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A 3D approach to reconstruct continuous
optical images using lidar and MODIS

HuaGuo Huang* and Jun Lian
Abstract

Background: Monitoring forest health and biomass for changes over time in the global environment requires the
provision of continuous satellite images. However, optical images of land surfaces are generally contaminated when
clouds are present or rain occurs.

Methods: To estimate the actual reflectance of land surfaces masked by clouds and potential rain, 3D simulations
by the RAPID radiative transfer model were proposed and conducted on a forest farm dominated by birch and
larch in Genhe City, DaXing’AnLing Mountain in Inner Mongolia, China. The canopy height model (CHM) from lidar
data were used to extract individual tree structures (location, height, crown width). Field measurements related tree
height to diameter of breast height (DBH), lowest branch height and leaf area index (LAI). Series of Landsat images
were used to classify tree species and land cover. MODIS LAI products were used to estimate the LAI of individual
trees. Combining all these input variables to drive RAPID, high-resolution optical remote sensing images were simulated
and validated with available satellite images.

Results: Evaluations on spatial texture, spectral values and directional reflectance were conducted to show comparable
results.

Conclusions: The study provides a proof-of-concept approach to link lidar and MODIS data in the parameterization of
RAPID models for high temporal and spatial resolutions of image reconstruction in forest dominated areas.
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Background
Optical remote sensing images have been widely used
in monitoring forest ecosystems. Spatial, temporal and
spectral resolutions are the three key indicators to be
considered during most applications. Spatial resolution
had been improved from a scale of hundreds of meters
(e.g. Landsat 8) to one of a half-meter (e.g. GeoEye-1 or
Worldview-2) with only a slight increase in the number
of spectral bands. However, in forested area, temporal
resolution is generally reduced by frequent rains or
cloud covers, which prevents users from continuously
acquiring clear optical remote sensing images.
Temporally continuous satellite images are important

for forest monitoring (Lunetta et al. 2004; Masek et al.
2008; Nitze et al. 2015) since forest reflectance varies
with seasonality (Kobayashi et al. 2007; Xu et al. 2013).
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A few studies have been conducted to interpolate those
contaminated images by rains or clouds. For example,
Landsat images have been blended with MODerate-
resolution Imaging Spectroradiometer (MODIS) data to
create spatial and temporal fusion data (Gao et al. 2006;
Hilker et al. 2009; Wu et al. 2012). Further, radiative
transfer models have also been used to simulate a series
of high temporal resolution images for future space
earth observation missions (Inglada et al. 2011). How-
ever, spatial resolution is generally moderate due to the
use of simple homogeneous radiative transfer models,
which are not able to deal with high resolution simula-
tion with diverse tree species and mountain shadows.
In recent years, light detection and ranging (lidar) has

been a widely used tool for forest studies (Adams et al.
2012; Arno et al. 2013; Montesano et al. 2013). The
greatest advantage of lidar is to provide direct measure-
ments of very detailed 3D forest structures, so it can be
used to reconstruct 3D trees to support the simulation
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of radar remote sensing signals (Lucas et al. 2006) and
to study how 3D structures affect the quality of optical
images (Barbier et al. 2011). By coupling lidar with high
temporal data such as MODIS using 3D radiative trans-
fer models, it will be possible to generate both high
spatial and temporal resolution optical remote sensing
images. However, very few studies were found using
this approach. Therefore, we will test the possibility of
that approach to simulate high-resolution optical satellite
images on an arbitrary day of the growing season in a for-
ested area.

