a prac-
tical prediction, the dominant species predicted by LDA
were combined with the fits of MSN and SUR. The
dominant species predictions which included 24–59 %
of errors (Table 7) degraded the accuracies obtained
earlier (Fig. 5). The k-MSN method provided more ac-
curate results than the SUR models. Nevertheless, when
the dominant species had to be predicted with the

Fig. 4 Predicted vs. observed species-specific volumes in the training data based on the k-MSN imputation using k = 5 and a neighborhood
restricted by Spmax+95 (Table 3). For the interpretation of the symbols used, see Fig. 1
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aforementioned error levels, the predictions that did not
consider the dominant species were generally clearly
more accurate than those refined with the predicted
species.
The most accurate results based on SUR were ob-

tained using the model structured in Table 4 and a LDA
model with four explanatory variables to predict Spmax

and Spmax+95 (Table 8). Considering the RMSEs of the
total volumes there were no considerable differences
whether the dominant species was either predicted or
observed (cf. Table 6, Table 8). However, the RMSE
values of spruce were in particular considerably poorer
and the predictions of pine plots in particular were
biased (Table 8).
The most accurate k-MSN predictions for the species-

specific volumes were obtained using four explanatory
variables to predict Spmax+95 (Table 9). Compared to the
k-MSN predictions using the field-observed dominant
tree information, predicting the dominant tree species
degraded the RMSEs 25, 13, 15 and 0.1 % for pine,
spruce, deciduous and total volumes, respectively. The
definition of the dominant species had generally less im-
portance in the k-MSN predictions than those based on
the SUR models.

Discussion
The obtained results supported the initial hypothesis on
the importance of being able to stratify the target plots ac-
cording to the dominant species. The ALS features were
found to be considerably different relative to the volumes
of the aforementioned species. The proportion of the
minor species in the data in particular varied according to
the dominant species, which is realistic with respect to the
composition of certain species according to site types, for
example. Incorporating the observed dominant species in
the MSN and SUR predictions showed potential to im-
prove the accuracies by 13.3–16.4 % and 12.6–28.9 %, re-
spectively, depending on the species.
The proposition to stratify the study area per species

or to use the dominant species information overall is not

unique to this study. Earlier, Maltamo et al. (2015) strati-
fied the reference data of a species-specific prediction
based on k-NN according to canopy height and spectral
data acquired by ALS and aerial photography, respect-
ively, aiming at a stratification imitating main tree spe-
cies and stand development stages. The obtained
stratification improved the accuracies of the species-
specific inventory attributes. Pippuri et al. (2013), on the
other hand, used proportions of tree species as a pre-
dictor in plot-level basal area predictions based on both
k-NN and regression methods. A potential of using tree
species proportions as a substitute to aerial photographs
was noted (Pippuri et al., 2013).
Despite similarities to the earlier studies, our approach

has considerable differences in terms of the studied spe-
cies composition, the source of the dominant species in-
formation for the stratification, and the methods to
utilize this information. For example, Pippuri et al.
(2013) studied hardwood species that are uncommon in
Finland and difficult to distinguish even from aerial im-
ages, whereas our problem was related to a more fre-
quently occurring forest stand structure in the boreal
forest. The coniferous study area had a clearly skewed
species distribution, which was strongly dominated by
the pine species. However, as noted above, minor species
occurred in the area, distinguishing of which had a par-
ticular effect on the accuracies.
Even though the theoretical potential to improve the

species predictions is clearly shown above, it could not
be realized in the practical predictions combining the
predicted dominant species to the models formulated.
The main reason was the low success rate of classifying
the dominant species based on ALS data alone. Maltamo
et al. (2015) already cautioned on a limiting inaccuracy
originating due to a visual photo-interpretation. A simi-
lar effect was observed here due to the lack of discrim-
inative power in the ALS features. In the presence of a
fundamentally simple species composition, it was as-
sumed that the area could be inventoried based on ALS
data as the sole remotely sensed data source. However,

Table 7 The classification accuracies for the dominant species. For the abbreviations used, please refer to Tables 3 and 4. The
confusion matrices of the classifications are presented as Appendix I

