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Abstract

Background: Among the most important aspects of risk and hazard studies relating to forest ecosystems are
maximum forest density and density-dependent tree survival.

Methods: Long-term observations about the maximum density of unthinned Pinus patula and P. elliottii field plots
based on the Correlated Curve Trend (CCT) spacing studies which were established almost 8 decades ago by
O'Connor (Forest Research with Special Reference to Planting Distances and Thinning, 1935) in South Africa. Three
specific approaches were introduced for analysing maximum density and tree survival, namely the ‘limiting line’,
Nilson's sparsity and tree survival with the Weibull function.

Results: The main results are:

a) Maximum densities differ greatly among the two species grown on the same site and within the same species

the eight large experiments used in this study.

essential.

grown on different sites; it is possible to relate these differences to site index in both species.

b) The relationship between the quadratic mean diameter and the minimum average spacing of surviving trees
(known as Nilson's Sparsity) appears to be surprisingly similar in both species.

€) An analysis of tree survival in response to different initial planting espacements shows that the Weibull survival
function parameters can be estimated if the initial planting density is known. This result is presented for each of

Conclusions: This study contributes to a better understanding of tree survival and maximum density which are the
key factors required for estimating risk and uncertainty. The risk of tree mortality is not constant, but varies with
tree species, planting density, tree age and growing site. For estimating that risk, therefore, continuous long-term
observation on different sites and with varying planting densities, as provided by the unthinned CCT series, are
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Background

Risk and uncertainty, — these words have initiated ardent
debates and extensive interdisciplinary studies. What is
risk? The choice between harvesting a tree or leaving it
to grow is always risky. If the tree is harvested now,
there is a risk that its future value could increase beyond
expectations. If not, there is a risk of having missed a
chance. It is not possible to escape this dilemma that is
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inherent in every decision (Weiss 2001). Risk has been
defined as “the probability and magnitude of an adverse
effect” (Lowrance 1980). More specifically, it is an expected
loss caused by a potential sazard that may occur in a given
reference area at a specific time.

Obviously, there is a constant need to improve our
ability to predict hazards. One that concerns forest eco-
systems in particular, is density-dependent tree mortality
which is also known as self-thinning (Yoda et al. 1963;
Gingrich 1967; Drew and Flewelling 1979; Zeide 1987;
Hynynen 1993; Luyssaert et al. 2008). Observations
about the maximum density of a planted forest may be
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assessed in unthinned and sufficiently large field plots
maintained over long periods of time. Ideally, the experi-
ment should include planting densities ranging from
very low to very high stocking. High planting densities
demonstrate effects of self-thinning while low densities
reveal how widely-spaced trees are capable of occupying
available free growing space. The study sites should be
observed throughout the life of the trees to eliminate
age effects, and they should cover an area that will carry
a sufficient number of surviving large trees at maturity.
Such a design will provide information about the max-
imum density of a planted forest independent of tree
age or average tree size. Accordingly, this contribution
presents a study based on long-term observations of
maximum density in unthinned Pinus patula, P. elliot-
tii and Eucalyptus grandis field plots based on Corre-
lated Curve Trend (CCT) spacing studies established
by O’Connor (1935) in South Africa.

Maximum forest density may be one indicator of shifts
in ecosystem response to changes in the climate (Grace
et al. 2002; Greenberg et al. 2009). Observations about
maximum forest density may thus provide a new powerful
basis for environmental gradient analysis, for example in
addressing the question: which are the site conditions that
most affect the potential density of a forest ecosystem?
Knowledge of maximum forest density, for example in the
Tropics or in Boreal regions, will permit potential Biomass
and Carbon Estimates and relate those estimates to ob-
served values.

In addition, the ability to predict maximum forest
density will enable foresters to quantify the reduction
of biomass and the loss in carbon sequestration by tim-
ber harvesting. This will permit more accurate and
comprehensive comparisons of alternative “paths” of
forest management (Gadow 2013). Thus, there are
good reasons for improving our ability to estimate the
potential density of managed and unmanaged forest
ecosystems.