Methods
Study site
The study site (Fig. 1), located in a 100 ha forested area
(50°54′ N, 121°54′ E) of the Genhe Forestry Reserve,
DaXing’AnLing Mountain in Inner Mongolia, China, be-
longs to a boreal moist and cold temperature forest, with
an elevation ranging from 784 to 1142 m. Annual average
precipitation is 450 to 550 mm, with sixty per cent falling
in July and August. Annual average sunshine is 2594 h
with a frost-free period of 80 days. Our study site occupied
75 % of the total area. The forest is mainly composed of
Dahurian Larch (Larix gmelinii) and White Birch (Betula
platyphylla Suk.). The understory vegetation of the larch
forest is a single layer of evergreen shrubs (normally
Ledum palustre L. or Rhododendron dauricum L.). L.
palustre is generally a low shrub (less than 0.3 m), while
the height of R. dauricum is around 1.5 m. Blueberries
(Semen trigonellae) are widely distributed. The birch forest
has a understory of grass or deciduous shrubs, such as
Rosa acicularis, Spiraea sericea Turcz., or Rubus L.
Fig. 1 Location of the Genhe study site in DaXing’AnLing Mountain, Inner
The growing season typically begins in early May and
senescence occurs in late September. In the summer of
2013, 18 field plots (45 m by 45 m) were established
representing different combinations of forest types, density
and leaf area index (LAI) (Table 1). The LAI, ranging from
1.44 to 3.51 m2∙m−2, was measured using LAI-2000
(LICOR Inc.) hemispheric data. The forest cover varies be-
tween 0.21 and 0.86.
Based on inventory data of individual tree structures

in plots L1 to L9, the DBH and crown length (L) of trees
were regressed on tree height (H), where heights were
derived by lidar. For convenience, both crowns of larch
and birch are defined as spherical in shape.
Reflectance or transmittance spectra of leaves, branches

and stems of birch and larch trees were measured in
the field using the integrating sphere of ASD (Analytical
Spectral Device, http://www.asdi.com/). Dry and wet soil
spectra were the default soil spectra in a PROSAIL model
(Jacquemoud et al. 2009). The re-sampled spectral curves
are shown in Fig. 2.

Airborne data
Small footprint full-waveform lidar data were acquired
from August 16 to September 25 in 2012 (Mu et al. 2015).
The system consisted of a Leica ALS60 with an integrated
Leica RCD105 camera. The CCD camera produced nat-
ural color mosaic images with 0.2 m resolution. As for
lidar, the mean swath width was 1 km at a flying altitude
of approximately 2700 m (over rough terrain). The scan
angle was less than 35°. Waveforms were digitized with a
frequency of 100 to 200 kHz. An average of eight reflected
pulses per m2 was obtained over the sample plots. Point
Mongolia, China
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Table 1 Plot variables at the study site

Stand ID Tree stems (Birch: Larch) Slope (°) Shrub height (m) and cover Mean tree height (m) Mean DBH (cm) LAI (m2∙m−2)

A1 83:140 35 1.5, 70 % 11.6 11.8 2.68 ± 0.13

A2 97: 248 20 1.8, 60 % 12.1 11.6 2.88 ± 0.24

A3 41:269 25 1.5, 75 % 11.0 11.4 2.56 ± 0.09

A4 174:22 5 0.7, 3 % 16.0 16.1 3.31 ± 0.07

A5 142:103 10 2.0, 80 % 11.8 11.8 No data

A6 91:173 45 0.3, 80 % 11.2 11.5 No data

A7 111:102 30 1.5, 50 % 14.2 16.2 2.06 ± 0.13

A8 156:238 10 No data 11.0 9.5 2.51 ± 0.20

A9 65:180 45 1.3, 70 % 14.5 15.4 2.36 ± 0.17

L1 131:220 5 1.2, 20 % 8.4 10.0 2.71 ± 0.25

L2 89:421 <5 1.2, 5 % 9.0 8.7 3.06 ± 0.22

L3 11:71 5 0.7, 3 % 8.0 7.8 2.42 ± 0.50

L4 294:79 5 1.2, 15 % 11.7 11.6 3.51 ± 0.20

L5 1:327 7 1.0, 5 % 12.5 12.9 2.43 ± 0.12

L6 0:173 5 0.5, 20 % 17.2 22.3 1.44 ± 0.06

L7 11:90 7 1.0, 80 % 9.7 12.5 1.50 ± 0.15

L8 60:118 12 1.3, 30 % 13.1 15.4 2.70 ± 0.12

L9 0:585 5 0.5, 50 % 8.4 8.7 2.28 ± 0.09
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clouds were first classified by the TerraScan software (see
www.terrasolid.com) to separate the ground points from
other points. We used Delaunay triangulation and bilinear
interpolation method to generate a digital elevation model
(DEM) from ground returns. DSM (digital surface model)
was created using a maximum value in a window size of
0.5 m. CHM (canopy height model) was calculated as the
difference between DSM and DEM (Fig. 3).
Individual tree crowns were segmented from CHM

