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Abstract

Background: Insect herbivory has profound impacts on ecosystem processes and services. Although many efforts
have been made to recognize the main drivers of insect herbivory at different scales, the results are inconsistent.
One likely reason is that studies have insufficiently captured the spatially heterogeneous factors such as soil type
and forest stratum within the stand that may significantly affect insect herbivory. In particular, there is a lack of
studies that address the detailed spatial patterns of insect herbivory which are influenced by these factors.

Methods: We measured the detailed spatial patterns of insect herbivory on cork oak (Quercus variabilis Bl.) in
response to soil type (gravel soil and loam) and forest stratum (the upper, lower, and sapling stratum), and
correlated these patterns with a set of influencing factors (litter coverage, coverage of shrubs and herbs, soil
nutrients, soil moisture, and leaf traits) in a forest landscape.

Results: Generally, insect herbivory was spatially heterogeneous within stands. Herbivory was significantly lower in
gravel soil areas than in loam soil areas and the highest herbivory occurred in the lower stratum. However, there
were also 41 individual plots in which the highest herbivory occurred in the upper stratum and 29 plots in which
the highest herbivory occurred in the sapling stratum. There were significant differences in soil nutrient and water
status between soil types, but no significant differences in leaf traits. The effects of forest stratum on leaf traits were
also inconsistent with those on insect herbivory.

Conclusions: Leaf traits may not be the main factors influencing insect herbivory in the field. Soil type may have
major effects on herbivory patterns by influencing litter coverage while higher coverage of shrubs and herbs may
reduce herbivory in the sapling stratum. These findings may advance our understanding of tree-herbivore
interactions in real-world situations and have important implications for the sustainable management of forest
ecosystems.
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Introduction
Insect herbivory has profound effects on ecosystem pro-
cesses and services by influencing nutrient dynamics
(Belovsky and Slade 2001; Frost and Hunter 2004, 2008;
le Mellec et al. 2011; Maguire et al. 2015; Metcalfe et al.
2015), affecting the growth, survival, and reproduction

of trees (Crawley 1989; Hochwender et al. 2003; Zvereva
et al. 2012), demographics and succession of forests
(Crawley 1989; Huntly 1991; Barbosa et al. 2005; Karlsen
et al. 2013), as well as plant community composition
(Crawley 1989; Huntly 1991; Frost and Hunter 2008).
There has been a growing interest in recognizing the

key drivers of insect herbivory (e.g. Rossetti et al. 2017;
Castagneyrol et al. 2019; Valdés-Correcher et al. 2019).
At the landscape scale, numerous studies have demon-
strated that landscape context such as patch size,
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isolation/connectivity have significant effects on insect
herbivory (Simonetti et al. 2007; De Carvalho Guimarães
et al. 2014; Martinson et al. 2014; Lantschner and Corley
2015; Castagneyrol et al. 2019; Valdés-Correcher et al.
2019). However, the results of these studies are incon-
sistent and a recent meta-analysis based on 89 individual
studies demonstrated that habitat fragmentation had no
significant effects on insect herbivory (Rossetti et al.
2017).
At the stand scale, tree diversity has been recognized

as an important driver of insect herbivory in forest ecosys-
tems. Many studies have demonstrated that trees grown
in monocultures tended to receive more insect herbivory
than that associated with other tree species in mixtures
(Vehviläinen et al. 2007; Castagneyrol et al. 2014). How-
ever, inconsistent results have also been reported that in-
creased tree diversity can increase insect herbivory
(Schuldt et al. 2010, 2015; Haase et al. 2015), decrease in-
sect herbivory in certain stratum (Castagneyrol et al.
2019), or have no effects at all (Rosado-Sanchez et al.
2018).
These conflicting results imply that the heterogeneous

