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Abstract

Background: Tectona grandis (teak) is one of the most important tropical timber species occurring naturally in
India. Appropriate growth models, based on advanced modeling techniques, are not available but are necessary for
the successful management of teak stands in the country. Long-term forest planning requires mathematical models,
and the principles of Dynamical System Theory provide a solid foundation for these.

Methods: The state-space approach makes it possible to accommodate disturbances and avarying environment. In
this paper, an attempt has been made to develop a dynamic growth model based on the limited data, consisting
of three annual measurements, collected from 22 teak sample plots in Karnataka, Southern India.

Results: A biologically consistent whole-stand growth model has been presented which uses the state-space
approach for modelling rates of change of three state-variables viz., dominant height, stems per hectare and stand
basal area. Moreover, the model includes a stand volume equation as an output function to estimate this variable
at any point in time. Transition functions were fitted separately and simultaneously. Moreover, a continuous
autoregressive error structure is also included in the modelling process. For fitting volume equation, generalized
method of moments was used to get efficient parameter estimates under heteroscedastic conditions.

Conclusions: A simple model containing few free parameters performed well and is particularly well suited to
situations where available data is scarce.
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Background
About the species and its distribution
Teak (Tectona grandis L. f.) is one of the most important
tropical timber species and is suitable for multiple end-
uses. The potential for growing and managing teak in
different ecological zones and under different situations is
being increasingly recognized, leading to intensive domes-
tication and cultivation of the species in countries/regions
beyond its natural habitat (Perez and Kanninen, 2003).
Teak occurs naturally in parts of India, Myanmar, Laos

and Thailand. It has been naturalized in Java, where it was
introduced about 400–600 years ago (Kadambi, 1972;
White, 1991). Early introductions of teak outside Asia were
made in Nigeria in 1902, with the first plantations being of
Indian origin and subsequently of Burmese origin (Horne,
1966). The first pure teak plantation in Tropical America
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was established in Trinidad in 1913. Teak planting in
Honduras, Panama, and Costa Rica started between 1927
and 1929 (Ball et al., 2000).
Teak is the world’s most cultivated high-grade tropical

heartwood, covering approximately 6.0 million hectares
worldwide (Bhat and Hwan Ok Ma, 2004). Of this, about
94% are in Tropical Asia, with India (44%) and Indonesia
(31%) contributing the bulk of the resource. Other coun-
tries like Thailand, Myanmar, Bangladesh and Sri Lanka
contribute significantly with 17% in total. About 4.5% of the
teak plantations are in Tropical Africa and the rest are in
Tropical America, mostly in Costa Rica and Trinidad and
Tobago (Pandey, 1998).
The most important teak forests in India are in Madhya

Pradesh, Maharashtra, Karnataka, Tamil Nadu and Kerala,
and also in Uttar Pradesh, Gujarat, Orissa and Rajasthan
(Troup, 1921). Plantations have also been made in Haryana,
West Bengal, Assam, Meghalaya and Dadra and Nagar
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Table 1 Summarized data of the sample plots used for
model development

Stand variable Mean Minimum Maximum SD

t (years) 29.20 11.00 38.00 5.52

N (trees ha−1) 980.98 498.00 2061.00 364.16

D (cm) 17.24 5.50 36.00 5.95
�h mð Þ 15.61 6.78 22.36 3.26

H (m) 19.28 10.71 28.43 3.73

B (m2 ha−1) 23.12 6.47 37.49 7.10

V (m3 ha−1) 195.04 21.47 412.09 82.59
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Haveli (Chakrbarti and Gaharwar, 1995). However, many
plantations are in a state of neglect.