using the “TreeVaW” tool (Popescu and Wynne 2004),
which uses a circular window filter to segment trees and
produces the location of each tree (xi, yi), height (Hi) and
crown radius (Ri).
Fig 2 Component reflectance in 18 bands
Optical satellite images
Several scales of geo-referenced satellite images were used,
including SPOT-6 (1 m), Landsat (30 m) and MODIS
(250 m). Due to frequent cloud cover, SPOT and Landsat
were not able to capture clear land surface images during
rainy days, which happened mostly in the growing season
(May to September). There was only one cloud-free
SPOT-6 image, obtained on October 10, 2013. For the
same reason, only three Landsat images were clear (May
5, 2013; Sep 9, 2013; Sep 29, 2013) in 2013. As well, we
collected a Landsat 8 image on May 24, 2014.
A Gram-Schmidt Spectral Sharpening image fusion tech-

nique in ENVI 5.1 (ITT Exelis) was applied to produce

http://www.terrasolid.com/


Fig. 3 Lidar derived CHM and DEM (1 km): a CHM, gray color representing tree height 0–30 m; b DEM, gray color representing
elevation 770–895 m
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pan-sharpened Landsat 7 or 8 multi-spectral images with a
resolution of 15 m. This pan-sharpening method was se-
lected because it preserves the original spectral information
of the image and can be simultaneously applied to multi-
spectral bands. The Landsat image pixel values (in digital
numbers) were converted to top-of-atmosphere (TOA)
spectral radiance, which was further converted to land
surface reflectance using the Fast Line-of-sight Atmos-
pheric Analysis of Hypercubes (FLAASH) atmospheric
correction model with the atmospheric visibility parameter
estimated from the MODIS aerosol product.
MODIS 16-day 250 m NDVI images and the 500 m

LAI products from Jan 1 to Dec 31, 2013 were down-
loaded. Because a maximum value filtering method was
used, NDVI and LAI products had significantly fewer
cloud cover problems. NDVI data were used to deter-
mine the phenology of the boreal forest, including birch,
larch and understory, which allow interpolation of Land-
sat images ranging from clear to contaminated days.
MODIS LAI products were utilized to determine the leaf
area of each tree. Despite its low resolution, it is the only
continuous global leaf area product, but with acceptable
accuracy (Ahl et al. 2006).
MODIS Bidirectional Reflectance Factor (BRF) products

in May of 2013 were collected for validation. The BRF
curves were reconstructed from the kernel coefficients
using the Algorithm for Model Bidirectional Reflectance
Anisotropies of the Land Surface (AMBRALS) (Wanner
et al. 1995; Huang et al. 2013b; Sharma et al. 2013).

RAPID model
RAPID is a 3D radiative transfer model, able to simulate
reflectance images over complex 3D natural scenes at
large scales (30 to 1000 m) with great efficiency (Huang
et al. 2013a), implying that RAPID can simulate images
at MODIS pixel scales (250 to 1000 m). The main input
parameters of RAPID consist of 3D structures of the
ground, trees, buildings and rivers, as well as reflectance
and transmittance of leaves, branches, walls, water bodies
and roads under a few sun and sensor angles. The main
outputs are BRF curves and land surface reflectance im-
ages with defined spatial resolution (default 0.5 m).