Based on previous studies of long-term experiments in
unmanaged forests growing at very high densities, we
conclude that the problem of estimating potential density
is not as trivial as it may appear. Accordingly, the objective
of this contribution is to estimate the potential density of
unthinned forests using a detailed and comprehensive
dataset and specific modeling approaches, including indi-
vidual tree survival functions. We want to investigate the
effect of different growing sites on the maximum density
of the same species and the maximum density of different
species growing on the same site.

Methods

This section presents details about the CCT spacing tri-
als and the observations that were used in this study,
and the methods that were applied.
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The observations

Direct assessment of the potential density, and of the
development towards that elusive state, requires densely
stocked unmanaged and sufficiently large field plots that
are enumerated regularly during long observation periods.
A rare example of such an elaborate experiment is the
Correlated Curve Trend (CCT) spacing study established
by O’Connor (1935) in South Africa. The CCT experiment
is a classic spacing trial designed to predict yields from
plantations of various species of pine and eucalyptus for a
wide range of densities, varying between extremely dense
(2965 stems per ha) and free growth (124 stems per ha).
Additional file 1: Table S1 shows details of the eight exper-
iments used in this paper, and a map with their locations
in South Africa.

The original objective of the CCT study was to predict
yields from plantations of various species of pine and
eucalypt for a wide range of planting densities. Most of
the experiments were established between 1936 and
1938 and several detailed descriptions of the CCT design
were published during the past 70 years (see for example
Craib 1939; Marsh 1957; O’Connor 1960; Burgers 1976;
Van Laar 1982; Gadow 1987; Bredenkamp et al. 2000).
Some relevant details of four spacing trials each for
Pinus patula and P. elliotti are presented in Additional
file 1: Table S1. The altitudes range from 53 m.as.l.
(Kwambonambi) to 1400 m.a.s.l. (Nelshoogte), the mean
annual temperatures from 15.9°C (Weza) to 21.8°C
(Dukuduku) and the mean annual precipitation from
830 mm (Weza) to 1463mm (MacMac).

Soil depths and geology were also assessed in
each of the eight experiments. With a depth of
120-150 cm the soils are deep in all experiments.
Humic soils on granite are encountered in the MacMac
and Nelshoogte experiments, sandy soils in Dukuduku
and Kwambonambi and red apedal dystrophic soils
in Entabeni on basalt. The mean height of dominant
trees at age 20 (SI20) is lowest for P. elliottii at
Dukuduku (17.0 m) and highest for P. patula at MacMac
(24.3 m). Further details are presented in Additional file 1:
Table S1.

The typical CCT experiment consists of 18 plots,
covering 0.081 ha each. Nine of the 18 plots were left
unthinned, the other nine were subjected to various
thinning regimes. The treatment details for plots 1-8,
and a map of the CCT spacing study Nelshoogte, are
presented in Additional file 2: Table S2.

The unthinned experiment, known as the Basic Series,
provides information about the growth of unthinned
stands for a wide of range of planting densities. In the
other, known as the Thinned Series, the response to
various thinning regimes may be assessed. Eight nom-
inal stand densities, ranging from 124 to 2965 stems
per hectare, were established in plots 1 to 8 of the basic
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series. In order to avoid suppression by competing
herbaceous flora, all plots were initially planted at
2965 stems per hectare and then thinned ‘in advance of
competition’ until the nominal stocking was achieved
(for further details of the trial design refer to Bredenkamp
1984 and Gadow and Bredenkamp 1992, p. 55 et sqq.). In
this study only the results from several basic series are
used.

Data from the CCT experiments are suitable for ana-
lysing tree survival in response to forest density and
tree age. Additional climate and soil data have become
available more recently, allowing a more detailed analysis
of environmental effects.