Classifier Number of explanatory variables Explanatory variables Overall accuracy (%) Kappa coefficient

Spmax 3 Imean, all + Prop_first + D40 73.6 0.40

4 Imean, all + Prop_first + D40 + H60 76.2 0.48

Spmax+95 3 Imean, all + Prop_first + D40 55.5 0.34

4 Imean, all + Prop_first + D40 + H60 57.7 0.39

Sp75 3 Imean, all + Prop_first + D30 58.5 0.34

4 Imean, all + Prop_first + D40 + H70 59.6 0.35

Sp75+95 3 Imean, all + Prop_first + D30 46.8 0.30

4 Imean, all + Prop_first + D40 + H70 45.7 0.28
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the absence of spectral image data or other information
on the minor species clearly degraded the accuracies.
First, it was assumed that the Scots pine and Norway

spruce could be better discriminated by the CBH due to
the structural differences between the canopies of these
species as observed in individual trees (Holmgren and
Persson 2004; Holmgren et al. 2008). In the studied plot-
level data, this difference was not discriminative,

however. It was particularly challenging to distinguish
young forest plots dominated by the coniferous trees
based on the CBH. A slightly better discrimination was
observed among more mature plots, but with respect to
them, the data were overly scarce to draw any more
justified conclusions. However, it was verified that the
CBH itself could be predicted accurately also at the
area-level, which is well in line with the findings of
the previous studies (e.g., Maltamo et al. 2010; see
also Maltamo et al. 2012).
Although the CBH was an inadequate feature for sep-

arating the species, some other ALS features had more
discriminative power. The features describing the pro-
portion of the first echoes and the intensity recordings
of the echoes were among the best features for the spe-
cies discrimination. Even though a leveling difference be-
tween the species studied was observed in the data, this
difference was not as strong as observed earlier. For ex-
ample, based on Fig. 1 in Vauhkonen et al. (2014b), the
plots with a varying degree of dominance of Scots pine
were more distinct from the other species in a boreal
forest closely resembling the conditions studied here.
The difference could be related to the calibration of the
intensity recordings: in Vauhkonen et al. (2014b), the
data had been range-corrected (e.g., Korpela et al. 2010),
whereas our data were not calibrated nor did we have an
access to the trajectory data to perform the calibration.
Even though an obvious difference in the ALS features

between the sample plots dominated by varying propor-
tions of pine (i.e. ≥ 75 % or 95 %) was not observed, dis-
tinguishing these plots was attempted due to the
potential to increase the information for the later
species-specific predictions. It was observed that classify-
ing these plots successfully was difficult with LDA,
whereas the classification accuracy could be slightly im-
proved by first excluding the ≥ 95 % class and later
manually sub-selecting these plots based on the deter-
mined threshold values. These values were not even op-
timized, but selected based on a visual assessment of the
ALS features. The result could correspond to the obser-
vation made by Heinzel and Koch (2011), who obtained
higher classification rates by reducing a so-called classifi-
cation depth, i.e. reducing the number of classes by
combining species. The difficulty of the classification
task is increased by an increasing number of classes, but
including such decision rules could improve the rates
obtainable.
The results of the species classification based on the

linear discriminant analysis were found comparable with
the corresponding results reported by the previous stud-
ies. For example, Ørka et al. (2013) evaluated various re-
mote sensing inventory approaches and data sources for
the prediction of main species and species proportions.
Less differences were found between area and tree based