environment within stands/patches might have consider-
able effects on insect herbivory. In fact, biotic and abi-
otic factors such as the radiation, humidity, temperature,
wind, and litter as well as vegetation coverage and foli-
age quality and quantity could vary widely among differ-
ent spatial locations within stands/patches (Ries et al.
2004; Gámez-Virués et al. 2010; Maguire et al. 2016;
Rossetti et al. 2017; Castagneyrol et al. 2019). All of
these factors may affect insect herbivory. For instance,
many studies have correlated insect herbivory with mor-
phological and functional leaf traits (e.g. toughness, nu-
trients, or defense compounds). Specific leaf area (SLA)
is often considered as an indicator for leaf toughness,
which may negatively influence leaf palatability for insect
herbivores (Brunt et al. 2006; Zehnder et al. 2009; Stiegel
et al. 2017). Higher leaf nitrogen may promote the
growth, development, and fecundity of insect herbivores,
and increase insect density (Cisneros and Godfrey 2001;
Stiling and Moon 2004; Huberty and Denno 2006). In
contrast, carbon content can negatively influence leaf
palatability (Feeny 1970; Southwood et al. 1986; Schädler
et al. 2003; Stiegel et al. 2017). The high content of
phenolic compounds may deter insect feeding, reduce
insect performance, herbivore densities, and species
richness (Rossiter and Baldwin 1988; Forkner et al.
2004). In addition, studies have demonstrated that soil
nutrient status can significantly influence leaf traits
(Cipollini et al. 2002; Adamidis et al. 2014; Vergara-
Gómez et al. 2019), and thus indirectly affect insect her-
bivory (e.g. Stiling and Moon 2004). As two important
components of habitat structure, the vegetation coverage
and litter may also have significant effects on insect

herbivory by influencing the niches for arthropods
(Gámez-Virués et al. 2010).
Studies have shown that herbivory at the edges is often

higher than in patch interiors due to the reduction in
natural enemy populations and high-quality hosts at the
edges (Coley et al. 1985; Meiners et al. 2000; Valladares
et al. 2006; Urbas et al. 2007; De Carvalho Guimarães
et al. 2014).
The changes in microclimate (Stiegel et al. 2017), leaf

traits (Dudt and Shure 1994; Thomas et al. 2010; Stiegel
et al. 2017), and predation pressure (Aikens et al. 2013)
along vertical gradients in forest canopy can also affect
the parallel herbivory pattern. Generally, decreased her-
bivory patterns from understory to upper stratum have
been reported (e.g. Stiegel et al. 2017; Castagneyrol et al.
2019). Thus, understanding both the horizontal and ver-
tical spatial patterns of herbivory within stands is essen-
tial for unraveling the mechanisms underlying the
complex forces that drive insect herbivory in real-world
situations.
From previous observation, we found that different soil

types (i.e. gravel soil or loam) might exist within the
stand. The litter coverage in loam areas is evidently
higher than that in gravel soil areas while insect damage
on oak in gravel soil areas appears less than that in loam
areas. Therefore, we speculate that soil type may have
important effects on insect herbivory. However, perhaps
due to the irregular distribution of different soil types,
few studies have paid attention to the relationship be-
tween soil types and insect herbivory within stands.
Whether different soil types can influence insect herbiv-
ory by differentially holding leaf litter which may provide
shelter for the overwintering insect herbivores, or
whether different soil types have contrast soil conditions
and thus influence insect herbivory by affecting leaf
traits are still unclear. In addition, although the effects of
forest stratum on insect herbivory have been examined
in studies involving different forests (e.g. European
beech, Fagus sylvatica L. or sugar maple, Acer sac-
charum Marsh.) (Fortin and Mauffette 2002; Stiegel
et al. 2017), little such knowledge is known about the
cork oak (Quercus variabilis Bl.) forest. Furthermore,
previous studies that investigated the spatial patterns of
insect herbivory often sampled just a few tree individuals
(e.g. 2 or 6) to represent the stand level (e.g. Stiegel et al.
2017; Castagneyrol et al. 2019) or location level (edge vs.
interior) within the patch (e.g. Maguire et al. 2016),
which may miss some spatial pattern effects or provide
biased results. Detailed, fine-grained research involving
relatively large numbers of sampling sites within stands
is therefore required.
In the present study, we measured the detailed spatial

patterns of insect herbivory on cork oak (Quercus varia-
bilis Bl.) within a forest landscape and mainly focused
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on the effects of soil type and forest stratum on insect
herbivory. We also associated the spatial patterns with
litter coverage, coverage of shrubs and herbs, soil nutri-
ents (available N, P, K), soil moisture, and leaf traits
(specific leaf area, tannin content, soluble sugar content,
C content, N content, and C/N ratio) as well as the
holding effects of different soil types on withered leaves
and discussed the potential mechanisms. We predicted
that (i) insect herbivory in gravel soil areas would be
lower than that in loam areas; (ii) there would be a gen-
erally decreased pattern of insect herbivory from under-
story to upper stratum; (iii) the spatial patterns of insect
herbivory might significantly correlate with litter, cover-
age of shrubs and herbs, soil conditions and leaf traits.
By revealing the detailed spatial patterns of insect her-
bivory within a landscape and exploring the underlying
mechanisms that drive these patterns in real-world situa-
tions, our study will offer insights for future studies on
tree-herbivore interactions and have important implica-
tions for sustainable management of forests.