Methods to describe maximum density

This section introduces three specific approaches for
analyzing maximum density and tree survival. We define
the rate of survival as the ratio ]]:/7? while mortality may

be expressed by NlN;fVZ

Limiting line

Populations of trees growing at high densities are subject
to density-dependent mortality or self-thinning. For a
given average tree size there is a limit to the number of
trees that may co-exist. The relationship between the
average tree size (increasing over time) and the number
of live trees per unit area (declining over time) may be
described by means of a “limiting relationship” or “limiting
line”. A convenient model for estimating this relationship
is the following:

Nmax = 610])“1 (la)
where Nmax is the maximum number of surviving trees
per ha D is the quadratic mean diameter [cm] and ao, a;
are empirical parameters which can be estimated from
fully stocked, unthinned trials. Reineke (1933) plotted
the number of trees per unit area of “fully stocked
stands” over their average diameter and concluded that
the a; parameter is a constant equal to -1.605 (Oliver
and Larson 1996, pp 353-354; Zeide 2004).

Nilson’s sparsity

In the case of a regular spatial distribution of the trees
within a forest, the average distance between the trees
(L) may be estimated by the square root of the number
of m” in a hectare divided by the number of trees per
ha (N):

100
L= N (2)

Nilson (2006) called this average distance between the
trees “stand sparsity” and proposed to estimate the
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minimum distance among the survivors using the follow-
ing relationship:

Lmin =a +b-D (3)

Lmin is the stand sparsity (m), and D is the quadratic
mean diameter (cm) of the trees in a stand; a and b are
empirical parameters. The two variables have the same
dimension and the relationship is assumed to be linear.
Nilson’s sparsity is an alternative way of evaluating the
limiting density of trees, and thus an alternative to the
limiting line. We may use equations (2) and (3) to get:

10000

Nipax = m (lb)

If this equation is fitted to the data, the results are almost
identical to those obtained with equation (1a). In both
la and 1b, the dependent and independent variables
have different units (N per ha and cm).

Tree survival

Survival analysis is most often defined as a class of statis-
tical methods for studying the occurrence and timing of
events, such as death (e.g., Cox and Oakes 1984). Survival
analysis investigates the distribution of the non-negative
random variable 7" which in our study describes the forest
age (Staupendahl 2011; Staupendahl and Zucchini 2011).
According to Klein and Moeschberger (1997, pp. 21),
the pattern of T can usually be characterised by several
functions. The probability density function f(¢) describes
the frequency distribution of the points in time, in which
trees die. In the case of continuously measured time, it is
defined by:

P(t<T < t+ At)

£(6) = Jim === =S,

with >0 (4)
At—0

For small A¢, f{t)At may be thought of as the approxi-
mate unconditional probability that tree death will occur
at time £. The cumulative distribution function F(¢), as
the integral of the density function, gives the probability
that a death has occurred by time t:

F(t) =P(T<t) = /f(x)dx (5)

The survival function S(¢) is the complement of F(t)
and gives the probability that a tree survives at least
until time ¢

S(t) = P(T > t) = 1-F(¢) (6)

Because of its flexibility and parameter parsimony,
Dickel et al. (2010) selected the Weibull distribution
(Weibull 1951). If T is Weibull distributed with scale
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parameter b and shape parameter c, the survival function
is given by:

S(t) = exp [- (2) } (7)

with ¢ >0. In this study, we will fit the survival function
(Equation 7) to observed surviving P. patula and P. elliottii
trees n years after planting and try to relate its parameters
to the different planting espacements.

Results

Maximum density

Limiting line and site index

The limiting line was fitted to the CCT experiments
listed in Additional file 1: Table S1 and the parameter
estimates for the eight datasets are listed in Additional
file 3: Table S3. Not surprisingly, the value of a; deviates
considerably from the constant -1.605 proposed by Reineke
(1933). Previous studies have shown that the exponent
may assume a wide range of values, depending on tree
species and site conditions (Gadow 1986). The relation-
ship between the intercept (coefficient a;) and the site
index is shown in the graph on the right of Additional
file 3: Table S3.