Simulation framework
Figure 4 shows the 3D simulation framework, with inte-
grated parameters extracted from lidar data, field plots
data, Landsat images and MODIS images managed into
the RAPID model to simulate optical images of a virtual
sensor with several view angles, 18 spectral bands and a
half-meter spatial resolution.
The sensor is an advanced version of the Compact High

Resolution Imaging Spectrometer (CHRIS/PROBA). CHRIS
is the only multi-angular sensor launched with both high
spatial (17 m) and spectral resolution (20–40 nm) (Rautiai-
nen et al. 2008; García Millán et al. 2014). For any selected
target, five images with different viewing angles (−55°, −36°,
0°, 36° and 55°) were made within a short span of 2.5 min.
The virtual sensor was placed above the canopy under clear
sky conditions.
A large number of input parameters needed to be set

in order to simulate seasonal variation. A few parameters,
such as LAI and soil moisture, vary considerably over
the growing season, while other parameters remain
relatively stable. Given our relatively limited data source,
we defined five basic assumptions to reduce the number
of unknowns:

1) The DTM (digital terrain model) remained
unchanged, a reasonable assumption for forested
areas;



Fig. 4 Simulation framework to generate time series of optical images
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2) Tree crowns were ellipsoid or cone shaped, similar
with geometric optic models (Schaaf and Strahlerl
1994; Chen et al. 2012);

3) Individual tree LAI (LAItree) was predicted from tree
height (Xiao et al. 2006);

4) We accepted a spherical leaf angle distribution
(LADtree) for all trees due to missing measurements;

5) Reflectance of non-vegetation objects, such as walls,
water bodies and roads remained constant, following
precedents set in existing literature (Wang et al. 2008)
or in the ENVI spectral library.

With these assumptions, there were two types of input
parameters: fixed or dynamic. Fixed parameters were
DEM, land cover map, individual tree map (coordinates,
DBH, height, crown radius, crown length). DEM and
land cover map were re-sampled to a resolution of 1 m.
Land cover maps were generated using a decision tree
method with six classes: bare soil, road, birch forest,
larch forest, water surface and buildings. Decision rules
were largely based on the Ratio Vegetation Index (RVI),
the Normalized Difference Water Index (NDWI) and
CHM. Dynamic parameters determined the seasonal
change of reflectance, such as component reflectances,
LAI and sun position, obtained mainly from time series
of MODIS products, including NDVI, LAI and land sur-
face temperature (LST).

Leaf reflectance
Leaf reflectance and transmittance were measured only
once, which was not sufficient to represent optical features
for the entire growing season. Thanks to the PROSPECT
model and changing the most sensitive input (leaf chlorophyll
content) while fixing others, seasonal leaf reflectance
and transmittance could be simulated (Barry et al. 2009).
Previous studies have shown that the amount of leaf
chlorophyll is correlated with NDVI (Wu et al. 2008;
Rulinda et al. 2011; Croft et al. 2013; Feng and Niu 2014).
Therefore, we used a linear relationship between MODIS
NDVI products (0.1 to 1.0) and the amount of leaf chloro-
phyll (10 to 100 μg∙cm−2).

Background reflectance
Seasonal variation in background reflectance was com-
plex. However, soil moisture played a major role (Muller
and Décamps 2001; Weidong et al. 2002; Whiting et al.
2004), which was then derived from TVDI (temperature
vegetation dryness index) inferred from temperature and
NDVI (Sandholt et al. 2002; Liang et al. 2014). TVDI is
highly correlated with soil moisture (Holzman et al. 2014).
Therefore, we estimated the soil reflectance as the weighted
average of dry soil and wet soil reflectance, where the
weights were TVDI and (1-TVDI) respectively. The back-
ground was defined as soil covered by a homogeneous
shrub layer with a LAI of 0.5. Shrub leaves were assumed
to have the same optical parameters as birch leaves.

Growing season
From the Landsat classification map, pure birch and larch
pixels were selected to determine the beginning and final
day (DOY) of the annual growing season, using the follow-
ing phenology analysis.
First, MODIS time series NDVI data were fitted using

a harmonic analysis (Jonsson and Eklundh 2004) to re-
move random noises. We referred to the maximum and
minimum values of NDVI as NDVImax and NDVImin.
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The starting date was defined as the DOY when NDVI
exceeded 20 % of (NDVImax – NDVImin) between DOY
1 and DOY 180. Similarly, the final date was the DOY
when NDVI exceeded 20 % of (NDVImax – NDVImin)
between DOY 180 and DOY 365.