Materials and methods
Study area
The study was carried out in the west of Dengfeng City,
Henan Province, China (34°26′–34°33′ N, 112°44′–
113°5′ E). This region is covered by extensive planta-
tions of cork oak (Quercus variabilis Bl.) and some of
them contain cypress (Platycladus orientalis (L.) Franco),
oriental white oak (Quercus aliena Bl.), and other tree
species in minor abundance.
The main insect herbivores on cork oak trees are Culcula

panterinaria (Bremer et Grey) (Lepidoptera, Geometridae)
and Phalera assimilis (Bremer et Grey) (Lepidoptera,
Notodontidae). Both of them are univoltine defoliators

(chewers). Their larvae begin to hatch in July and the
mature larvae burrow into the soil and pupate for
overwintering in September. Based on the satellite
image and ground survey, we chose a ca. 200 ha area
that was located on the south side of Songshan
Mountain for study. We set a 10 m × 10 m plot
every 100 m within the area beyond road landscapes
and there were 186 plots in total (85 in loam areas,
101 in gravel soil areas). The elevation of these plots
varied from 518 to 755 m.

Field investigation and laboratory measurement
The field investigation and leaf measurement were taken
in late September 2019. In each plot, litter coverage,
coverage of shrubs and herbs were measured. The soil
was roughly classified into loam and gravel soil and it
was easy to distinguish the soil type by visual judgment
(Fig. 1). In each plot, we collected the top 10-cm soil at
three random locations and pooled them together as one
sample. After the measurement of soil moisture content,
all soil samples were air-dried and sieved through a
2-mm mesh. Soil particle-size was determined using
Mastersizer 2000 Particle Analyzer (Malvern Panalytical
Ltd, Malvern, UK).
We randomly selected individual oak trees in each plot

for leaf sampling. The oak tree canopies were divided
into three strata in relative terms: the upper stratum, the
lower stratum, and the sapling stratum. Thirty mature
leaves were haphazardly collected per stratum. For the
sapling stratum, leaves from at least 6 saplings were col-
lected by hand. For the upper and lower strata, leaves
from at least 3 trees were collected using a 10-m tele-
scopic pole pruner. The leaves collected were stored in
zipped plastic bags and put into a cool box immediately.

Fig. 1 Photographs of the two soil types and their mean percentages of soil particles (clay, silt, and sand) (loam: n = 85; gravel soil: n = 101)
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Herbivory was measured in the laboratory. We only esti-
mated the damages caused by chewers since other feed-
ing guilds caused too scant damages for independent
analyses. To improve the accuracy of the estimate, we
overlaid the leaves on a sheet of blank paper printed
with a grid of 0.25 cm2 (0.5 cm × 0.5 cm). We calculated
the total leaf missing area divided by the number of
leaves analyzed (Castagneyrol et al. 2019).
To further investigate whether the spatial patterns of

insect herbivory correlate with soil conditions and leaf
traits, we examined soil moisture content and available
N, P, and K across 186 plots and randomly selected 6
plots in loam and gravel soil areas respectively to exam-
ine the leaf traits including specific leaf area (SLA), tan-
nin content, soluble sugar content, C content, N content
in three strata. Soil conditions were measured according
to Bao (2000). SLA was measured on 6 mature, fully ex-
panded, and undamaged leaves. Leaf surface and leaf
mass were measured with a planimeter (CL-203 Laser
Area Meter, Bio-Science Inc., USA) and a balance
(JEA3002 Electronic Balance, Shanghai Puchun Metrical
Instrument Co., Ltd., China). Tannin content was mea-
sured using the ND-1-Y kit (Suzhou Keming Biological
Technology Co. LTD). Soluble sugar content was mea-
sured using the KT-1-Y kit (Suzhou Keming Biological
Technology Co. LTD). The procedures were performed
as described by the manufacturer. The leaf C and N con-
tents were determined using an elemental analyzer
(HEKAtech GmbH, Wegberg, Germany; Euro EA 3000).
We investigated the overwintering pupae of main in-