Management of teak forests in Karnataka
The teak forests in India are managed based on the ap-
proved working plans (generally prescribed for ten years).
The rotation period prescribed for teak in Karnataka is
usually 120 years. The following mechanical (systematic;
row thinning) and silvicultural (selective) thinning regimes
are prescribed by the Karnataka State Forest Department.
First mechanical thinning in the 6th year

(retaining about 1700–1800 tree ha−1).
Second mechanical thinning in the 12th year (retaining

about 1000–1100 trees ha−1).
First silvicultural thinning in the 18th year

(retaining about 700–800 trees ha−1).
Second silvicultural thinning in the 30th year (retain-

ing about 500–550 trees ha−1).
Third silvicultural thinning in the 38th year (retaining

about 300–350 trees ha−1).
An elite thinning at the end of 80th year

(retaining about 150 trees ha−1).
However, this working plan prescription is not

strictly followed in most cases due to various rea-
sons. In some areas, trees are damaged bythe ele-
phants and these damaged trees may be extracted
every year.

Growth models
Reliable growth models are essential for effective long-
term planning and decision making. This is especially
important in intensively managed forest plantations,
where it is necessary to evaluate alternative planting dens-
ities, thinning regimes, and rotation lengths (Garcia et al.,
2011). Empirical models describe and generalize observed
stand behaviour. They can be accurate and highly suc-
cessful in fulfilling many of the forest manager’s needs
(Burkhart, 2008). However, they require extensive long-
term experimental data, and extrapolation to unobserved
situations can be uncertain. A theory-based model would
describe hypothesized behaviour by reasoning from first
principles. Theory-influenced semi-empirical models at-
tempt to be compatible with observations, while at the
same time use theoretical knowledge and hypotheses to
improve performance under conditions for which data are
scarce (Mohren and Burkhart, 1994).
In this paper, we present a biologically consistent

whole-stand growth model for teak using data from
the Karnataka State of Peninsular India. The main
motivation was to produce a simple and robust
base-line model for teak stands. The model uses the
state-space approach for modelling rates of change
of three state-variables: dominant height, number of
trees per hectare and stand basal area. Moreover, the
model includes a stand volume equation as an out-
put function to estimate this variable at any point in
time.
This research presents some new methodological

contributions for developing growth models based on
the state-space approach and differentiate from the past
work using similar approach (e.g. García et al., 2011) in
the sense that García et al. (2011) fitted each transition
function separately, however, in this study the transition
functions for mortality and basal area were fitted simul-
taneously using the full information maximum likelihood.
Also, autoregressive procedure has been used in the
present study to remove the problem of autocorrelation
inherent in the dataset from repeated measurements. Fur-
ther, volume equation was fitted using generalized method
of moments to obtain efficient parameter estimates under
heteroscedastic conditions even without estimating the
heteroscedastic error variance.

Methods
Data
The data used in this study were collected on 27 pure and
even-aged Teak research plots of different ages (11 to
38 years) and densities (498 to 2061 trees ha−1) established
in 2010 in stands representing five forest divisions in
Karnataka. The annual rainfall in these areas varies from
1600 mm to 4500 mm. The mean annual minimum and
maximum temperatures vary from 11°C to 38°C. The plots
are located throughout the teak growing areas in the state
and were selected to represent the existing range of ages,
stand densities and sites. The plots are rectangular and
their size ranged from 220 to 436 m2, depending on stand
density, in order to achieve a minimum of 30 trees per
plot. The diameter at breast height (dbh, 1.37 m above the
ground) was measured to the nearest 0.1 cm with digital
callipers in all trees in the plots. Total height was mea-
sured to the nearest 0.1 m with a digital hypsometer. Age
was calculated from the year of planting. The plots were
re-measured annually during 2010–2013 and a total of
three annual measurements were available for each plot.
The plot data includes: stand age (t, years), density

(N, trees ha−1), quadratic mean diameter (D, cm),
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average height �h;m
� �

, dominant height (H, m), de-
fined as the mean height of the 100 thickest trees
per hectare, basal area (B, m2 ha−1) and total stand
volume (V, m3). Total stand volume was calculated
from a compatible tree volume equation (Tewariet al.,
2013). The summary statistics of these stand variables
are shown in Table 1. Although, the mechanical (sys-
tematic) and silvicultural (selective) thinnings are pre-
scribed in the forest management working plans, however,
thinning was carried out only in one stand. Moreover, an
exhaustive examination of the data was carried out to re-
ject sample plots on which illegal logging had been de-
tected to make sure that the reduction in number of trees
observed were due to natural mortality.
Model structure
Out of the 27 plots, 5 plots, on which illegal logging
had been detected, were excluded from the analysis.
The dynamic growth model developed from these
data is based on the state-space approach and it
is similar to those of García (2011), García et al.
(2011) and García (2013). In this model it is as-
sumed that the behaviour of any stand of teak evol-
ving in time can be approximated by describing its
current state with four state variables: dominant
height (H), number of trees per hectare (N), basal
area (B), and a measure of site occupancy (Ω), using
transition functions to estimate the change of states
as a function of the current state of the variables.
The transition functions are used to predict the

growth by updating the state variables, ensuring two
natural properties (García, 1994): (i) consistency,
meaning no change for zero elapsed time; (ii) path-
invariance, where the result of projecting the state
first from t0 to t1, and then from t1 to t2, must be
the same as that of the one-step projection from t0
to t2. Transition functions generated by integration of
differential equations (or summation of difference equa-
tions when using discrete time) satisfy these conditions
and allow computing the future state trajectory. These
properties can also be achieved by using techniques for
dynamic equation derivation known in forestry as the Al-
gebraic Difference Approach (ADA; Bailey and Clutter,
1974) or its generalization (GADA; Cieszewski and Bailey,
2000).
Transition function for dominant height
The two-site-specific parameter equation, derived from
the Korf base model and proposed by Tewari et al.
(2014), was used as transition function for dominant
height. The GADA model allows simultaneous concur-
rent polymorphism and multiple asymptotes, two char-
acteristics of site equations that are sometimes desirable
(Cieszewski, 2002). The mathematical expression of this
model is

H2 ¼ exp X0ð Þ exp − 13:6964þ 22:3517=X0ð Þt2−1:2229ð Þ with

X0 ¼ 1
2t1

−1:2229
13:6964þ t11:2229 ln H1ð Þþ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
89:4068t11:2229 þ 13:6964þ t11:2229 ln H1ð Þð Þ2

q !

ð1Þ

where, H1 and t1 represent the predictor height (meters)
and age (years), and H2 is the predicted height at age t2.

Transition function for mortality
Natural mortality or survival is extremely variable and,
particularly difficult to predict. The mortality transition
function is based on assuming that the rate of change of
N relative to dominant height increment depends on the
current values of H and N:

dN
dH

¼ −a1Ha2 Na3 ð2Þ

where, N is number of trees ha−1, H is the dominant
height and ai are parameters to be estimated.
Grouping the terms of equation (2) and integrating

both sides gives the following invariant:

dN
Na3

¼ −a1Ha2 dH ⇒N1−a3−
a1 a3−1ð Þ
a2 þ 1

Ha2þ1 ¼ constant

ð3Þ

Equating the invariant for times 1 and 2 gives the fol-
lowing transition function for number of trees ha−1:

N2 ¼ N1−a3
1 þ a1

a3−1
a2 þ 1

Ha2þ1
2 −Ha2þ1

1

� �� �1= 1−a3ð Þ

ð4Þ

This predicts N2 at a height H2 given any initial values
(H1; N1). Equation (4) was fitted using two different
approaches. In the first case, no parameter restrictions
were assumed while in the second case, parameter re-
strictions were obtained by assuming limiting values for
the slope of the self-thinning lines based on the average
square spacing S ¼ 100=

ffiffiffiffi
N

p
(Garcia, 2009). The rate of

change of average square spacing relative to dominant
height increment depends on the initial values of the
same variables:

dS
dH

¼ βγ
Hγ−1

Sα−1
ð5Þ

Integrating equation (5) and taking logarithms, the
following invariant is obtained:
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Sα ¼ α

γ
βHð Þγ ⇒ α log 100ð Þ− α

2
log Nð Þ ¼ log α=γð Þ

þ γ log βð Þ þ γ log Hð Þ⇒
⇒ log Nð Þ ¼ −2

γ

α
log Hð Þ þ constant

ð6Þ

Any limiting value assumed for 2γ/α in equation (6)
represents the slope of the self-thinning line assumed
for the species. Comparing with equation (3), the follow-
ing relationship is obtained:

−2
γ

α
¼ a2 þ 1

1−a3
ð7Þ

This relationship could be useful to estimate the
parameters of the mortality transition function when the
available data is limited, to assure a biologically consist-
ent behaviour (García, 2009). Values of 2 and 3 were
assumed for the -2γ/α ratio, i.e. for the slope of the self-
thinning line.

