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Abstract

Background: We used mixed models with random components to develop height-diameter (h-d) functions for
mixed, uneven-aged stands in northwestern Durango (Mexico), considering the breast height diameter (d) and stand
variables as predictors.

Methods: The data were obtained from 44 permanent plots used to monitor stand growth under forest management
in the study area.

Results: The generalized Bertalanffy-Richards model performed better than the other generalized models in predicting
the total height of the species under study. For the genera Pinus and Quercus, the models were successfully calibrated
by measuring the height of a subsample of three randomly selected trees close to the mean d, whereas for species of
the genera Cupressus, Arbutus and Alnus, three trees were also selected, but they are specifically the maximum,
minimum and mean d trees.

Conclusions: The presented equations represent a new tool for the evaluation and management of natural forest in
the region.
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Background
Most forests in Durango State (Mexico) are comprised of a
mixture of species of the genera Pinus and Quercus with an
irregular distribution of trees of all size classes. However,
species of the genera Arbutus and Juniperus are also found
in most of these forests (Wehenkel et al. 2011). These for-
ests, which cover an area of 5.4 million ha, are considered
as the primary forest reserve at a national level, and they
provide almost a quarter of the national forest production
in Mexico (SRNyMA 2006). The forests also play an im-
portant role in providing environmental services, such as
protection against soil erosion, biodiversity conservation,
carbon capture and protection of water reserves; they also
provide recreational areas and represent an important
source of income for their owners and local inhabitants.
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Forest management requires prediction tools that provide
detailed information about the development of mixed,
uneven-aged stands. Growth and production models are the
most commonly used tools for this purpose. When the
breast height diameter (d) and total height (h) are
known, application of these models is relatively easy
(Sharma and Parton 2007). Measuring diameter is sim-
ple, accurate and inexpensive, whereas measuring
height is relatively more complex, time-consuming and
expensive. Therefore, height-diameter (h-d) functions
are often utilized, so that the height of an individual
tree can be predicted only from the diameter. These re-
lationships are also very useful for estimating individ-
ual volume, site index and for describing growth and
production in forest stands over time when the height is
not measured (Curtis 1967).
Most h-d functions have been developed for forest

plantations (e.g. Soares and Tomé 2002; López Sanchez
et al. 2003). However, the relationship between the diameter
and height of a tree varies between stands (Calama and
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Montero 2004) because it depends on stand characteristics
such as density and site index (Sharma and Zhang 2004).
Moreover, the h-d relationship also varies over time within
the same stand (Curtis 1967). Such considerations indicate
that stand variables should be used to construct generalized
functions that represent all possible conditions in forest
stands (Temesgen and Gadow 2004). This is particularly
important in mixed, uneven-aged stands in which different
species, ages, structures and levels of competition coexist
(Vargas-Larreta et al. 2009).
The hierarchical structure of h-d data (i.e. trees grouped

in plots and plots grouped in stands) results in a lack of
independence between measurements because the obser-
vations in each sampling unit will be correlated (Gregoire
1987). Mixed models have been successfully used to address
this type of problem (e.g. Lappi 1997; Calama and Montero
2004; Castedo Dorado et al. 2006). This approach simul-
taneously estimates fixed parameters (parameters that are
common to the entire population) and random parame-
ters (parameters that are specific to each plot) within the
same model and enables the variability between plots of
the same population to be modelled.
The objectives of this study were as follows: i) to compare

different local h-d equations for the mixed, uneven-aged
forests in north-western Durango; ii) to develop new gen-
eralized h-d equations for different groups of species
based on the best local model previously fitted iii) to use
the local and the generalized equations to study the
capacity of mixed models to explain the variability in
the h-d relationship; and iv) to determine the most suit-
able size and type of sample for calibrating the functions
fitted with mixed models.