Temporal leaf area index of individual trees
It was difficult to calculate LAItree precisely. Instead, it
was possible to allocate the MODIS LAI into individual
trees. Based on assumption (3), LAItree is linearly related
to tree height (Htree) for each species. Therefore, LAItree
is a function of both species and DOY (see Equation 1).

LAItree ¼ f speciesð Þ � g DOYð Þ �H tree ð1Þ
where f is a coefficient relating Htree to LAItree, which is
constant for each species and g is a temporal correction
factor. Plot LAI and individual tree height in field plots
were used to calibrate f values for both birch or larch:

X
f i � Hi � πR2

i

� � ¼ LAIplot � Areaplot

⇒f ¼ LAIplot � AreaplotX
Hi � πR2

i

� � ð2Þ

For birch trees, we calibrated f as 0.25 and 0.20 for
larch. From previous studies (Li et al. 2009; Liu and Jin
2013), we determined that the LAI of birch and larch
varied with DOY and could be fitted with a polynomial
Fig. 5 Comparisons of tree segmentation between manual operation and
(c) are manual results; (b) and (d) are TreeVaW results
equation. Both species showed very similar phenology in
the spring without a difference on the average (Delbart
et al. 2005), so we used the MODIS LAI to calibrate the
g value for both species:

X
g DOYð Þ � f i �Hi � πR2

i

� � ¼ LAIMODIS � AreaMODIS

⇒g DOYð Þ ¼ LAIMODIS � AreaMODISX
f i �Hi � πR2

i

� �

ð3Þ

Evaluation method
Since the TreeVaW (Popescu and Wynne 2004) had not
been tested in our study site, we manually segmented a
few tree crowns in nine sub-plots with different tree
densities in order to evaluate the accuracy of the ex-
tracted number of trees, height, location and crown
radius.
We carried out four types of evaluations: (a) CCD

image was used to check the pattern of simulated half-
meter images; (b) Landsat images were used to check
reflectance values of nadir images at the same date; (c)
MODIS BRF products were used to compare simulated
BRFs and (d) finally, we used four dates of Landsat im-
ages to evaluate temporal simulations.
TreeVaW in a sparse subplot (a-b) and a dense subplot (c-d); (a) and



Fig. 6 Smoothed MODIS 16-day 250 m NDVI products in 2013
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Results
Tree structure
Compared to manual segmentation, TreeVaW detected
88 % of the number of trees in sparse plots (Fig. 5a, b),
but only 74 % in dense plots (Fig. 5c, d). Crown radii ob-
tained from TreeVaW ranged from 0.59 to 0.71 m, lower
than those from manual segmentation. The mean tree
height error and location bias of detected trees was 0.88
and 0.91 m.
Based on regression analysis of plot data, both tree

DBH and crown length (L) were well predicted from tree
height (H) with coefficients of determination larger than
0.80:

DBH birchð Þ ¼ 0:2466H1:5652 R2 ¼ 0:89
� � ð4Þ

DBH larchð Þ ¼ 0:1639H1:8704 R2 ¼ 0:82
� � ð5Þ
A
Fig. 7 Vegetation map: (a) classified image with the lightest greenness rep
birch forests
L birchð Þ ¼ 0:5475H−0:0118 R2 ¼ 0:87
� � ð6Þ

L larchð Þ ¼ 0:6551H−0:0731 R2 ¼ 0:55
� � ð7Þ

Growing season
Figure 6 shows the smoothed NDVI curves for birch
and larch-dominated forests. The starting date, final date
and length of the growing season were estimated as
DOY 140 (May 20), 273 (Sep 3) and 130 days. During
the growing season, the birch forest had higher NDVI
values than larch forests, and the larch forests in the flat
wetland area had significant lower NDVI values than
those in mountain areas.