Transition function for basal area
Instead of predicting basal area (B) directly, we choose
to model growth of the product W = BH. The rate of
change of W can be expressed as the difference between
two components: the gross increment and the mortality.
In pure and even-aged stands (such as those considered
in this article), the gross increment can be written as
b1ΩHNb2, where Ω is a relative occupancy factor that
reduces growth in young or recently thinned stands that

do not still fully occupy the site. The mortality as −k W
N

dN
dH ¼ −kW d logN

dH , where k represent the mean size of
dying trees relative to the mean size of the survivors,
considered as constant. Therefore, the general W growth
model is:

dW
dH

¼ b1ΩHNb2 þ kW
d logN
dH

ð8Þ

A simple closed-form solution of the differential
equation (8) can be achieved in the special case where b2
is equal to k:

dW
dH

¼ b1ΩHNk þ kW
d logN
dH

ð9Þ

Intuitively, Ω represents resource (e.g. light, nutrient,
moisture) interception. In the beginning, occupancy is
low in young stands, and gradually increases approa-
ching 1 when canopy closes. We assume that the rate of
closure initially depends on H in the same way as the
gross increment, and decreases to zero as full closure is
approached.
dΩ
dH

¼ c1H 1−Ωð Þ ð10Þ

Integration gives the invariant:

1−Ωð Þ exp c1H
2=2

� � ¼ constant ð11Þ
With this occupancy model, integration of equation

(9) gives the transition equation for basal area:

B2 ¼ Nk
2 B1H1N

−k
1 þ b1 H2

2−H
2
1

� �
=2− Ω2−Ω1ð Þ=c1

� �� �
=H2

ð12Þ
with

Ω2 ¼ 1− exp −c1 H2
2−H

2
1

� �
=2

� �
1−Ω1ð Þ ð13Þ

In order to understand the methodology and the
derivation of the transition equation for basal area, the in-
tegration of the differential equation (9) has been provided
as Appendix.

Total stand volume equation
Volumes per hectare can be estimated given the state
variables using an output function. Two different total
stand volume equations were fitted using as independent
variables dominant height and basal area.

V ¼ e1 þ e2HB ð14Þ
V ¼ e1H

e2Be3 ð15Þ
These models have been widely used to estimate total

stand volume (see, for instance, Husch et al., 2003; van
Laar and Akça, 2007; Weiskittel et al., 2011).
The models were fitted using the generalized method

of moments (GMM) in the MODEL procedure of SAS/
ETS® (SAS Institute Inc., 2008). This method produces
efficient parameter estimates under heteroscedastic condi-
tions, without estimating the heteroscedastic error variance
(Greene, 2012). The main drawback of this method is that
error estimates for the predictions can not be generated
without specifying the error structure (Parresol, 2001).

Parameter estimation and model selection
The model was fitted based on projections over pairs of
consecutive measurements. Since the transition function
for dominant height was fitted previously, the observed
dominant heights in the database were substituted by
the predicted values of this model in order to include
the error of estimations in the whole-stand growth
model. It was considered convenient to initialize the
state variables at breast height, where H = 1.37 and B = 0
are known. The number Nb of trees per hectare at this
time was estimated by applying an 82.5% survival (since
the survival rate observed after one year of planting in
these stands was 80-85%) to the density from the
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spacing adopted at the time of planting which was 2 ×
2 m except for one plot in which it was 1.5 × 1.5 m. Fol-
lowing Garcia (2011), the occupancy was initialized at
breast height as:

Ωb ¼ 1− 1−min Nb=c2; 1f gð Þc3 ð16Þ

where, ci are parameters to be estimated; c2 represents a
breast-height density at which the stand would be fully
closed.
García et al. (2011) fitted each transition function

separately. Here the transition functions for mortality
and basal area were fitted simultaneously using the full
information maximum likelihood (FIML) in order to
obtain estimates that are consistent and efficient and
contribute in increased precision of model predictions.
Since the convergence with this approach is very sen-
sitive to the starting values of the parameters, both
transition functions were first fitted separately to get
the best set of initial values.
Individual tree forest growth and yield models usually

employ a set of equations to describe stand development
over time. It is not unusual in the forestry literature to
treat the same variable as dependent in one equation
and independent in another. When a variable is used as
both an endogenous (dependent) variable on the left-
hand side of one equation and on the right-hand side of
another equation, this renders the system of equation
simultaneous (Goldberger, 1964). In the present study,
mortality is used as dependent variable in equation (4)
and as an independent variable in equation (12), making
the system of equations simultaneous. Simultaneous re-
gression techniques lead to more efficient estimators. A
gain in efficiency increases the precision of the resulting
model predictions. The gain in efficiency is higher when
the errors among different equations are highly corre-
lated (Judge et al., 1988).
The error was modelled using a continuous autoregres-

sive error structure (CAR(×)), which accounted for the
time between measurements. Age at breast height was
estimated using an iterative procedure based on the tran-
sition function of dominant height previously described.
Different ages at breast height were used to estimate the
dominant heights at the age of plots measurements and
the age which minimized the sum of squares of the differ-
ences between observed and predicted dominant heights
was selected as age at breast height. Those ages were only
used to obtain correct consistent estimates of the parame-
ters and their standard errors.
Estimation of the parameters was carried out with the

MODEL procedure of SAS/ETS® (SAS Institute Inc., 2008).
The CAR(×) error structure was programmed in this pro-
cedure which allows for dynamic updating of the residuals.
The comparison of the estimates for the different
models was based on numerical and graphical analyses
of the residuals. Two statistical criteria were examined:
adjusted model efficiency (MEadj) and root mean square
error (RMSE). The expressions of these statistics are
summarized as follows:

MEadj ¼

Xn
i¼1

yi−ŷið Þ2= n−pð Þ
Xn
i¼1

yi−�yð Þ2= n−1ð Þ
ð17Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Y i−Ŷ i
� �2
n−p

vuuuut ð18Þ

where, yi, ŷi and �y are the observed, estimated and mean
values of the dependent variable, n is the total number
of observations used to fit the model, and p is the num-
ber of model parameters.
In addition to the validation of individual components

of the dynamic growth model, overall validation of the
whole model was carried out. All possible combinations
of inventories were used and the observed H, N and B
values from the first inventory were used to estimate
total stand volume at the age of the last inventory, inclu-
ding all the components of the whole stand model. In
order to evaluate whether the model performs accept-
ably well when used for estimating total stand volume, a
critical error, expressed as a percentage of the observed
mean, was computed (Reynolds, 1984):

Ecrit: ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2
Xn
i¼1

yi−ŷið Þ2=χ2crit:
s

�y
ð19Þ

where, n is the total number of observations in the data
set, yi, ŷi and �y are the observed, predicted and mean
values of total stand volume, and τ is a standard normal
deviate at the specified probability level (τ = 1.96 for α =
0.05). χ2n is obtained for α = 0.05 with n degrees of free-
dom. In addition to using this statistic, the plot of ob-
served against predicted values of the total stand volume
was also inspected.

Results and discussion
At first, the transition functions for mortality and basal
area were fitted separately using nonlinear least squares
and without assuming autocorrelation. However, a slight
trend in residuals as a function of lag1 residuals within
the same sample plot was apparent in all the models.
Then, all the models were refitted using a first-order
continuous-time autoregressive error structure. After



Figure 1 Basal area residuals versus basal area Lag1-Residuals for equation (12) fitted without taking into account autocorrelation
(left) and fitted using a first-order continuous time autoregressive error structure (right).