Fig. 5 Comparison of the RMSEs obtained by the different
approaches in the model fitting (above) and prediction (below). The
broken and solid lines indicate the accuracies with and without
dominant species information, respectively. The horizontal lines give
the accuracies of the best SUR models and the other lines those of
the k-MSN predictions with k = 1–10. Lines: 1 – no species
information, 2 – Sp75, 3 – Sp75+95, 4 – Spmax, 5 – Spmax+95. The lines
in the prediction situation depict the best possible prediction model
for each species definition and modeling method. For the
interpretation of the symbols used, see Fig. 1
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inventory approaches than data sources. Using an area-
based approach, an average accuracy of 89.1 % (κ =
0.78) of predicting the dominant species was reported.
However, this result was based on separating the plots
dominated by certain species, while an inclusion of a
mixed class reduced the average performance to 80.4 %
(κ = 0.70). The results were always improved by an
availability of spectral data, and no separate figures with
respect to the dominant species classification based
solely on ALS are reported. However, the performance
reduction observed by including a mixed class corre-
sponds well to our findings and highlights the oper-
ational challenges that are emerging already from the
definitions of the dominant species. A better strategy
could be to predict the probability of a plot to consist of
certain species, which somewhat resembles fuzzy classifi-
cation of species tested already by Packalén and Mal-
tamo (2006) using remotely sensed data.
The previous studies on predicting species-specific

timber volumes by ALS have generally considered k-NN
estimation approaches. We also produced the corre-
sponding predictions by a Seemingly Unrelated Regres-
sion. The SUR and the k-MSN approach differ between
each other on how the dominant species information

was used for the predictions. There is also a difference
to the previous studies, in that we did not consider the
dominant species as additional predictors added to the
methods similar to the ALS features, for example. Ra-
ther, the dominant species information was added to
each prediction method as an information that was fun-
damentally missing, considering the natural properties
of a method. In the SUR modeling, the dominant species
information was accounted for as a categorical variable,
therefore introducing separate coefficients to predict the
species proportions under a dominance of each domin-
ant species. In the k-MSN modeling, the neighborhood
was restricted in the prediction stage such that only the
neighbor candidates matching the dominant species
condition were considered.
Whether no or limited dominant species information

is available, the proposed prediction methods can still be
operated in a population-specific mode. The presence of
improved information, such as identifying the plots
with ≥ 95 % pine proportion, improves the accuracies. In
turn, false predictions of the dominant species have an
opposite effect. However, these modifications of the
modeling strategy do not compensate for the defects in
the modeling data used for training the prediction

Table 8 RMSEs and (BIASes) of the species-specific volumes based on the SUR models, when the dominant species were predicted
by LDA. For the abbreviations used, please refer to Table 3

Species
information

Number of
explanatory
variables

Volume (m3 ha−1)

Pine Spruce Deciduous Total

Spmax 3 52.2 (11.5) 60.0 (−8.3) 22.8 (−3.4) 56.8 (−0.5)

Spmax 4 53.0 (14.2) 49.3 (−11.4) 23.2 (−3.8) 54.1 (−1.3)

Spmax+95 3 51.7 (11.3) 61.1 (−8.1) 22.2 (−2.9) 58.2 (−0.2)

Spmax+95 4 53.1 (13.9) 49.8 (−11.1) 22.6 (−3.1) 55.4 (−0.8)

Sp75 3 56.7 (13.9) 61.3 (−8.1) 31.9 (−6.0) 54.9 (−0.6)

Sp75 4 54.4 (11.5) 55.8 (−5.1) 31.8 (−5.8) 54.4 (0.2)

Sp75+95 3 55.5 (12.7) 60.4 (−7.1) 31.8 (−5.1) 55.2 (0.2)

Sp75+95 4 55.7 (12.8) 59.9 (−7.8) 31.3 (−4.6) 54.9 (0.0)

Table 9 RMSEs and (BIASes) of the species-specific volumes based on MSN, when the dominant species were predicted by LDA. For
the abbreviations used, please refer to Table 3

Species
information

Number of
explanatory
variables

Volume (m3 ha−1)

Pine Spruce Deciduous Total

Spmax 3 44.9 (0.9) 38.1 (−1.9) 22.2 (−0.6) 53.8 (−1.7)

Spmax 4 44.8 (0.5) 35.3 (−0.9) 22.0 (−0.4) 52.0 (−0.8)

Spmax+95 3 45.3 (1.6) 38.1 (−1.9) 22.2 (−0.8) 51.5 (−1.1)

Spmax+95 4 44.5 (1.2) 35.2 (−1.3) 21.8 (−0.7) 51.5 (−0.8)