sect herbivores in November 2019. Since the density of
overwintering pupae may be very low at the background
level of insect herbivory, we randomly set three 15 m ×
15 m plots on each type of soil (loam or gravel soil) and
investigated the entire area in each plot (different from
investigating a small area around the base of tree trunk
(e.g. radius 100 cm)). We carefully pushed aside the litter
and dug the top 10-cm soil to check the number of over-
wintering pupae and the location of the overwintering
pupae inhabit (the litter, the soil under litter, or the bare
soil).
The holding effects of soil on withered leaves were

tested on loam and gravel soil respectively. We randomly
selected 10 withered leaves and put them in a 20 cm ×
20 cm area on the ground (loam or gravel soil) with no
slope, then we used an electric fan to blow these withered
leaves for 10 s (all leaves stopped moving within this time
range) and measured the distance between the front edge
of the small area and withered leaves that were blown
away. The average moved distance per leaf indicated the
holding effects of each soil on withered leaves. The shorter
the distance, the stronger the holding effect. The annual
mean wind speed is 3 m·s− 1 in Dengfeng City (according
to the data of the local meteorological station). Although

the wind speed may fluctuate, it can be effectively slowed
down by tree canopy in the forest and decreases as the
height decreases (Lee and Black 1993; Zhu et al. 2004; Ma
et al. 2009; Randlkofer et al. 2010). We therefore used a
small portable electric fan with three wind speeds (1.5, 2.5
and 4 m·s− 1) and did 6 replications at each wind speed on
loam and gravel soil respectively.

Statistical analyses
We applied a linear mixed-effect model (LMM) to
analyze the effects of soil type (loam vs. gravel soil) and
forest stratum (upper, lower, and sapling) on insect her-
bivory (186 plots). Soil type, forest stratum, and soil type
× forest stratum were included as fixed effects and the
identity of study plots as a random factor. We used t-test
to compare the difference of coverage of shrubs and
herbs between plots that had the highest herbivory in
the sapling stratum and plots that had the highest her-
bivory in the upper or lower stratum. The difference of
coverage of shrubs and herbs, litter coverage, percent-
ages of soil particles, and soil nutrients between soil
types as well as holding effects of different soil types on
withered leaves were analyzed with t-test. Significant in-
teractions between soil type and stratum were treated by
estimating contrasts between loam and gravel soil areas
for each stratum separately and contrasts among strata
for each soil type independently. The relationship be-
tween insect herbivory and the coverage of shrubs and
herbs was determined by regression analysis. To test the
effects of soil type and forest stratum on leaf traits (SLA,
tannin content, soluble sugar content, N content, C con-
tent), we built another set of LMM (there were 6 plots
in loam and gravel soil areas respectively) where the
fixed effects and random factor were the same as the
first LMM. All analyses were conducted using IBM SPSS
Statistics 20 (SPSS Inc, Chicago, IL, USA) and the
graphs were plotted using Origin 2018 (OriginLab,
Northampton, MA, USA).

Geostatistical analysis
The spatial variability of insect herbivory was deter-
mined by geostatistical methods using semivariogram
analysis. The semivariogram was calculated for each
variable as follows:

rðhÞ ¼ 1
2NðhÞ

XNðhÞ
i¼1

Z xið Þ � Z xi þ hð Þ½ �2 ð1Þ

where, r(h) is the sample semivariance for the distance
lag h, Z(xi) and Z(xi+ h) are sample values at two points
separated by the distance interval h, and N(h) is the total
number of sample pairs for the lag interval h. The sam-
ple semivariogram was calculated and the best geostatis-
tical model for each parameter was chosen according to
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the lowest residual sum of squares and the highest r2

values. Spatial dependence of insect herbivory can be
evaluated according to Cambardella et al. (1994). If the
nugget to sill ratio C0/(C +C0) is > 0.75, the herbivory is
thought as weakly spatially dependent; if C0/(C + C0) is
between 0.25 and 0.75, the herbivory is considered mod-
erately spatially dependent; and if C0/(C +C0) is < 0.25,
the herbivory is regarded to be strongly spatially
dependent (Cambardella et al. 1994). If the distribution
distances of sampling points are less than the spatial
variation range (A), the variable of these points are
spatially correlated; if the distances are greater than the
range, the variable of these points are independent
(Cambardella et al. 1994). The geostatistical analysis was
performed using GS + 7.0 (Robertson 2008).