Tewari et al. Forest Ecosystems 2014, 1:9 Page 6 of 10
http://www.forestecosyst.com/content/1/1/9
applying this correction, the error trends in residuals
disappeared (Figure 1).

Separate fitting
Three transition functions for mortality were analyzed
and the results are presented in Table 2. The first one is
based on equation (4) without assuming any restrictions
for the parameters and the other two are based on
assuming values of 2 and 3 for the slope of the self-
thinning line according to equation (7). The three models
explained more than 98% of the total variance, calculated
without considering the initialized point at breast height,
and the model with a value of 2 for self-thinning line
resulted in the best values of the goodness-of-fit
statistics.
Natural tree mortality is a complex process that is

neither constant in time nor in space, so it is difficult to
predict or explain the factors that control it (Van Laar
and Açka, 2007). Data from permanent sample plots fre-
quently show that a relatively large part of the plots have
no occurrences of mortality even over periods of several
years and sometimes an important reduction in trees per
hectare occurs in short periods of time (e.g. Monserud
and Sterba, 1999; Eid and Tuhus, 2001). Therefore, for a
correct mortality modeling, an adequate combination of
short and long intervals between measurements is essen-
tial. The time interval between consecutive measurements
Table 2 Parameter estimates for the mortality transition func
without considering the initialized point at breast height

Parameters

Model a1 a2

3 parameters 8.43 × 10−10 1.8792
a2þ1
1−a3

¼ 3* 1.94 × 10 −7 2.0681
a2þ1
1−a3

¼ 2* 1.66 × 10−8 1.8703

*indicated the parameter value was fixed in the model, therefore, it was not estima
of the database used in this study is one year and the
models fitted show a good performance for these short pe-
riods, within the age interval covered in the sample plots.
However, the behavior of the models for long periods pro-
jected from the breast age showed high levels of mortality
(Figure 2).
The results of the fitting of the basal area transition

function are shown in Table 3. It was not possible to
obtain convergence or reasonable estimates with all the
parameters. Therefore, as in Garcia et al. (2011), we
fixed c3 in equation (16) with the value 2.4 and c2 in the
same equation with the value 10000, implying full canopy
closure at breast height with 10000 trees ha−1. It had been
shown that these values are not critical (García, 2011;
García et al., 2011).
In a first step, the model (Equation 12) was fitted with-

out assuming any other restriction for the remaining three
parameters (k, b1 and c1), however, unrealistically small
values for parameters k and c1 (0.2121 and 0.0369, respect-
ively) were obtained. In a second step, the transition func-
tion was fitted assuming a value of 0.4 for parameter k
(García, 2011), however, the graphical representation indi-
cated that the estimated value of c1 was unrealistic again
(0.0239). Finally, the model was fitted assuming k = 0.4
and two different values for c1, 0.05 and 0.01. Figure 3
shows occupancy curves for various values of c1 generated
with equation (13), starting from 2062 trees per hectare at
tion (Equation 4) and goodness-of-fit statistics calculated

Goodness-of-fit statistics

a3 RMSE Adj. model efficiency

2.8462 43.1573 0.9845

2.0227 39.7096 0.9869

2.4352 38.2869 0.9881

ted.



Figure 2 Data and mortality models. Projections starting from H = 1.37 m and N1 equal to 1000, 2000 and 3000 trees per hectare.
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breast height. Also shown is the relative closure, R, which
can be seen as representing the amount of foliage and
roots relative to that of a closed stand. Closure and occu-
pancy are related by Ω ¼ 1− 1−Rð Þc3 . Both selected values
for c1, 0.05 and 0.1 seem reasonable, implying nearly
closed canopies somewhere between 5 and 10 m top
height. Or seen in another way; an equilibrium canopy
depth of 5 to 10 m. The best goodness-of-fit statistics
was obtained constraining c1 to 0.05 and this value was
used in the simultaneous fitting. The model explained
more than 99% of the total variance, calculated without
considering the initialized point at breast height.
Simultaneous fitting
The results of the simultaneous fitting of both transition
functions (Equation 4 for mortality and Equation 12 for
Table 3 Parameter estimates for the basal area transition
function (Equation 12) and goodness-of-fit-statistics
calculated without considering the initialized point at
breast height