Methods
Study area
The study was carried out in the Ejido San Diego de
Tezains, Municipality of Santiago Papasquiaro, Durango
State, Mexico (between 105° 53′ 36″ and 106° 12′ 40″ W
and 24° 48′ 16″ and 25° 13′ 32″ N). The predominant
vegetation in the area is mixed, uneven-aged forests of
Pinus and Quercus. The altitude above sea level of the
study area varies between 1,400 and 3,000 m. The pre-
vailing climate is temperate: the annual precipitation
ranges between 800 and 1,100 mm and the mean annual
temperature varies between 8°C in the highest elevations
and 24°C in the lowest elevations (García 1981).

Data
The data were obtained from 44 permanent plots used
to monitor the growth and production of the forests in
the Ejido San Diego de Tezains. These plots, which were
established in 2008, were selected with the aim of
representing all types of vegetation, site qualities and
diameter distributions in managed stands. The plots,
of size 50x50 m, are distributed under a systematic grid
sampling approach that varies between 3 and 5 km,
and will be remeasured at 5 year intervals. We recorded
the following main variables: number of trees, species
code, breast height diameter at 1.3 m (d, cm), total tree
height (h, m), azimuth (°) and radius (m) from the centre
of the plot (point where the diagonals cross) towards all
trees of breast height diameter ≥5 cm.
The database included 25 species, which were classified

on the basis of their growth patterns into the following
13 groups for posterior analysis: 1 (Pinus arizonica), 2
(P. ayacahuite), 3 (P. durangensis), 4 (P. herrerae), 5
(P. lumholtzii), 6 (P. teocote), 7 (P. douglasina), 8 (Quercus
sideroxyla), 9 (other species of Quercus: Q. arizonica, Q.
mcvaughii, Q. durifolia, Q. crassifolia, Q. jonesii, Q. rugosa
and Q. laeta), 10 Pinus species (all species of the genus
Pinus [codes 1 to 7]), 11 Quercus species (all species of
the genus Quercus [codes 8 and 9]), 12 other conifer spe-
cies (Juniperus deppeanna, J. durangensis and Cupresus
lusitanica) and 13 other broadleaf species (Arbutus ari-
zonica, A. bicolor, A. madrensis, A. tesselata, A. xalapensis
and Alnus firmifolia).
We examined the distribution of the pairs of h-d data

for each species or group graphically to identify any pos-
sible anomalies. As extreme data points were observed, a
systematic approach, similar to the one proposed by Bi
(2000) for detecting abnormal data points, was applied
to increase the efficiency of the process. A local quadratic
equation with a smoothing parameter of 0.25 (selected after
iterative fitting and visual examination of the smoothed
curves for different smoothing parameters overlaid on the
data), was fitted for each of the species or group. In this
approach, the number of extreme values accounted for
about 1% for all species together, which were excluded
from the database used for fitting the equations. The main
descriptive statistics for the breast height diameter and the
total height of the main groups that included the species
under study are shown in Table 1.
The following stand variables were calculated from the

trees registered in each plot: number of trees per hectare
(N, trees ha-1), stand basal area (G, m2 ha-1), mean
square diameter (dg, cm), dominant height (estimated
as the mean height of the 100 largest diameter trees
per hectare, independently of the species [H0, m]), domin-
ant diameter (estimated as the mean diameter of the 100
largest diameter trees per hectare, independently of
the species [D0, cm]) and Hart’s index (%) estimated as

follows: HI ¼ 10000 ffiffiffi
N

p � H0

.
.