Results
Spatial heterogeneity of insect herbivory
Soil type and forest stratum had significant effects on insect
herbivory (soil type: F(1, 184) = 70.05, P < 0.001; stratum: F(2,
368) = 34.14, P < 0.001; soil type × stratum: F(2, 368) = 11.10,
P < 0.001). Horizontally, the herbivory of three strata in
loam areas was significantly higher than that in gravel soil
areas (Figs. 2 and 3). In loam areas, herbivory in the lower
stratum was significantly higher than that in the upper and
sapling stratum and herbivory in the sapling stratum was
significantly lower than that in the upper stratum (Figs. 2

and 3). In gravel soil areas, herbivory was significantly
higher in the lower stratum, but it did not differ between
the upper and the sapling stratum (Figs. 2 and 3).
In contrast to the general spatial patterns across

186 plots, herbivory in some individual plots in gravel
soil areas was higher than that in loam areas and
there were also 41 individual plots that the highest
herbivory existed in the upper stratum and 29 indi-
vidual plots that the highest herbivory existed in the
sapling stratum. Coverage of shrubs and herbs in
these 29 plots was significantly lower than that in
plots which had the highest herbivory in the upper or
lower stratum (Fig. 4a). Twenty-two out of the 29 in-
dividual plots were located in the gravel soil area
where the coverage of shrubs and herbs was signifi-
cantly lower than that in the loam area (n = 85 in
loam areas, n = 101 in gravel soil areas, t = 5.893, df =
184, P < 0.001). In the loam area, herbivory in the
sapling stratum was negatively correlated with the
coverage of shrubs and herbs (Fig. 4b).
Geostatistical parameters of insect herbivory are

shown in Table 1. The data of herbivory in upper
stratum (HU) and herbivory in sapling stratum (HS)
were best fit by exponential models, the data of herbiv-
ory in lower stratum (HL) was best fit by the linear
model. The C0/(C +C0) values in our study ranged from
0.389 to 0.685, indicating moderately spatial dependence

Fig. 2 Interactive effects of soil type and forest stratum on leaf herbivory (± SE, n = 85 in loam areas, n = 101 in gravel soil areas). Letters above
bars indicate statistical differences between strata. The asterisk manifests a significance level between soil types in each stratum
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for insect herbivory. The A values ranged from 1,035 to
1,821 m, indicating a strongly structured regional pat-
tern of insect herbivory.

Effects of soil conditions on insect herbivory and effects
of soil type and forest stratum on leaf traits
The available N and K contents and soil moisture con-
tent of loam were significantly higher than that of gravel
soil, but there was no difference in available P content
between loam and gravel soil (Fig. 5). Insect herbivory
was positively correlated with soil moisture (Fig. 6).
Forest stratum had significant effects on SLA, soluble

sugar content, tannin content, N content, and C content,
but these leaf traits did not differ between soil types
(Table 2). SLA decreased from the sapling stratum to
the upper stratum and it was significantly lower in the
upper stratum than that in the lower and sapling

stratum, but there was no difference between the lower
and sapling stratum (Fig. 7). Soluble sugar content in the
upper stratum was significantly higher than that in the
lower and sapling stratum whereas there was no differ-
ence between the lower and sapling stratum (Fig. 7). The
tannin content in the sapling stratum was significantly
higher than that in the lower and upper stratum but
there was no difference between the lower and upper
stratum (Fig. 7). N content and C content were lower in
the lower stratum than that in the upper and sapling
stratum, but the differences were not significant (Fig. 7).