The value of the intercept, which is the most important
indicator of maximum density, is increasing with in-
creasing site index. This is apparent in both species.
The relationships between site index and a0 are:

Pinus elliottii : a9 = 464924 + 64472 % SI20 (8)
x (R*=0.79, n = 4)

Pinus patula : ag = -2542807 + 142609 « SI20  (9)
x (R*=0.88, n=4)

The results of relationships (8), (9) are based on four
experiments for each of the two species. The database is
limited. Nevertheless, to our knowledge, this is the first
time that an estimate of maximum density could be
related to site index. The range of site indices (17-24 m
and 20-24 m) is relatively broad and covers a wide range
of the growing sites where the two species are found in
South Africa. The dramatic effect of the environment on
the maximum density of the same species can be seen in
Figure 1 which shows the limiting line fitted to Pinus
elliottii MacMac using the 0.975 percentile data.

The limiting lines for the Pinus elliottii experiments in
MacMac and Kwambonambi are also shown in Figure 1,
with the log transformed variables. The lines are almost
parallel and the difference between the intercepts in
terms of maximum surviving trees for a given mean
diameter is considerable. For example, for a quadratic
mean dbh of 30 cm the maximum number of live trees is
estimated at N, =781116.5 - 30" >’ = 639 per ha in
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Kwambonambi and at N,., = 1063674.8 - 30~ 20 =
1032 in MacMac. Kwambonambi supports only 67
percent of the MacMac maximum and the difference
between the two sites, given a quadratic mean dbh of
30cm, is 1032-639 =393 P. elliottii trees per ha. The
growing conditions are very different. Considerably
more trees are able to survive on the cool mountain
site at MacMac than on the warm subtropical sandy
site at Kwambonambi.

Nilson’s sparsity

The parameters of Equation 3 can be estimated using data
from fully stocked, unthinned trials, again using specific
percentile values and the R library quantreg. The relations
are presented in Figure 2 and the corresponding equations
are:

Lmin = 0.4044 + D % 0.0870 for all Pinus elliottii experiments
(10)

Lmin = 0.4178 + D * 0.0980 for all Pinus patula experiments
(11)

The four coefficients are highly significant, and sur-
prisingly similar. The relationship between the mini-
mum average spacing and average tree size is assumed
to be linear, at least up to the point when the tree size
does not increase sufficiently, but mortality continues.
It appears that, after reaching an average dbh of about
60 cm, the trees start dying, not as a result of competition-
induced self-thinning, but possibly because of other
factors, such as failing defence mechanisms and reduced
ability to survive pathogen attacks.

Shvidenko et al. (2006) describe the development of
the number of trees per ha and the average tree diameter
for fully stocked Pinus sylvestris forests in the forest
tundra and northern taiga ecoregions in the European
part of Russia. These data show a linear relation between
L and D up to the age of 200 years. For the CCT data of
the two pine species, the relationships appears to be
linear up to a mean diameter of about 60 cm.

Tree survival
Survival functions (Equation 7) were fitted to different
planting densities of the two pine species in each of
the four CCT experiments listed in Additional file 3:
Table S3. Figure 3 presents examples of the fitted
functions involving Pinus elliotti with four different
planting densities of the CCT experiments MacMac
and Kwambonambi.

The parameter estimates of the 32 survival functions
are presented in Additional file 4: Table S4. The scale (b)
and shape (c) parameters of the Weibull distribution are
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linear functions of the number of planted trees per ha
and may be estimated using the following linear models:

In(c) = AC + BC * In(number of planted trees per ha) (12)
In(b) = AB + BB * In(number of planted trees per ha) (13)

The four parameters of these two equations are listed
for each of the 8 experiments in the last two columns of

Additional file 4: Table S4. These results show that the
Weibull function is suitable for estimating individual
tree survival for both species and planting densities be-
tween 2965 and 741 trees per ha.