Parameters Goodness-of-fit statistics

k c1 b1 RMSE Adjusted model efficiency

0.2122 0.0369 0.6270 0.5638 0.9939

0.4* 0.0239 0.1844 0.6998 0.9906

0.4* 0.1* 0.1648 0.5636 0.9939

0.4* 0.05* 0.1706 0.6597 0.9917

*indicated the parameter value was fixed in the model, therefore, it was not
estimated.
basal area) are shown in Table 4. Finally, two total stand
volume equations were fitted separately. All the parame-
ters were significant except for the intercept of equation
(14). Both models performed equally good, although the
best statistical criteria were obtained with equation (15)
which explained more than 97% of the total volume vari-
ability with a root mean square error of 13.34 m3 ha−1.
The final expression of the dynamic model is as follows:

N2 ¼ N−1:4352
1 þ 0:835⋅10−9 H2:8703

2 −H2:8703
1

� �� �−0:6968
ð20aÞ

B2 ¼ N0:4
2 ðB1H1N

−0:4
1 þ 0:1663½ H2

2−H
2
1

� �
=2

− Ω2−Ω1ð Þ=0:1�Þ=H2

ð20bÞ

Ω2 ¼ 1− exp −0:1 H2
2−H

2
1

� �
=2

� �
1−Ω1ð Þ ð20cÞ

Ωb ¼ 1− 1−min Nb=10000; 1f gð Þ2:4 ð20dÞ
V ¼ 0:4628H0:8063B1:1547 ð20eÞ

Evaluation
Critical errors of 1.11%, 3.45% and 8.9% were obtained
for total stand volume at time intervals of 1, 2 and
3 years. The critical errors obtained with the proposed
model are lower compared to that obtained for project-
ing total stand volume in Scots pine (15.3%) in Galicia
(Diéguez-Aranda et al., 2006) and the ones obtained for
the same stand variable in radiata pine (10.9%, 11.9%
and 17.3%) in Galicia, considering time intervals of 3, 6
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and 9 years, respectively (Castedo-Dorado et al., 2007).
However, the models used for Scots pine and radiata
pine in Galicia included projection intervals longer than
those used in this study. Considering the required accur-
acy in forest growth modelling, where a mean prediction
error of ±10–20% is generally acceptable (Huang et al.,
2003), it may be stated that the dynamic model provides
satisfactory estimates within the range of ages and the
projection intervals observed.
A plot of observed against predicted values of total

stand volume, estimated using the whole dynamic stand
growth model, is shown in Figure 4. The linear model
fitted to the scatter plot behaved well (R2 = 0.9743),
although there appears to be a slight tendency towards
underestimation for low volumes and overestimation for
high volumes.
Table 4 Parameter estimates for the transition functions
in mortality and in basal area (Equations 4 and 12,
respectively) obtained by fitting the models simultaneously

Model Parameter Estimate RMSE Adjusted model
efficiency

Equation (4)
a2þ1
1−a3

¼ 2*
a1 1.67 × 10−8 38.3550 0.9877

a2 1.8703

a3 2.4352

rho 0.0684

Equation (12) k 0.4* 0.5731 0.9937

c1 0.1*

b1 0.1663

rho 0.0504

The goodness-of-fit-statistics were calculated without considering the initialized
point at breast height.
*indicated the parameter value was fixed in the model, therefore, it was
not estimated.
Conclusions
Forest management planning relies heavily on mathemat-
ical models that involve time. Modern dynamical system
theory provides a framework for a flexible representation
of varying environments, as well as of responses to inten-
sive silviculture and natural disturbances.
A biologically consistent whole-stand growth model