Density of overwintering pupae and holding effects of
different soil types on withered leaves
We found 13 overwintering pupae and 37 previous
pupal cases left by adults after eclosion. Ten pupae and
25 pupal cases were found in the loam area, 3 pupae and

Fig. 3 Distribution of soil type, litter coverage, and insect herbivory in the study area. The distribution pattern of herbivory (especially in the lower
stratum) is generally following that of soil type and litter coverage. In loam areas, the litter coverage (P < 0.001) and herbivory in three strata
(upper: P < 0.001, lower: P < 0.001, sapling: P < 0.001) were significantly higher than that in gravel soil areas (n = 85 in loam areas, n = 101 in gravel
soil areas)
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12 pupae cases were found in the gravel soil area
(Table 3). The density of overwintering pupae and pupal
cases as well as litter coverage in the loam area were sig-
nificantly higher than that in the gravel soil area (Fig. 8).
All of them were found in the soil under the leaf litter.
No pupae or pupal cases were found in the bare soil
both in loam and gravel soil areas. The results indicated
that litter is necessary for the overwintering of main in-
sect herbivores in the study area. Higher litter coverage
in loam areas may provide a better microhabitat for
overwintering pupae.
The 1.5 m·s− 1 wind did not blow away the withered

leaves on both loam and gravel soil ground. When the
wind speed was 2.5 and 4 m·s− 1, the average moved dis-
tances of withered leaves on loam ground were signifi-
cantly smaller than that on gravel soil ground (Fig. 9).

Discussion
Soil type may have major effects on insect herbivory by
influencing litter coverage. Soil type and litter coverage

were significantly correlated with insect herbivory in
three strata. Trials of holding effects showed that with-
ered leaves fell on the gravel soil ground can be blown
away easier by the wind (Fig. 9). In addition, the cover-
age of shrubs and herbs which can help to block and
hold the leaf litter is significantly lower in gravel soil
areas than that in loam areas. These may be why the lit-
ter coverage in gravel soil areas is significantly lower
than that in loam areas (Fig. 3). Our survey indicated
that leaf litter which provided the shelter of overwinter-
ing pupae might play an important role in the survival of
main insect herbivores in the study area. The horizontal
distribution pattern of herbivory (especially in the lower
stratum) was generally following that of litter coverage
(Fig. 3), implying the evident effects of litter coverage on
insect herbivory. In geostatistical analysis, the C0/(C +
C0) values (0.389–0.685) indicated moderately spatial de-
pendence for insect herbivory while the large spatial
range (1035–1821 m) indicated a strongly structured re-
gional pattern of insect herbivory (Liu et al. 2014). These

Table 1 Spatial semivariogram models and geostatistical parameters for HU, HL, HS

Variable Model Nugget (C0) Sill (C0 + C) C0/(C0 + C) Range (A, m) RSS r2

HU exponential 0.591 1.213 0.487 1035 0.021 0.891

HL linear 0.400 0.030 0.389 1666 0.372 0.978

HS exponential 0.342 0.602 0.685 1821 0.344 0.912

HU Herbivory in the upper stratum; HL Herbivory in the lower stratum; HS Herbivory in the sapling stratum; RSS residual sum of squares;
r2 Determination coefficients

Fig. 4 Effect of coverage of shrubs and herbs (CSH) on herbivory in sapling stratum (HS). (a) CSH (± SE) in plots that the highest herbivory existed
in the sapling stratum was significantly lower than that in plots which had the highest herbivory in the upper or lower stratum. Capital letters
above bars indicate statistical differences between different kinds of plots. (b) Correlation between HS and CSH in loam areas (R2 = 0.198, F =
19.518, P < 0.001). Dots show the original data
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results could also imply the effects of relatively concen-
trated soil types and litter coverage (Fig. 3) on insect
herbivory.
Leaf traits may not be the key factors influencing in-

sect herbivory in the field. Horizontally, although the
available N and K contents and soil moisture of loam
were significantly higher than that of gravel soil, which
is in accordance with the pattern of insect herbivory, all
the leaf traits were not different between soil types.
Therefore, our results do not support that the nutrient
and water status of different soil types within stands can
influence insect herbivory by affecting leaf traits. Vertically,
many studies have suggested that the effects of environ-
mental factors on insect herbivory that generally decreases
from understory to upper stratum can be mediated by leaf
traits (e.g. Stiegel et al. 2017; Castagneyrol et al. 2019). Al-
though our pattern of increasing SLA from upper to sapling
stratum coincides with previous studies (Ellsworth and
Reich 1993; Koike et al. 2001; Al Afas et al. 2007; Stiegel
et al. 2017; Castagneyrol et al. 2019), the vertical herbivory
pattern does not (Figs. 2 and 7). The effects of forest
stratum on SLA, tannin content, soluble sugar content, N
content, and C content were also inconsistent with that on
insect herbivory (Figs. 2 and 7). It is widely believed that
unfavorable leaf traits (e.g., lower SLA, lower nitrogen con-
tent, and higher carbon content) indicate the lower leaf
quality and could negatively influence leaf palatability and