This relationship is potentially useful in that it permits
estimating the lifetime distribution for a range of planting
densities. The probability of tree survival and tree mortal-
ity is affected by the planting espacement and as expected,
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Figure 3 Examples of tree survival functions fitted to four different planting densities of the Pinus elliottii CCT experiments MacMac
and Kwambonambi. The parameter estimates are listed in Additional file 4: Table S4.

the probability of tree survival is increasing with decreas-
ing number of planted trees per unit area. The peaks of
tree mortality occur earlier, and this effect is longer last-
ing, in the higher planting densities. These characteristic
differences are notable for both species and the entire
range of ages. It was also possible to relate the Weibull pa-
rameters to site index using the following linear equations
with both Pinus patula and P. elliottii data combined:

¢ = -1.611 + 0.2336 (SI20) (14)

b = 110.46 - 2.813 (SI20) (15)

The slope coefficients were significant in both equa-
tions, but the intercept was only significant in equation
(15). Interestingly, the response of the two species does
not appear to be different. However, it must be pointed
out again that the database is too limited to draw general
conclusions about the relationship between site index
and Weibull parameters.

Discussion and conclusions

The extensive South African spacing experiments,
maintained for rather long periods of time, provide
very important information for the scientific analysis of
maximum forest density and tree survival. The “limiting
line” approach presented in this study is an attempt to
describe the relationship between average tree size and
number of trees per unit area. Reineke proposed a slope

constant of -1.605 which has been widely accepted and
applied in many subsequent studies. Yoda’s 3/2 power
line of ecology represents a similar attempt to explain
self-thinning with a very simple model. Both models
have been questioned by a number of authors, including
Zeide (1985, 1987) and (Gadow 1986). This study has once
again confirmed that a generalisation of the Reineke expo-
nent cannot be substantiated by empirical observation,
and that any model should be examined under a variety of
specific conditions, before being labelled a “unified theory
of ecology”.

Nilson’s sparsity

Nilson (2006; see also Hilmi 1957) argues that the most
simple and logical relation is expected between variables
of the same dimension, which is not the case in the
Reineke model (Equation 1). For this reason, and because
of its simpler form, Equation (3) was thought to be prefer-
able when compared with Equation (1). A general discus-
sion on the assumption of linearity of Nilson’s sparsity is
not possible, because the CCT material does not cover the
seedling stage and stands older than about 60 years. The
tables published by Shvidenko et al. (2006) for Russian
Pinus sylvestris forests on site quality II show that Nilson’s
sparsity is linear up to the age of 180 years. However, the
available material shows that the assumption of linearity
cannot be confirmed for the Pinus patula CCT studies.
Considering the culmination of diameter increment of
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Russian P. sylvestris and the much faster growing P.
patula in South Africa one might expect that a deviation
from linearity, should it signify a general, species inde-
pendent pattern, could be induced at much higher ages in
P. sylvestris. It is known that stem diameter scales well
with crown extension and thus light competition and that
these relations are very species specific, at least for coni-
fers, which might affect the relationship.

Development of density over age

The maximum density of a planted forest is usually
unknown because of the high cost to obtain empirical
observations that permit a credible analysis of that elusive
natural phenomenon. In addition to the observations
about maximum density, the CCT experiments provide
information about the development of forest density.
The development of relative spacing, the average dis-
tance between the trees divided by the dominant
height, is shown in Figure 4.

The minimum relative spacing (RS) in the Pinus elliot-
tii experiment MacMac is 0.0752, observed at age 24.
The minimum RS in the P. patula experiment MacMac
is 0.095, observed at age 18. The maximum basal areas are
56.6 m*/ha at age 28 for P. patula MacMac 83.6 m*/ha at
age 24 for P. elliottii MacMac.