Land cover classification
The Landsat 8 image on May 24, 2014 was used to pro-
duce a 15 m classification map, given a suitable growing
season and good image quality to distinguish birch and
larch (Fig. 7a). Compared to the old forest map (Fig. 7b),
the southern regions (1 and 2) visually matched much
better than the northern regions (3 and 4). Fortunately, the
major study area was located in regions 1 and 2, where the
accuracy (around 75 %) was calculated from random sam-
pling points. Major rules of the decision tree were the fol-
lowing: (1) forest vegetations = (RVI > 0 and NDWI > 0
and CHM > 2 m); (2) shrubs or grasses = (RVI > 0 and
NDWI > 0 and CHM ≤ 2 m); (3) birch = ((1) and RVI >
7.0); (4) larch = ((1) and RVI ≤ 5.0); (5) mixed forests = ((1)
and RVI > 5.0 and RVI ≤ 7.0).
Forest understory in the Genhe Reserve was complex

but of considerable value in identifying forest types (see
Table 1). Some shrubs were evergreen, while grasses shed
leaves. Therefore, the vegetation detected in SPOT-6
B
resenting birch forests; (b) forest map with white color representing



Fig. 8 Determining vegetation as evergreen bush in winter season: (a) evergreen understory on Spot-6 image (red color); (b) CCD image; (c)
CHM image
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image (1 m, October) was used to define shrubs as
evergreen vegetation because only evergreens had green
leaves at that time of the year (Fig. 8).
Comparisons of nadir images
Simulated nadir images (0.5 m resolution) were compared
to the CCD image in Fig. 9. The spatial texture and land
cover difference are consistent, but the simulated forests
look sparser.
The spectral results were compared with Landsat 8 re-

flectance images on May 24, 2014 (Fig. 10). Both simulation
and Landsat images showed typical vegetation reflectance
spectra (low red reflectance and high near infrared (NIR)
reflectance). Simulation results are significantly lower in
blue bands (0.02 to 0.06).
Fig. 9 Comparing nadir image (0.5 m) with CCD: (a) simulated image (R =
image from multiple days
Comparisons of BRF
Five pixels around the central study area showed variation
in the BRF curves, used as a reference to evaluate the
RAPID BRF results (Fig. 11). Generally, the simulated BRF
matches the shape of MODIS BRF in spite of absolute
biases in a few view directions. First, the simulated red
BRF is higher than all MODIS BRFs when the view zenith
angle (VZA) is between −50° and 40°. Second, in both red
and NIR bands, the backscattering BRF when VZA larger
than 50°, is lower than the MODIS BRF.
Temporal results
Four Landsat images were used to check the simulation
ability of temporal variations; the dynamic parameters of
birch and larch trees are shown in Table 2.
Near infrared (NIR), G = red, B = green); (b) airborne CCD mosaic



Fig. 10 Comparison of nadir top of canopy (TOC) reflectance image with a Landsat 8 image using linear stretch (0 to 0.3): (a) simulated image
(0.5 m, R = NIR, G = red, B = green); (b) re-sampled 15 m image from (a); (c) Landsat 8 (15 m) on May 24, 2014 (R = NIR, G = red, B = green);
(d) Spectral curves of dense and sparse canopies
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Figure 12 compares the results between simulated
and real images in stripes of birch and larch forest
stands (600 m by 600 m). The resolutions were 15 m
except for the Landsat TM image (30 m) on September
5, 2013. The birch bands (marked as A) showed signifi-
cant variation in reflectance from brown color (bare
soil), red color (green canopy), pink color (dense can-
opy) to mixed color (discoloring canopy), reconstructed
from simulated images in spite of slightly different
colors. In the lower part of the Landsat ETM+ image, a
black no-data area showed up, due to a sensor error
(SLC-OFF). The results on Sept 5, 2013 showed larger
discrepancies.
Discussion
Our main objective was to create and test how to couple
lidar data and temporal optical data MODIS in order to
simulate high-resolution optical satellite images. A frame-
work was built and tested at the Genhe Forest Farm. In
spite of some biases or errors, the approach successfully
produced temporal images with high spatial, spectral and
angular resolutions, which confirmed the possibility to
fuse lidar and MODIS data.