Comparison of equations
We selected a total of 27 local equations (Huang et al.
2000) for data fitting. We also studied the relationship
between the stand variables and the parameters of the



Table 1 Summary statistics of the database used in fitting the h-d equations

Group Plots Number of
observations

d (cm) h (m)

Mean Max. Min. SD Mean Max. Min. SD

Pinus species 44 4033 18.0 99.5 6.9 11.0 12.1 38.1 2.3 5.7

Quercus species 44 1801 18.4 90.0 6.1 10.8 8.7 29.8 1.8 4.2

Other conifer spp. 31 188 17.6 75.0 7.5 12.2 7.9 16.5 2.5 2.9

Other broadleaf spp. 38 302 16.7 56.5 7.3 9.5 6.6 14.0 2.2 2.3

SD: standard deviation.
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local equations that best described the h-d relationship,
with the aim of improving the accuracy of the equation
and developing new generalized functions.
For preliminary selection, we used ordinary non-linear

least squares (ONLS) to fit each of the local equations to
the data from the 13 established groups, with the MODEL
procedure in SAS/ETS® statistical software package (SAS
Institute Inc 2008). We evaluated the goodness of fit of
the models by graphical analysis and by considering the
following statistics, calculated from the residuals: root
mean square error (RMSE), the coefficient of determination
(R2), bias, and Bayesian information criterion (BIC; Schwarz
1978). We used the following formulae to calculate these
statistics:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXi¼n

i¼1
hi−ĥi

� �2

n−k

vuut
ð1Þ

R2 ¼ 1−

Xi¼n

i¼1
hi−ĥi

� �2

Xi¼n

i¼1
hi−�h
� �2

2
64

3
75 ð2Þ

Bias ¼
Xi¼n

i¼1
hi−ĥi

� �
n

ð3Þ

BIC ¼ n ln
Xi¼n

i¼1
hi−ĥi

� �2
= n−kð Þ

� �
þ k⋅ ln nð Þ ð4Þ

where hi, ĥi and �h are the observed and estimated
heights and the mean of the observed heights, respectively;
n is the number of observations used in the fitting; k is the
number of parameters in the equation, and ln is the natural
logarithm.
As each local equation has different strengths and weak-

nesses, which may lead to different goodness-of-fit results
for each group of species, we used a Qualification Index
(QIt) to evaluate the goodness of fit by considering the
values of R2 (with high values representing good fits), Bias
(with low absolute values representing good fits) and
RMSE and BIC (with low values representing good fits).
For this index, a value of 1 is assigned to the equation
that was best for each group of species and a value of 0
to the others. The qualifications obtained for each
equation and statistics were then summed as follows:
QItotal ¼ ∑

i
∑
j
QIij ; where QIij is the qualification for the

j-th goodness of fit criterion in the i-th group of
species.
For the local equation for which the QItotal was highest

for the defined groups, we used graphical analysis and
the CORR procedure in SAS (SAS Institute Inc 2008) to
analyse the relation between each of the parameters and
the main stand variables, with the aim of testing different
forms of generalized equations.

Effect of mixed models
The h-d observations made in plots and stands may be
highly correlated, thus violating the principle of independ-
ence of error terms (Calama and Montero 2004). One
procedure used to deal with correlated observations is to
fit mixed models, in which the variability between the
sampling units can be explained by including random
parameters, which are estimated at the same time as the
fixed parameters (Lappi 1997; Calama and Montero 2004).
Basically, the parameter vector of a non-linear mixed

model can be defined as follows (Pinheiro and Bates 1998):

Φj ¼ Ajλþ Bjbj ð5Þ
where Φj is the parameter vector r × 1 (where r is the
total number of parameters in the model) specified for
the j-th plot, λ is the vector p × 1 of the common fixed
parameters for the whole population (p is the number of
fixed parameters in the model), bj is the vector q × 1 of
the random parameters associated with the j-th plot (q is
the number of random parameters in the model), Aj and
Bj are matrices of size r × p and r × q for specific and
random effects for the j-th plot, respectively.
The basic theory of non-linear mixed models says that

the residual vector ( êij ) and the random effects vector
(bj) are often assumed to be uncorrelated and normally
distributed with mean zero and variance-covariance
matrices Rj and D, respectively. The residual vector repre-
sents within subject (e.g., plot) variability and the random
effects vector represents between subject variability (Littell
et al. 1996).
We constructed the non-linear mixed effects model by

selecting the local and generalized equations that yielded



Table 2 Qualification index for the 8 best local equations
for the 13 groups of species