consequently suppress higher herbivory (Feeny 1970; Coley
et al. 1985; Reynolds and Crossley 1997; Brunt et al. 2006;
Zehnder et al. 2009; Stiegel et al. 2017; Castagneyrol et al.
2019). However, studies have further demonstrated that leaf
palatability or insect performance is not consistently related
to insect herbivory levels in the field and to the measured
leaf traits (Fortin and Mauffette 2002; Niesenbaum and
Kluger 2006; Ruhnke et al. 2009; Alalouni et al. 2014). In-
sect herbivores can also be forced to increase their feeding
rates on low-quality plants to compensate for the decline in
food quality (Lincoln et al. 1993; Castagneyrol et al. 2018).
This indicates that low leaf quality per se may have diver-
gent effects on insect herbivory. The lepidopterous larva is
one of the keystone “forest pests” in many temperate forests
(Feeny 1970; Nothnagle and Schultz 1987; Kamata 1991).
Although leaf damage is caused by the larva, transfer (usu-
ally passive) scope of the larva is limited at background her-
bivory level (White and Whitham 2000), patterns of
herbivory are molded by a variety of factors that influence
host accessibility to its female adult (Beyaert and Hilker
2014; Webster and Cardé 2017; Castagneyrol et al. 2019;
Shao et al. 2019). When the food is plentiful in the field,
there is no adequate evidence to support that the larvae
can/need actively search for more palatable leaves within a
host tree (except that newly hatched larvae may need to
feed on young leaves) or more palatable host trees among
different individuals for feeding. Thus, leaf traits that

Fig. 5 Contrast of soil nutrient and water status between loam and gravel soil. Letters above bars indicate statistical differences between soil
types. Available N: t = 3.365, df = 184, P = 0.001; Available P: t = 1.954, df = 184, P = 0.052; Available K: t = 2.209, df = 184, P = 0.028; Soil moisture
content: t = 12.968, df = 184, P < 0.001
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indicate leaf quality/palatability may not exert significant ef-
fects on the patterns of herbivory on a host tree species in
the field.
On the other hand, entomopathogenic fungi, which

can cause high mortality of overwintering insect herbi-
vores (Kienzle et al. 2008; Kova et al. 2021), have been
considered as important lethal factors of insects and
thus may have significant effects on insect herbivory
(Vega et al. 2009). Their growth and infection efficiency
can be influenced by weather conditions (temperature
and humidity) (Kienzle et al. 2008; Eilenberg et al. 2013),
soil moisture (Fuxa and Richter 2004), and nutrition in
the habitat (Pereira et al. 1993; Jackson et al. 2009). Our
results showed that soil available N and K contents and
soil moisture, as well as insect herbivory in the loam
area, were significantly higher than that in the gravel soil
area (Figs. 2 and 5). Insect herbivory was positively
correlated with soil moisture (Fig. 6). These results
imply that soil nutrient and water status may also
have important effects on insect herbivory by influen-
cing entomopathogenic fungi. However, the insect-
fungus interactions that respond to soil conditions
could be very complex. For example, the Beauveria
bassiana can survive better in relatively dry soil
(Lingg and Donaldson 1981; Studdert et al. 1990) but
cause no difference in the mortality of Spodoptera
exigua between different soil moistures (Studdert and
Kaya 1990). Another study reported that the highest
mortality of Solenopsis invicta Buren caused by Beau-
veria bassiana occurred at a moderate soil moisture
level between “wet” and “dry” (Fuxa and Richter
2004). Thus, in our study area, the abundance and di-
versity of fungi in the soil, the optimum range of soil
moisture and other environmental factors for the in-
fection of fungi, and the exact contribution of ento-
mopathogenic fungi to the spatial patterns of insect
herbivory still need further examination.
The coverage of shrubs and herbs negatively influ-

enced oak herbivory in the sapling stratum. The pattern
that herbivory in the sapling stratum was significantly
lower than that in the lower stratum in our study differs
from other studies (e.g. Stiegel et al. 2017; Castagneyrol
et al. 2019). Beyond the general herbivory pattern among
strata, there were 29 individual plots that the highest