Major contributors on simulation
The framework included four main data sources: lidar,
Landsat, MODIS and field data. To drive a 3D model,



Fig. 11 Comparisons between MODIS BRF product and RAPID simulations: (a) red band (0.620–0.670 nm); (b) NIR band (0.841–0.876 nm)
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the most important inputs were 3D scenes and the inside
reflectance and transmittance of 3D objects. Lidar was the
first contributor to providing 3D structures of individual
trees and background. Lidar-derived 3D structures were
normally static, but 3D scenic objects, especially their LAI,
were dynamic. Therefore, we used an allocation method
to downscale MODIS LAI into each tree, a technique not
found in previous studies. Landsat images were used to
classify birch and larch, supporting the generation of
3D trees.
The optical parameters of 3D objects were collected in

the field or obtained from existing references; these were
also dynamic. Therefore, MODIS NDVI data were used to
calibrate leaf chlorophyll for the PROSPECT model, which
then simulated dynamic leaf reflectance and transmittance.
Background soil reflectance varied over time and was diffi-
cult to obtain. An alternative is to use TVDI to adjust soil
reflectance, which is a more recent idea and needs to be
evaluated in any future research.
Table 2 Dynamic parameters of birch or larch forests

Date DOY Chlorophyll content (μg∙cm−2)

May 5, 2013 125 41

May 24, 2014 144 52

June 27, 2012 179 85

Sept 5, 2013 248 72
Major errors
Despite the fact that three types of evaluation on re-
flectance, i.e., spatial texture, BRF and Landsat simula-
tion demonstrated the capability to simulate temporal
images, quantitative validation was still missing due to
lots of uncertainties in the entire workflow. We tried to
address major error sources and assess their uncertainty:

1) 3D structure errors:

It has to be admitted that suppressed trees and irregular
tree crowns are hard to detect from CHM. A previous
study has shown that TreeVaW method can identify more
than 95 % of the trees in planted forests but only 70 % in
natural forests (Antonarakis et al. 2008). Although other
detection algorithms may help improve the accuracy, the
inter-comparisons between detection methods found that
the correct percentage of the number of trees was gener-
ally between 50 to 90 % (Kaartinen et al. 2012). In our
LAIlarch (m
2∙m−2) LAIbirch (m

2∙m−2) TVDI

0.16 × Htree 0.13 × Htree 0.61

0.17 × Htree 0.18 × Htree 0.68

0.20 × Htree 0.23 × Htree 0.91

0.19 × Htree 0.11 × Htree 0.62



Fig. 12 Comparison between simulated and Landsat images with false color composition (RGB = [NIR, RED, GREEN]); A and B represent birch
and larch trees, respectively
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study, the percentage of the correct number was between
74 to 90 %, which is consistent with results above. The
high level of missed detection leads to a higher clumping
effect and sparser forests (Figs. 7 and 8), which then re-
sulted in higher reflectance biases induced by background
uncertainties.

2) Unknown background:

Although we classified evergreen bush, its background
type and dynamic reflectance were almost unknown.
Therefore, a very rude LAI of 0.5 was assumed for all
understories. In fact, it is possible to retrieve forest
background reflectance from satellite data (Canisius and
Chen 2007; Pisek and Chen 2009; Pisek et al. 2010;
Tuanmu et al. 2010; Rautiainen et al. 2011; Pisek et al.
2012). We will try these methods to inverse background
reflectance in later studies. We were able to validate the
TVDI-adjusted soil reflectance, although it should have
directional effects. Actually, we used isotropic soil reflect-
ance, which may explain the BRF biases with large angles
in backward view directions.

3) Leaf discoloring

In September, the leaves of both birch and larch chan-
ged color. However, these changes varied even for trees
of the same species, probably an effect of age, elevation
or density, making it difficult to identify individual trees.
Therefore, the accuracy in discoloration during the growing
season will be low. Continuous field observations are
strongly suggested.