Equation Qualification index (QIij) QItotal %

R2 RMSE Bias BIC

Bates and Watts (1980) 0 1 1 1 3 5.8

Meyer (1940) 0 1 0 3 4 7.7

Stage (1975) 1 3 0 4 8 15.4

Logarithmic 0 0 0 1 1 1.9

Wykoff et al. (1982) 1 1 1 2 5 9.6

Bertalanffy-Richards 6 4 4 1 15 28.8

Hossfeld (1822) 3 1 7 0 11 21.2

Weibull (1951) 2 2 0 1 5 9.6

QItotal= ΣΣQij; where QIij is the qualification for the j-th goodness of fit criterion
in the i-th group of species.
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the best fits for the species groups defined using the
NLMIXED procedure in SAS/ETS (SAS Institute Inc
2008). We tested different combinations of fixed and
random parameters and compared the fitting statistics
(RMSE, R2, Bias and BIC), to determine which parameter
(s) should be considered mixed.

Calibration
The inclusion of random parameters in h-d equations
leads to two possible situations as regards prediction of
the height of trees within a stand (Vonesh and Chinchilli
1997): i) a population mean response (PMR) when only
diameters are measured (and the stand variables are
included in the model in the case of generalized models)
and the vector of random parameters is assumed to have
an expected value of E(bj) = 0; and ii) a calibrated response,
when the height of a subsample of mj trees is measured
along with diameter measurement in each new plot j (and
the stand variables in the case of generalized models) and
is subsequently used to calculate the specific random
parameters of the new sampling units (Calibrated Response;
CR), i.e. vector bj, expressed as follows (Vonesh and
Chinchilli 1997):

b̂j ≈ D̂ẐT
j R̂j þ ẐjD̂ẐT

j

� �−1
êij ð6Þ

where D̂ is the matrix q × q of variances-covariances asso-
ciated with the random parameters (q = number of random
parameters included in the model), which is common to
all plots and is estimated in the general model fitting pro-
cedure; R̂ j is the mj × mj estimated matrix of variances-
covariances of the error term; êij is the residuals vector m
× 1, the components of which are obtained as the differ-
ence between the observed height of each tree and the
value predicted using the model with fixed parameters
only; and Ẑj is the matrix m × q of the partial derivatives
of the random parameters evaluated in b̂j ¼ 0.
Two sampling options were considered for selecting

the subsample of trees to measure within each for calibra-
tion of the local and generalized equations:

(i) CR1: Measuring the total height of between 1 and 5
randomly selected trees within each plot that are
close (± 10% ) to the mean breast height diameter.

(ii) CR2: Measuring the total height of the tree of mean
breast height diameter, or measuring the height of
two trees – the mean and minimum breast height
diameters, or measuring the height of three trees –
the mean, minimum and maximum breast height
diameters within each plot.

We evaluated these two alternatives in terms of the
previously defined goodness-of-fit statistics (RMSE, R2

and Bias), which we compared with the statistics obtained
for the equations fitted by the ONLS and NLMIXED
procedures.

Results and discussion
Local equations
In the comparison of the goodness-of-fit statistics for the
local h-d equations fitted to the data for the 13 previously
defined groups of species, the Bertalanffy-Richards equa-
tion (Bertalanffy 1949; Richards 1959) consistently yielded
the highest R2 and lowest RMSE values; however, the
equations proposed by Stage (1975) and Meyer (1940)
yielded the lowest values of BIC, which gives preference to
models containing few parameters over those containing
several parameters (Table 2).
The Bertalanffy-Richards equation yielded the highest