Fig. 6 The correlation between insect herbivory and soil moisture.
Dots show the original data

Table 2 Summary of linear mixed models testing for effects of soil type and forest stratum on leaf traits. Significant effects are
indicated in bold

Predictors SLA Tannin content Soluble sugar content C content N content

Soil type F(1, 10) = 0.0003
P = 0.987

F(1, 10) = 0.764
P = 0.403

F(1, 10) = 0.456
P = 0.515

F(1, 30) = 1.455
P = 0.239

F(1, 10) = 3.236
P = 0.102

Stratum F(2, 20) = 37.102
P < 0.001

F(2, 20) = 4.399
P = 0.026

F(2, 20) = 18.532
P < 0.001

F(2, 30) = 1.361
P = 0.272

F(2, 20) = 3.786
P = 0.040

Soil type × Stratum F(2, 20) = 1.184
P = 0.327

F(2, 20) = 0.217
P = 0.807

F(2, 20) = 1.258
P = 0.306

F(2, 30) = 0.741
P = 0.485

F(2, 20) = 0.887
P = 0.427
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herbivory existed in the sapling stratum. The coverage of
shrubs and herbs in these plots was significantly lower
than that in other plots (Fig. 4a). In the loam area,

herbivory in the sapling stratum was negatively correlated
with the coverage of shrubs and herbs (Fig. 4b). Previous
studies have demonstrated that greater herbivore species

Fig. 7 Effects of forest stratum on leaf traits (± SE, n = 12). Letters above bars indicate statistical differences between strata
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richness and abundance may occur on the plants that
offer larger resources (Bach 1980; Evans 1983; Marques
et al. 2000; Barbosa et al. 2009; Leidinger et al. 2019). The
identity and diversity of surrounding plants can also influ-
ence herbivory on host plants by altering the physical and
chemical apparency of focal plants (Finch and Collier
2000; Castagneyrol et al. 2013; Moreira et al. 2016). In this
study area, the range of Quercus variabilis Bl. sapling
height was 10 to 150 cm while many shrubs grew more
than 200 cm. The biomass of saplings is “tiny” relative to
their adults and most of the saplings are surrounded by
grasses and shrubs, which can decrease the physical and
chemical apparency of the oak saplings, which may be
why the herbivory in sapling stratum is significantly lower
than that in lower stratum.

Conclusions
Insect herbivory was spatially heterogeneous within
stands. In general, herbivory was significantly lower in
gravel soil areas than in loam soil areas. The highest her-
bivory occurred in the lower stratum, the lowest in the
sapling stratum. However, there were also 41 individual
plots in which the highest herbivory occurred in the
upper stratum and 29 plots in which the highest herbiv-
ory occurred in the sapling stratum. There were signifi-
cant differences in soil nutrient and water status
between soil types, but differences in leaf traits were not
significant. The effects of the forest stratum on leaf traits
were inconsistent with those on insect herbivory. Leaf
traits may not be the main factors influencing insect her-
bivory in the field. Soil type may have a prominent effect

Table 3 The litter coverage, number of overwintering pupae, and pupal cases in each plot

Parameters Loam area Gravel soil area

Plot 1 Plot 2 Plot 3 Plot 1 Plot 2 Plot 3

Litter coverage (%) 70 85 75 40 35 55

Overwintering pupae 3 3 4 0 1 2

Pupal cases 7 9 9 4 3 5

Fig. 8 Comparison of litter coverage (± SE), density of overwintering pupae (± SE) and density of pupal cases (± SE) in the plots investigated
between loam and gravel soil areas. Letters above bars indicate statistical differences between different soil types. Litter coverage: t = 4.472, df = 4,
P = 0.011; density of overwintering pupae: t = 3.500, df = 4, P = 0.025; density of pupal cases: t = 4.914, df = 4, P = 0.008
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on herbivory patterns due to changes in litter compos-
ition while higher coverage of shrubs and herbs may re-
duce herbivory in the sapling stratum. These findings
contribute significantly to our understanding of tree-
herbivore interactions in real-world situations and thus
have important implications for the sustainable manage-
ment of forest ecosystems.
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