has been presented for teak stands in Karnataka State of
India. The transition functions for mortality and basal
area were fitted simultaneously, using the full informa-
tion maximum likelihood, which produced consistent
and efficient estimates contributing to increased precision
of model predictions. Also, autoregressive procedure was
Figure 4 Plot of observed versus predicted values of total stand
volume. The solid line represents the linear model fitted to the scatter
plot of data and the broken line is the 1:1 line.
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used to avoid the problem of autocorrelation inherent in
the dataset from repeated measurements. The dynamic
model presented provides satisfactory estimates within the
range of ages and the projection intervals observed. The
total volume equation was fitted generalized method of
moments which produced efficient parameter estimates
under heteroscedastic conditions even without estimating
the heteroscedastic error variance. There was a slight
tendency towards underestimation for low volumes and
overestimation for high volumes.
A simple dynamical model for even-aged stands was

used which performed very well. Confidence in extrapo-
lations outside the scope of the observations is improved
by following generally accepted biological principles. Ap-
plication of similar models to other species and localities
seems promising, in particular for data-poor situations
where a small number of free parameters are desirable
(Murray and von Gadow, 1993; Vanclay, 2010).
The presentation in this paper is a good demonstration

of developing a dynamic growth model with limited
data. There are some deficiencies in the use of the data
and choice of models and methods that could be im-
proved. In the future, more extensive data, both from
unthinned and thinned stands covering wider range of
ages, densities and site qualities, would allow a more ro-
bust model to be developed, that could be extended to
model the effects of climate and nutrition, and biomass
and carbon outputs.
Appendix
Solution of the differential equation (9)

dW
dH

¼ b1ΩHNk þ kW
d logN
dH

¼ b1ΩHNk þ k
W
N

dN
dH
ðaÞ

Solving equation (11) by Ω and substituting in equation
(a) gives the relationship:

dW
dH

¼ b1HNk 1− exp −c1H2=2
� �� �þ k

W
N

dN
dH

ðbÞ

Integrating equation (2) the following relationship is
obtained:

dN
Na3

¼ −a1Ha2dH⇒N ¼ a1 a3−1ð Þ
a2 þ 1

Ha2þ1

� � 1
1−a3 ðcÞ

Substituting this relationship in equation (2) and multi-
plying in both sides by 1/N:
1
N
dN
dH

¼ −a1Ha2Na3−1 ¼ −a1Ha2 a1 a3−1ð Þ
a2 þ 1

Ha2þ1

� �a3−1
1−a3

¼ −
a2 þ 1
a3−1ð ÞH

ðdÞ
Substituting equations (c) and (d) in equation (b):

dW
dH

¼ βHαþ1 1− exp −c1H2=2
� �� �þ α

W
H

⇒
dW
dH

−α
W
H

¼ βHαþ1 1− exp −c1H2=2
� �� �

with α ¼ −
k a2 þ 1ð Þ
a3−1

and β ¼ b1
a1 a3−1ð Þ
a2 þ 1

� � k
1−a3

ðeÞ
Multiplying equation (e) by H–α:

dW
dH

H−α−α
W
H

H−α ¼ βH 1− exp −c1H2=2
� �� � ðfÞ

Integrating both sides of equation (f ) respect to dH:

WH−α ¼ β

Z
HdH−

Z
H exp −c1H2=2

� �
dH

� �
⇒
WH−α

β

¼ H2

2
þ 1
c1

exp −c1H2=2
� �þ cte

� �
ðgÞ

Substituting α and β in the left side and Ω in the right
side of equation (g) the following invariant is obtained:

WH−α

β
¼ W

1

b1
a1 a3−1ð Þ
a2þ1 Ha2þ1

h i k
1−a3

¼ WN−k

b1
⇒WN−k−b1

H2

2
−
Ω

c1

	 

¼ constant

ðhÞ
And taking into account that W = BH, the transition

function for basal area (Equation 12) is obtained:

B2 ¼ Nk
2 B1H1N

−k
1 þ b1 H2

2−H
2
1

� �
=2− Ω2−Ω1ð Þ=c1

� �� �
=H2
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