4) MODIS data uncertainty

The most recent MODIS LAI product is Collection 5
(this a version code), which has uncertainties around +/−1.0
for relatively pure pixels (Fang et al. 2012). However,
considering the low resolution of MODIS pixels, the
uncertainties of inversed LAIs are even larger for mixed
pixels. The image matching between MODIS (1 km)
and CHM (0.5 m) sounds tricky. However, as the only
available product, it was used in our simulation frame-
work. In any future study, we will use Landsat images
to bridge the gap of higher resolution of LAI products
(Gao et al. 2014). The BRF biases between simulation
and MODIS can be partially attributed to the limitations
of MODIS BRF in reconstructing higher and narrower
hotspots (Huang et al. 2013b).

5) Landsat data uncertainty

Landsat images were used to compare simulated nadir
reflectance and image textures. Figure 10 shows sig-
nificant differences in the blue band, which can be
largely explained by an atmospheric correction error
because blue band reflectance should be lower after a
correct removal of aerosol scatter. This atmospheric
correction was carried out by using the FLAASH mod-
ule of the ENVI 5.1 software, where the aerosol optical
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depth and water content were only estimated from
images.
Efficiency problems
RAPID is relatively fast with 3D models, but running
one case (1 km) still needs four to six hours at individual
tree scale on a workstation (using 10 CPU cores). We
are of the opinion that it is not feasible for the gener-
ation of operational products. However, for some scien-
tific use, focused on local areas, it may be worthwhile to
obtain images with very high resolutions (spatial, spec-
tral and angular) for research within an acceptable time
frame and cost structure. Because RAPID can run at
scalable resolutions, 3D scenes of dense forests can be
up-scaled to regular grids with a medium resolution (e.g.
5 to 10 m), which significantly improves calculation effi-
ciency (less than 30 min) without much loss in accuracy.
Furthermore, we can create a reference table of 3D scenes,
classifying a study area into fewer categories with possible
combinations of DEM, understory, tree locations, tree
heights and tree LAI. The corresponding reflectance
images will be simulated and stored as an image database.
Once the database is created, a quick search method can be
used to pick up desired images based on input parameters
such as DEM, understory, tree distribution and LAI. In the
current framework, we only dealt with the capability of
coupling simulation. Improvements will be presented
in our next study.
Scale issues
Scale effect and scaling have been big issues in remote
sensing community. When models or algorithms at small
scales are used at large scales, they may produce certain
errors, especially for non-linear models (Tao et al. 2009).
Scale issues constrain the accuracy of retrieval and limit
the development of remote sensing applications. In this
study, MODIS LAI products at a 1 km scale were down-
scaled to the level of LAI of individual trees, using lidar at
a scale of only a few meters, used to coincide with the
RAPID model scale. Assuming that MODIS LAI products
are scale-corrected, this scaling does not change total leaf
area. Since LAItree was found to be correlated with tree
height, the down-scaling model should also be linear with-
out model scale issues. In comparison with satellite images,
the simulated RAPID images should also be re-sampled to
coincide with the satellite scale, including the MODIS and
Landsat scales. Fortunately, reflectance or radiance images
are scale independent.
Using MODIS and lidar data to reconstruct 3D scenes

at an individual tree scale, the RAPID model is capable
of simulating time series of images at spatial scales from
0.5 m to 1 km and temporal scales of a few days. Although
the 3D scene estimation is not perfect, this type of multi-
scale optical image dataset will be useful to support the
understanding of scale problems.

Conclusions
We presented a simulation framework which links lidar
with optical images to produce series of temporal im-
ages. The study provides a proof-of-concept approach to
link lidar data in the parameterization of a RAPID model
for temporal image reconstruction in forest dominated
areas. Demonstrations were applied at the Genhe Forest
Farm, a remote forest reserve in China. Evaluations on
nadir reflectance, spatial textures and BRF confirmed
that 3D simulation provides an insight look into how im-
ages vary over time. Many uncertainties were identified,
which can be expected to be reduced in any future study.
Strategies to improve efficiency are possible and discussed.
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