R2 values for 6 of the 13 species groupings and the low-
est RMSE values for 4 of the groups. Finally, comparison
of the BIC values indicated that this was the preferred
equation only for the Quercus spp. grouping.
In selecting the best local equation, we also examined

graphs of the residuals, the significance of the parameters
and the mean bias for each equation. In this respect, the
Bertalanffy-Richards equation was the preferred model.
The final structure of the local Bertalanffy-Richards
equation used was as follows:

h ¼ 1:3þ b0 1− exp −b1⋅ dð Þð Þb2 ð7Þ

where b0-b2 are equation parameters and the rest of
variables as defined in the data section.
The value of the goodness-of-fit statistics for Eq. (7)

and the species groups are shown in Figure 1.
Considering that the fitting statistics for the differ-

ent broad groupings (Pinus species, Quercus species,
other conifer species and other broadleaf species) are
similar to those obtained for each individual species
and that some parameters were not significant in the
individual fits for some of the species, we decided to



Figure 1 Values of R2 (solid line), RMSE (dashed line), and mean
bias (bottom) obtained by fitting Eq. (7) to the h-d relationship
for the 13 groups of species considered.
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use 4 different local equations, one for each broad grouping
studied.
The parameters in Eq. (7) and the goodness-of fit

statistics, obtained by the ONLS method for the 4 broad
groupings, are shown in Table 3.

Generalized equations
On relating the parameters in Eq. (7) to the stand variables,
we found that in the 4 groups that included all species,
parameter b0, representative of the asymptote of Eq. (7),
was positively correlated (almost 52%) with H0 and D0,
Table 3 Estimated parameters and fitting statistics obtained
groups of species considered

Species Equation Fitting
method b0 b1

Pinus species (7) ONLS 34.9600 0.0223 1.

(10) NLMIXED 28.6890 0.0357 1.

Quercus species (7) ONLS 21.1250 0.0240 0.

(11) NLMIXED 16.2456 0.0317 0.

Other conifer species (7) ONLS 24.4720 0.0094* 0.

(11) NLMIXED 134.2700 0.0004 0.

Other broadleaf species (7) ONLS 24.8375* 0.0085* 0.

(11) NLMIXED 94.3893 0.0005 0.

ONLS = fitted by ordinary least squares, NLMIXED = fitted by non-linear mixed effec
whereas parameter b1, representative of “scale” was only
positively correlated by more than 50% with Hart’s index
(HI) in the other conifer species and other broadleaf
species and, finally, parameter b2, representative of “shape”
was also positively correlated (~ 51%) with dg and N for
the four groups that include all species.
To develop a generalized equation from Eq. (7), we tested

various combinations of the stand variables to improve
their efficacy in the fit, taking into account the previously
mentioned correlations; this resulted in Eqs (8) and (9).
Equation 8 yielded the best fitting statistics for the Pinus
and Quercus groups, whereas Eq. (9) yielded the best fitting
statistics for the species included in other conifer species
and other broadleaf species.

h ¼ 1:3þ b0 ⋅H0
b1 1− exp −b2⋅ dð Þð Þb3

N
dg= Þb4

�
ð8Þ

h ¼ 1:3þH0
b0 1− exp −b1⋅HI⋅ dð Þð Þ

N
dg= Þb2

�
ð9Þ

where b0-b2 are equation parameters and the rest of
variables as defined in the data section.
On comparing the goodness-of-fit statistics for Eqs (8)

and (9) with those obtained when fitting the 30 generalized
equations used in other studies (e.g., López Sanchez et al.
2003; Sharma and Zhang 2004; Sharma and Parton 2007),
we found that the value of RMSE for Eq. (8) was slightly
lower than those obtained by fitting the above-mentioned
generalized equations, whereas the value of the RMSE for
Eq. (9) was only lower than some of these. However, the
latter equations included parameters that were not signifi-
cant at the 0.05 level. Another advantage of Eq. (9) is that
the value of the BIC was lower than that obtained for the
30 generalized equations compared. Analysis of the resid-
uals also revealed that there were no anomalies associated
with Eqs (8) and (9) that would indicate non-compliance
with the underlying hypotheses of normality, homogeneity
of variance or independence of errors. We therefore
for the local model with and without mixed effects for the