The nelder design
Maintaining a series of large field plots over long periods
of time is expensive. One attempt to reduce such high
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costs is the design proposed by Nelder (1962). The com-
pact Nelder design consists of a number of spokes of an
imaginary wheel with trees planted at different radial
distances, at the intersection of circular arcs and linear
spokes (Barry 2013). Parrot et al. (2012) discuss various
aspects of the Nelder design which allows the effects of
different planting densities to be examined in a single
experiment. The experimental unit in a Nelder design is
the individual tree and research usually involves to relating
the available growing area of each tree to growth rates or
tree architecture (Gaul and Stiiber 1996; Mabvurira
and Miina 2002; Aphalo and Rikala 2006). According
to Affleck (2001) the analysis of Nelder experiments is
problematic because the compact arrangement of trees
may result in significant correlations among neighbouring
variables. Hall (1994) notes that seedling survival is a pri-
mary concern when establishing Nelder plantings because
a major drawback of the Nelder design is the sensitivity of
the analysis to tree mortality (see also Stape and Binkley
2010).

The compact Nelder design, although having a cost
advantage, only presents observations about the rela-
tionship between available growing space, tree growth
and tree architecture. The Nelder wheel does not pro-
vide information about maximum density and the ana-
lysis is usually limited to the juvenile stage (Gaul and
Stiiber 1996). As mentioned before, data about the
maximum density of planted forests are very scarce be-
cause the cost of maintaining a series of unthinned,
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and three different planting densities (2965, 1483 and 741 trees per ha).
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densely-stocked and sufficiently large field plots over
long periods of time may be exorbitant. The CCT
experiments represents, therefore, a valuable source of
information for the analysis of maximum density and
tree survival. Surprisingly few studies have used these
unique datasets.

Risk and uncertainty

This contribution is part of a thematic series on risk and
uncertainty. It is therefore appropriate to relate the results
to the overall topic. The scientific analysis of risk and
uncertainty in the context of natural hazards had its
beginning at the turn of the 18 century, when cata-
strophic events were no longer considered simple acts
of destiny, but as relations of causes and effects (Weiss
2001). Plantation forest ecosystems have become an
important strategic resource in a number of countries.
Many industrial plantations are re-established after
clearfelling and never thinned, especially those grown
on short rotations and for maximum biomass, and
their development resembles that of the unthinned
CCT series. This study, therefore, contributes to a better
understanding of tree survival and maximum density
which are the key factors required for estimating risk and
uncertainty. The risk of tree mortality is not constant, but
varies with tree species, planting density, tree age and
growing site. For estimating that risk, therefore, continu-
ous long-term observation on different sites and with
varying planting densities, as provided by the unthinned
CCT series, are essential. Because of the particular risks
involved in overaged plantations, such observational stud-
ies should be maintained as long as possible, preferably
beyond the age of natural tree longevity.

Additional files

Additional file 1: Table S1. List of CCT experiments used in this study
and their approximate geograpical location indicated by the trial number
shown in the first column of the table on the left. MAT = mean annual
temperature (°C); MAP = mean annual precipitation (mm); SI20 = mean
height of dominant trees at age 20; Soil texture: Cl = clay, Lm = loam,

Sa = sand.

Additional file 2: Table S2. Left: Trees per ha planted for the CCT
unthinned pine series. Right: Map of the CCT spacing study at Nelshoogte.
The colored plots represent the unthinned series. Each of the four
replications of one planting espacement covers an area of 0.081 ha

(after Gadow and Bredenkamp 1992).

Additional file 3: Table S3. Parameter estimates for the limiting line
involving the entire dataset. All coefficients are highly significant. The
graph on the right shows the relationship between the SI20 and the
intercept of the limiting line for P. elliotti (circles) and P. patula (black
dots).

Additional file 4: Table S4. Weibull scale (b) and shape (c) parameters

for 32 survival functions fitted to four different planting densities of the
eight CCT experiments.
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