Sp75 3 47.1 (−1.4) 38.4 (−2.8) 22.8 (−0.6) 54.6 (−4.8)

Sp75 4 46.8 (−0.5) 38.2 (−2.2) 22.5 (−0.6) 51.9 (−3.3)

Sp75+95 3 45.9 (−2.4) 39.6 (−3.0) 22.6 (−0.7) 53.5 (−6.0)

Sp75+95 4 47.1 (−1.6) 37.7 (−2.4) 22.9 (−0.3) 53.0 (−4.3)

Räty et al. Forest Ecosystems  (2016) 3:1 Page 14 of 17



methods. For example, the saturating and incorrect
predictions of both the methods in particular for the
species occurring moderately in the area but dominat-
ing some plots (e.g. spruce) could be partly explained
by the absence of spruce-dominated, very highly
stocked plots. The only way to mitigate for such ef-
fects is to acquire an adequately representative refer-
ence data, which is already noted by Vauhkonen et al.
(2012).
Overall, taken together with the earlier results, im-

provements in the scale of 9–47 and 33–50 percentage
points are obtainable by first balancing the field refer-
ence data with respect to the inadequately represented
species and then including spectral information as pre-
dictors in addition to those extracted by sole ALS data,
respectively (Vauhkonen et al. 2012). According to our
results, an additional 13.3 %–28.9 % increase in the
species-specific accuracies may be obtainable by cor-
rectly predicting the dominant species and incorporating
this information in the estimation. The results thus sug-
gest the importance of investing in the data sources to
improve the quality of the information. Yet, correspond-
ing accuracy improvements are also reported based on
optimizing the distance metric or the feature space con-
sidered by the NN methods (Latifi et al. 2010; Packalén
et al. 2012).

Conclusions
The relationships between the predictor features de-
rived from the ALS data and the volumes of Scots
pine, Norway spruce, and deciduous species were
considerably different depending on the dominant
species. Incorporating the observed dominant species
in the predictions based on MSN and SUR showed a
potential improve the prediction accuracies by 13.3–
16.4 % and 12.6–28.9 %, respectively, depending on
the species. However, the overall accuracy of classify-
ing the dominant species based solely on ALS data
(76 % at best) was not adequate for reaching the
aforementioned improvements. Rather, the predictions
that did not consider the dominant species were more
accurate than those refined with the predicted species.
The MSN method gave slightly better results than
models fitted with SUR. Determining the dominant
species based solely on ALS data is deemed challen-
ging, but important in areas where the species com-
position is otherwise seemingly homogeneous except
being dominated by certain species. Provided an in-
crease in the accuracy to determine the dominant
species based on other data sources, for example,
considerable improvements in the species-specific ac-
curacies are obtainable by accounting for this infor-
mation following a strategy proposed here.

Appendix I
Confusion matrices of the species classifications summa-
rized in Table 7.

Table 10 Spmax, 3 explanatory variables

Predicted species

Pine Spruce Decid.

Observed species Pine 163 33 13

Spruce 10 24 7

Decid. 2 5 8

Table 11 Spmax, 4 explanatory variables

Predicted species

Pine Spruce Decid.

Observed species

Pine 160 34 15

Spruce 4 33 4

Decid. 3 3 9

Table 12 Spmax+95, 3 explanatory variables

Predicted species

Pine, >95 % Pine Spruce Decid.

Observed species

Pine, >95 % 41 24 6 1

Pine 25 74 27 11

Spruce 1 9 24 7

Decid. 0 2 5 8

Table 13 Spmax+95, 4 explanatory variables

Predicted species

Pine, >95 % Pine Spruce Decid.

Observed species

Pine, >95 % 41 25 5 1

Pine 25 70 29 13

Spruce 1 3 33 4

Decid. 0 3 3 9

Table 14 Sp75, 3 explanatory variables

Predicted species

Pine Spruce Decid. Mixed

Observed species

Pine 105 8 7 19

Spruce 0 10 1 4

Decid. 0 1 2 1

Mixed 29 25 15 38
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