Parameters Statistics

b2 σ2u σ2v σuv R2 RMSE Bias BIC

0148 0.73 2.95 0.004 8749.7

1148 47.9289 0.0002 −0.0849 0.85 2.21 0.005 6461.0

9666 0.48 3.03 0.005 4021.3

9971 20.8757 0.71 2.25 0.014 2955.0

6691 0.69 1.62 0.002 197.1

6062 115.6000 0.75 1.46 −0.013 170.8

7489 0.66 1.35 −0.002 197.8

6086 130.9100 0.79 1.07 −0.015 70.0

ts; *estimated parameters not significant at the 0.05 level.
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decided to use Eqs (8) and (9) as generalized models for
the four groups that included all species considered. The
values of the parameters of Eqs (8) and (9) obtained for
fitting each group of species are shown in Table 4. The
signs and values of all parameters are consistent with
their biological interpretation and visual examination of
the graphs of the h-d relationship indicates that its
performance was consistent with the theory of growth.
The generalized h–d equations selected in this study

included dominant stand height. This represents an advan-
tage over equations that include the mean height because
less effort is required in conventional inventories to esti-
mate the dominant height than the mean height of the
stand (López Sanchez et al. 2003). These functions also in-
clude the density of the stand in terms of number of trees
per unit of area and mean square diameter. Stand density is
the most obvious factor affecting the h-d relationship in a
stand (Zeide and VanderSchaaf 2002); in other words, trees
of the same diameter are generally taller in denser stands.
Various stand variables have been proposed as predictors

of the h-d relationship: stand age (Curtis 1967; Soares and
Tomé 2002; López Sanchez et al. 2003); crown competi-
tion index (Temesgen et al. 2007); geographic variables
(Schmidt et al. 2011); and wind speed (Meng et al. 2008).
Although the inclusion of other variables may improve
the predictive capacity of the selected functions, this
requires great sampling effort and limits the practical
application of the functions and therefore we did not take
such variables into account.

Effect of mixed models
Parameters b0, b1 and b2 in Eqs (7) and (9) determine the
asymptote, the scale and the shape of the h-d curves, re-
spectively, whereas in Eq. (8), the parameters b0 and b1 de-
fine the asymptote, b2 is the scale parameter and b3 and b4
define the shape of the curve. In fitting Eq. (7) to the data
from each plot, we found that the parameter that affected
the asymptote was the most variable, followed by the scale
Table 4 Estimated parameters and fitting statistics obtained
for the groups of species considered

Species Equation Fitting
method b0 b1 b

Pinus species (8) ONLS 4.4250 0.6125 0.0

(12) NLMIXED 4.1798 0.6330 0.0

Quercus species (8) ONLS 1.1200 0.9694 0.0

(13) NLMIXED 1.0046 0.9804 0.0

Other conifer species (9) ONLS 1.2830 0.0002 −0.

(14) NLMIXED 1.2923 0.0231 −0.

Other broadleaf species (9) ONLS 1.3120 0.0001 −0.

(15) NLMIXED 1.1986 0.0017 −0.

ONLS = fitted by ordinary least squares, NLMIXED = fitted by non-linear mixed effec
parameter. Therefore, in a first step, we fitted Eqs (7), (8)
and (9) to the h-d data by considering the parameters that
define the asymptote and scale as mixed, in other words,
with a random parameter added. Pinheiro and Bates (1998)
obtained similar results and found that the best results were
obtained when the asymptote and scale of Eq. (7) were con-
sidered as random parameters. In most cases, the mixed
model did not converge, so that we tested the inclusion of
only mixed parameters associated with those parameters
that define the asymptote of the h-d curve until reaching
convergence. Similar results have been reported by Sharma
and Parton (2007) and Vargas-Larreta et al. (2009).
Some of the parameters were scaled so that all were of
the same order of magnitude and to prevent instability
in the fitting function (Calama and Montero 2004). The
expressions of the mixed models finally obtained are
Eqs (10) to (15):

ĥij ¼ 1:3þ b0 þ uj
� �

1− exp − b1 þ vj
� �

dij
� �� �b2 þ eij

ð10Þ
ĥij ¼ 1:3þ b0 þ uj

� �
1− exp −b1⋅ dij

� �� �b2 þ eij ð11Þ

ĥij ¼ 1:3þ b0 þ uj
� �

⋅Hob1 1− exp − b2⋅ dij
� �� �b3�N

	
dg

�b4
þ eij

ð12Þ

ĥij ¼ 1:3þ b0Ho b1þujð Þ 1− exp −b2⋅ dij
� �� �b3�N

	
dg

�b4
þ eij

ð13Þ

ĥij ¼ 1:3þ Ho b0þujð Þ 1− exp b1
	
100

� �
⋅HI⋅ dij

� �� ��N
	

dg

�b2
þ eij

ð14Þ

ĥij ¼ 1:3þ Ho b0þujð Þ 1− exp b1
	
10

� �
⋅HI ⋅ dij

� �� ��N
	

dg

�b2
þ eij

ð15Þ
for the generalized model with and without mixed effects

Parameters Statistics

2 b3 b4 σ2u R2 RMSE Bias BIC

392 1.5073 −0.0847 0.82 2.41 −0.013 7141.6

398 1.8370 −0.1428 0.1150 0.84 2.29 −0.011 6730.5

363 2.8325 −0.2697 0.66 2.45 0.031 3267.4

375 2.5189 −0.2482 0.0017 0.72 2.23 −0.019 2941.0

1036 0.64 1.74 0.118 224.5

1038 0.0018 0.74 1.49 0.029 177.1

1634 0.63 1.41 −0.011 226.0

1352 0.0027 0.79 1.06 −0.094 63.8

ts.
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where b0 – b4 are the fixed parameters of the model
(common to all plots); (uj, vj) ~ N(0, τ) are the random
parameters (specific to each plot); and ĥij and eij are re-
spectively the height and error estimated by the model for
the i-th observation (tree) in the j-th plot.
The values of the parameters and goodness-of-fit sta-

tistics for the local mixed models (Eqs 10 and 11) and
for the generalized mixed models (Eqs 12 to 15) are
shown in Tables 3 and 4, respectively. We compared the
RMSE values obtained with the mixed effects equations
with those obtained with fixed effects equations (fitted
by ONLS); the values obtained with the local mixed model
(Eq. 10) and the generalized mixed model (Eq. 12) for the
Pinus grouping were 25.0% and 5.2% lower than those ob-
tained with the local model (Eq. 7) and the generalized
model (Eq. 8) without random parameters, respectively.
For the group of Quercus species, the RMSE values ob-
tained with the local mixed model (Eq. 11) and the
generalized mixed model (Eq. 13) were 26.0% and 9.0%
lower than those obtained with the local (Eq. 7) and the
generalized models without random parameters (Eq. 8),
respectively. For the other conifers, the RMSE values
obtained with the local mixed model (Eq. 11) and the
generalized mixed model (Eq. 14), were 9.8% and 14.3%
lower than those obtained with Eqs (7) and (9), respectively.
For the group comprising other broadleaf species, the
RMSE values were 20.9% and 25.0% lower with the local
mixed model (Eq. 11) and the generalized mixed model
(Eq. 15) than with Eqs (7) and (9). The results obtained
for BIC and R2 were similar to those obtained for RMSE.
On inspecting the graphs of the residuals for the heights

estimated by the models for each species grouping, we did
not find any anomalies that would suggest non compliance
of underlying hypothesis of independence of errors or
homogeneity of variance. The magnitude of the bias in
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Figure 2 Value of RMSE for the calibrated equations (CR1 and CR2) fi
the residual values estimated by the two fitting methods
(ONLS and NLMIXED) was consistent for all ranges
and classes of heights observed by the defined species
groupings.

Calibrated response
Calibration option CR1 for Eq. (12) in Pinus species and
Eq. (13) in Quercus species was the most accurate when
the total height of a subsample of 3 trees close (± 10%)
to the mean breast height diameter for the plot was
measured (Figure 2), as indicated by the slight decrease
in the RMSE by 0.4% and 3.0% respectively for the two
groups relative to the values estimated by the generalized
model (Eq. 8) fitted without random parameters. For
the other broadleaf species, calibration option CR2 for
Eq. (14) was the most accurate (in terms of RMSE) when
a subsample of 3 trees of mean, minimum and maximum
breast height diameter were measured in each plot, as the
RMSE was 21% lower than that estimated with the gen-
eralized model fitted without random parameters (Eq. 9).
Finally, in the group of other conifer species, the RMSE
value obtained with Eq. (15) and calibration option CR2 was
13% lower than that obtained with the generalized model
fitted without random parameters (Eq. 9). Vargas-Larreta
et al. (2009) found that the decrease in RMSE varied be-
tween 3.7 and 13.3% on calibrating the model of Sharma
and Parton (2007) with data from 1 tree selected at ran-
dom in the plot. However, Calama and Montero (2004)
observed that use of a subsample of the 5 trees with the
largest diameters significantly decreased the RMSE value;
Castedo Dorado et al. (2006) observed that the bias
estimated with Schnute’s generalized equation was
lower when a subsample of the 3 trees with the smallest
diameters was used for calibration than when the estimate
was made without random parameters.
4 5

on)
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Eq. (8)_ONLS

Eq. (12)_NLMIXED

Eq. (12)_CR1

Eq. (12)_CR2

Eq. (10)_ONLS

Eq. (15)_NLMIXED
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tted by NLMIXED and ONLS for the four groups of species shown.
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The variation in the value of RMSE with respect to the
number of trees used with the two calibration options
for the four main groups of species studied is shown in
Figure 2. This statistic was also compared with those values
obtained when fitting the equations by the NLMIXED
(minimum value of RMSE reached only using all trees
as a calibration subsample) and ONLS (maximum value
of RMSE using only fixed parameters) methods.
In the calibration process, the reduction in the RMSE

value was particularly evident with the generalized mixed
models for the other broadleaf species and other conifer
species (21.0% and 13.0% respectively) compared with the
generalized model fitted without random parameters;
however, for the Pinus and Quercus groupings, the de-
crease in the value of this statistic was lower. Both calibra-
tion options resulted in an important reduction of RMSE
for the local mixed model compared to the same model
fitted without random parameters for all the groups ana-
lized. In accordance with Trincado et al. (2007), the use of
a local mixed model in forest inventories with a subsample
of trees to calibrate and then predict the total height of all
trees not used in calibration allows retention of a simple
model structure (i.e. without the need to include stand
predictor variables) and may be an useful alternative to
generalized mixed models when there is a lack of data to
calculate stand variables.

Conclusions
Two generalized equations (Eqs 8 and 9) were derived from
a local equation (Eq. 7) and used to estimate total tree
height from breast height diameter and stand variables for
the 25 species identified in the sample by using mixed
models. The variability between plots is explained in terms
of the random effect of each plot and from the stand vari-
ables included in the generalized models.
For species in the Pinus and Quercus groups, inclusion

of the height measurements of 3 trees close (± 10%) of the
mean breast height diameter from each plot improved the
predictive capacity of the calibrated model. For the species
included in other broadleaf species and other conifer
species, the predictive capacity of the model was improved
by including the total height measured in a subsample of
3 trees of minimum, mean and maximum breast height
diameter. The possibility of using complementary data
from the stands to calibrate the mixed models provides a
clear advantage over models developed by other proce-
dures, which require large amounts of data or are less
accurate.
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